wan_audio_runner.py 38.5 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
2
import io
3
import json
PengGao's avatar
PengGao committed
4
import os
sandy's avatar
sandy committed
5
import warnings
PengGao's avatar
PengGao committed
6
from dataclasses import dataclass
7
from typing import Dict, List, Optional, Tuple, Union
PengGao's avatar
PengGao committed
8

wangshankun's avatar
wangshankun committed
9
10
import numpy as np
import torch
11
import torch.distributed as dist
sandy's avatar
sandy committed
12
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
13
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
14
import torchvision.transforms.functional as TF
15
from PIL import Image, ImageCms, ImageOps
gushiqiao's avatar
gushiqiao committed
16
from einops import rearrange
PengGao's avatar
PengGao committed
17
from loguru import logger
gushiqiao's avatar
gushiqiao committed
18
19
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
20

LiangLiu's avatar
LiangLiu committed
21
from lightx2v.deploy.common.va_controller import VAController
22
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
23
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
24
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
25
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
26
from lightx2v.models.runners.wan.wan_runner import WanRunner
27
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
28
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
yihuiwen's avatar
yihuiwen committed
29
from lightx2v.server.metrics import monitor_cli
30
from lightx2v.utils.envs import *
31
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
32
from lightx2v.utils.registry_factory import RUNNER_REGISTER
LiangLiu's avatar
LiangLiu committed
33
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image_inplace
34
from lightx2v_platform.base.global_var import AI_DEVICE
35

sandy's avatar
sandy committed
36
37
38
warnings.filterwarnings("ignore", category=UserWarning, module="torchaudio")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io")

wangshankun's avatar
wangshankun committed
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
55
56
                h_ratio *= 2
            else:
57
                patched_w //= 2
58
                w_ratio *= 2
59
    return patched_h * h_ratio, patched_w * w_ratio
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
81
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
82
83
    size: (H, W)
    """
84
85
86
87
88
89
90
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

91
92
93
94
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
95
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
96
97
98
99

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

100
101
102
    return resized_frames


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


124
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
125
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
126
127
128
129
130

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
131

132
133
134
135
136
137
138
139
140
141
142
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
143
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
144
145
146
147
148
149
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
150
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
151

152
153
154
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
155
156
157
158
159
160
161
162
163
164
165

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
166
        for resolution in bucket_config[closet_ratio]:
167
168
169
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
PengGao's avatar
PengGao committed
170
171
172
173
174
175
176
177
178
        area_in_pixels = 480 * 832
        if fixed_area == "480p":
            area_in_pixels = 480 * 832
        elif fixed_area == "720p":
            area_in_pixels = 720 * 1280
        else:
            area_in_pixels = 480 * 832
        target_h = round(np.sqrt(area_in_pixels * ori_ratio))
        target_w = round(np.sqrt(area_in_pixels / ori_ratio))
179
180
181
182
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
183
        target_h, target_w = bucket_config[closet_ratio][0]
184
    elif resize_mode == "fixed_min_side":
PengGao's avatar
PengGao committed
185
186
187
188
189
190
191
192
        min_side = 720
        if fixed_area == "720p":
            min_side = 720
        elif fixed_area == "480p":
            min_side = 480
        else:
            logger.warning(f"[wan_audio] fixed_area is not '480p' or '720p', using default 480p: {fixed_area}")
            min_side = 480
193
194
195
196
197
198
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
199
200
201
202
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
203
        target_h, target_w = bucket_config[closet_ratio][-1]
204

205
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
PengGao's avatar
PengGao committed
206
    logger.info(f"[wan_audio] resize_image: {img.shape} -> {cropped_img.shape}, resize_mode: {resize_mode}, target_h: {target_h}, target_w: {target_w}")
207
208
209
    return cropped_img, target_h, target_w


210
211
212
213
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

sandy's avatar
sandy committed
214
    audio_array: torch.Tensor
215
216
217
218
    start_frame: int
    end_frame: int


219
class FramePreprocessorTorchVersion:
220
221
222
223
224
225
226
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

227
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
228
229
        """Add noise to frames"""

230
        device = frames.device
231
232
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
233
234
235
236
237
238
239
240
241
242

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
243
244
        return frames + noise

245
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
246
247
        """Add mask to frames"""

248
        device = frames.device
249
        h, w = frames.shape[-2:]
250
251
252

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
253
254
255
256
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
257
258
259
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
260
261
262
263
264
265
266
267


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
268
        self.audio_frame_rate = audio_sr // target_fps
269

sandy's avatar
sandy committed
270
    def load_audio(self, audio_path: str):
271
272
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
sandy's avatar
sandy committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        return audio_array

    def load_multi_person_audio(self, audio_paths: List[str]):
        audio_arrays = []
        max_len = 0

        for audio_path in audio_paths:
            audio_array = self.load_audio(audio_path)
            audio_arrays.append(audio_array)
            max_len = max(max_len, audio_array.numel())

        num_files = len(audio_arrays)
        padded = torch.zeros(num_files, max_len, dtype=torch.float32)

        for i, arr in enumerate(audio_arrays):
            length = arr.numel()
            padded[i, :length] = arr

        return padded
292
293
294

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
295
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
296

sandy's avatar
sandy committed
297
298
299
300
301
    def segment_audio(self, audio_array: torch.Tensor, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """
        Segment audio based on frame requirements
        audio_array is (N, T) tensor
        """
302
        segments = []
sandy's avatar
sandy committed
303
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
304

sandy's avatar
sandy committed
305
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
sandy's avatar
sandy committed
306
        audio_array_ori = audio_array[:, audio_start:audio_end]
307

sandy's avatar
sandy committed
308
309
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
sandy's avatar
sandy committed
310
            audio_array = audio_array_ori[:, audio_start:audio_end]
311

sandy's avatar
sandy committed
312
313
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
sandy's avatar
sandy committed
314
315
316
317
318
            else:  # for last segments
                if audio_array.shape[1] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[1]
                    audio_array = F.pad(audio_array, (0, padding_len))
                    # Adjust end_idx to account for the frames added by padding
sandy's avatar
sandy committed
319
                    end_idx = end_idx - padding_len // self.audio_frame_rate
320

sandy's avatar
sandy committed
321
322
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
323
324
        return segments

sandy's avatar
sandy committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def load_image(image: Union[str, Image.Image], to_rgb: bool = True) -> Image.Image:
    _image = image
    if isinstance(image, str):
        if os.path.isfile(image):
            _image = Image.open(image)
        else:
            raise ValueError(f"Incorrect path. {image} is not a valid path.")
    # orientation transpose
    _image = ImageOps.exif_transpose(_image)
    # convert color space to sRGB
    icc_profile = _image.info.get("icc_profile")
    if icc_profile:
        srgb_profile = ImageCms.createProfile("sRGB")
        input_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc_profile))
        _image = ImageCms.profileToProfile(_image, input_profile, srgb_profile)
    # convert to "RGB"
    if to_rgb:
        _image = _image.convert("RGB")

    return _image


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
364
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
365
366
367
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
368
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
369
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
370
371
372

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
373
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
374

375
    def read_audio_input(self, audio_path):
sandy's avatar
sandy committed
376
        """Read audio input - handles both single and multi-person scenarios"""
helloyongyang's avatar
helloyongyang committed
377
378
379
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
sandy's avatar
sandy committed
380

LiangLiu's avatar
LiangLiu committed
381
382
383
        if not isinstance(audio_path, str):
            return [], 0, None, 0

sandy's avatar
sandy committed
384
        # Get audio files from person objects or legacy format
385
        audio_files, mask_files = self.get_audio_files_from_audio_path(audio_path)
helloyongyang's avatar
helloyongyang committed
386

sandy's avatar
sandy committed
387
388
389
390
391
392
393
394
395
        # Load audio based on single or multi-person mode
        if len(audio_files) == 1:
            audio_array = self._audio_processor.load_audio(audio_files[0])
            audio_array = audio_array.unsqueeze(0)  # Add batch dimension for consistency
        else:
            audio_array = self._audio_processor.load_multi_person_audio(audio_files)

        video_duration = self.config.get("video_duration", 5)
        audio_len = int(audio_array.shape[1] / audio_sr * target_fps)
yihuiwen's avatar
yihuiwen committed
396
397
398
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_input_audio_len.observe(audio_len)

helloyongyang's avatar
helloyongyang committed
399
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)
gushiqiao's avatar
gushiqiao committed
400
401
        if expected_frames < int(video_duration * target_fps):
            logger.warning(f"Input video duration is greater than actual audio duration, using audio duration instead: audio_duration={audio_len / target_fps}, video_duration={video_duration}")
helloyongyang's avatar
helloyongyang committed
402
403

        # Segment audio
404
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
405

406
407
408
409
410
411
        # Mask latent for multi-person s2v
        if mask_files is not None:
            mask_latents = [self.process_single_mask(mask_file) for mask_file in mask_files]
            mask_latents = torch.cat(mask_latents, dim=0)
        else:
            mask_latents = None
sandy's avatar
sandy committed
412

413
        return audio_segments, expected_frames, mask_latents, len(audio_files)
sandy's avatar
sandy committed
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def get_audio_files_from_audio_path(self, audio_path):
        if os.path.isdir(audio_path):
            audio_files = []
            mask_files = []
            logger.info(f"audio_path is a directory, loading config.json from {audio_path}")
            audio_config_path = os.path.join(audio_path, "config.json")
            assert os.path.exists(audio_config_path), "config.json not found in audio_path"
            with open(audio_config_path, "r") as f:
                audio_config = json.load(f)
            for talk_object in audio_config["talk_objects"]:
                audio_files.append(os.path.join(audio_path, talk_object["audio"]))
                mask_files.append(os.path.join(audio_path, talk_object["mask"]))
        else:
            logger.info(f"audio_path is a file without mask: {audio_path}")
            audio_files = [audio_path]
            mask_files = None
sandy's avatar
sandy committed
431

432
        return audio_files, mask_files
sandy's avatar
sandy committed
433

434
    def process_single_mask(self, mask_file):
435
        mask_img = load_image(mask_file)
436
        mask_img = TF.to_tensor(mask_img).sub_(0.5).div_(0.5).unsqueeze(0).to(AI_DEVICE)
sandy's avatar
sandy committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

        if mask_img.shape[1] == 3:  # If it is an RGB three-channel image
            mask_img = mask_img[:, :1]  # Only take the first channel

        mask_img, h, w = resize_image(
            mask_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )

        mask_latent = torch.nn.functional.interpolate(
            mask_img,  # (1, 1, H, W)
            size=(h // 16, w // 16),
            mode="bicubic",
        )

        mask_latent = (mask_latent > 0).to(torch.int8)
        return mask_latent
helloyongyang's avatar
helloyongyang committed
457
458

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
459
460
461
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
462
            ref_img = load_image(img_path)
463
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).to(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
464

465
466
467
468
469
470
471
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
472
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
473
474
        patched_h = h // self.config["vae_stride"][1] // self.config["patch_size"][1]
        patched_w = w // self.config["vae_stride"][2] // self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
475
476
477

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

478
479
        latent_h = patched_h * self.config["patch_size"][1]
        latent_w = patched_w * self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
480

481
482
        latent_shape = self.get_latent_shape_with_lat_hw(latent_h, latent_w)
        target_shape = [latent_h * self.config["vae_stride"][1], latent_w * self.config["vae_stride"][2]]
helloyongyang's avatar
helloyongyang committed
483

484
        logger.info(f"[wan_audio] target_h: {target_shape[0]}, target_w: {target_shape[1]}, latent_h: {latent_h}, latent_w: {latent_w}")
helloyongyang's avatar
helloyongyang committed
485

486
487
        ref_img = torch.nn.functional.interpolate(ref_img, size=(target_shape[0], target_shape[1]), mode="bicubic")
        return ref_img, latent_shape, target_shape
helloyongyang's avatar
helloyongyang committed
488

yihuiwen's avatar
yihuiwen committed
489
490
491
492
493
494
    @ProfilingContext4DebugL1(
        "Run Image Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_img_encode_duration,
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
495
    def run_image_encoder(self, first_frame, last_frame=None):
496
497
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
498
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
499
500
501
502
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
503
504
        return clip_encoder_out

yihuiwen's avatar
yihuiwen committed
505
506
507
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
508
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
509
510
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
511
    def run_vae_encoder(self, img):
512
513
514
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
515
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
516
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
517

518
519
520
521
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
522
523
        return vae_encoder_out

524
    @ProfilingContext4DebugL2("Run Encoders")
525
526
    def _run_input_encoder_local_s2v(self):
        img, latent_shape, target_shape = self.read_image_input(self.input_info.image_path)
sandy's avatar
sandy committed
527
528
        if self.config.get("f2v_process", False):
            self.ref_img = img
529
530
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        self.input_info.target_shape = target_shape  # Important: set target_shape in input_info
helloyongyang's avatar
helloyongyang committed
531
532
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
sandy's avatar
sandy committed
533

534
535
536
537
        audio_segments, expected_frames, person_mask_latens, audio_num = self.read_audio_input(self.input_info.audio_path)
        self.input_info.audio_num = audio_num
        self.input_info.with_mask = person_mask_latens is not None
        text_encoder_output = self.run_text_encoder(self.input_info)
helloyongyang's avatar
helloyongyang committed
538
539
540
541
542
543
544
545
546
547
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
sandy's avatar
sandy committed
548
            "person_mask_latens": person_mask_latens,
helloyongyang's avatar
helloyongyang committed
549
        }
550
551
552

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
553
        dtype = GET_DTYPE()
554

555
        tgt_h, tgt_w = self.input_info.target_shape[0], self.input_info.target_shape[1]
556
        prev_frames = torch.zeros((1, 3, self.config["target_video_length"], tgt_h, tgt_w), device=AI_DEVICE)
557

558
559
        if prev_video is not None:
            # Extract and process last frames
560
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(AI_DEVICE)
sandy's avatar
sandy committed
561
            if self.config["model_cls"] != "wan2.2_audio" and not self.config.get("f2v_process", False):
sandy's avatar
sandy committed
562
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
563
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
564
565
566
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
567

568
569
570
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

571
        _, nframe, height, width = self.model.scheduler.latents.shape
572
573
574
575
576
577
        with ProfilingContext4DebugL1(
            "vae_encoder in init run segment",
            recorder_mode=GET_RECORDER_MODE(),
            metrics_func=monitor_cli.lightx2v_run_vae_encoder_pre_latent_duration,
            metrics_labels=["WanAudioRunner"],
        ):
578
            if self.config["model_cls"] == "wan2.2_audio":
579
580
581
582
583
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
584
            else:
585
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
586

587
            frames_n = (nframe - 1) * 4 + 1
588
            prev_mask = torch.ones((1, frames_n, height, width), device=AI_DEVICE, dtype=dtype)
589
590
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
591
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
592

sandy's avatar
sandy committed
593
594
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
595
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={tgt_h}, tgt_w={tgt_w}")
sandy's avatar
sandy committed
596
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
597

598
599
600
601
602
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
603
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
604
605
606
607
608
609
610
611
612
613
614

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
615
        return mask.transpose(0, 1).contiguous()
616

helloyongyang's avatar
helloyongyang committed
617
618
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
619

helloyongyang's avatar
helloyongyang committed
620
621
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
622
        self.scheduler.set_audio_adapter(self.audio_adapter)
sandy's avatar
sandy committed
623
624
625
626
        if self.config.get("f2v_process", False):
            self.prev_video = self.ref_img.unsqueeze(2)
        else:
            self.prev_video = None
627
628
        if self.input_info.return_result_tensor:
            self.gen_video_final = torch.zeros((self.inputs["expected_frames"], self.input_info.target_shape[0], self.input_info.target_shape[1], 3), dtype=torch.float32, device="cpu")
sandy's avatar
sandy committed
629
            self.cut_audio_final = torch.zeros((self.inputs["expected_frames"] * self._audio_processor.audio_frame_rate), dtype=torch.float32, device="cpu")
LiangLiu's avatar
LiangLiu committed
630
631
        else:
            self.gen_video_final = None
sandy's avatar
sandy committed
632
            self.cut_audio_final = None
wangshankun's avatar
wangshankun committed
633

634
635
636
637
638
639
    @ProfilingContext4DebugL1(
        "Init run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_init_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
LiangLiu's avatar
LiangLiu committed
640
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
641
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
642
        if audio_array is not None:
LiangLiu's avatar
LiangLiu committed
643
644
645
            end_idx = audio_array.shape[0] // self._audio_processor.audio_frame_rate - self.prev_frame_length
            audio_tensor = torch.Tensor(audio_array).float().unsqueeze(0)
            self.segment = AudioSegment(audio_tensor, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
646
647
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
648

649
650
        self.input_info.seed = self.input_info.seed + segment_idx
        torch.manual_seed(self.input_info.seed)
651
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
652

653
654
655
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

sandy's avatar
sandy committed
656
657
658
659
660
661
        features_list = []
        for i in range(self.segment.audio_array.shape[0]):
            feat = self.audio_encoder.infer(self.segment.audio_array[i])
            feat = self.audio_adapter.forward_audio_proj(feat, self.model.scheduler.latents.shape[1])
            features_list.append(feat.squeeze(0))
        audio_features = torch.stack(features_list, dim=0)
PengGao's avatar
PengGao committed
662

helloyongyang's avatar
helloyongyang committed
663
        self.inputs["audio_encoder_output"] = audio_features
664
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
665

helloyongyang's avatar
helloyongyang committed
666
667
        # Reset scheduler for non-first segments
        if segment_idx > 0:
668
            self.model.scheduler.reset(self.input_info.seed, self.input_info.latent_shape, self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
669

670
671
672
673
674
675
    @ProfilingContext4DebugL1(
        "End run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_end_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
676
    def end_run_segment(self, segment_idx):
helloyongyang's avatar
helloyongyang committed
677
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
678
        useful_length = self.segment.end_frame - self.segment.start_frame
LiangLiu's avatar
LiangLiu committed
679
        video_seg = self.gen_video[:, :, :useful_length].cpu()
sandy's avatar
sandy committed
680
681
        audio_seg = self.segment.audio_array[:, : useful_length * self._audio_processor.audio_frame_rate]
        audio_seg = audio_seg.sum(dim=0)  # Multiple audio tracks, mixed into one track
LiangLiu's avatar
LiangLiu committed
682
683
684
685
686
687
688
689
690
691
692
        video_seg = vae_to_comfyui_image_inplace(video_seg)

        # [Warning] Need check whether video segment interpolation works...
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            video_seg = self.vfi_model.interpolate_frames(
                video_seg,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
LiangLiu's avatar
LiangLiu committed
693

694
        if "video_super_resolution" in self.config and self.vsr_model is not None:
LiangLiu's avatar
LiangLiu committed
695
            # logger.info(f"Applying video super resolution with scale {self.config['video_super_resolution']['scale']}")
696
697
698
699
700
701
            video_seg = self.vsr_model.super_resolve_frames(
                video_seg,
                seed=self.config["video_super_resolution"]["seed"],
                scale=self.config["video_super_resolution"]["scale"],
            )

LiangLiu's avatar
LiangLiu committed
702
703
        if self.va_controller.recorder is not None:
            self.va_controller.pub_livestream(video_seg, audio_seg, self.gen_video[:, :, :useful_length])
704
        elif self.input_info.return_result_tensor:
LiangLiu's avatar
LiangLiu committed
705
            self.gen_video_final[self.segment.start_frame : self.segment.end_frame].copy_(video_seg)
sandy's avatar
sandy committed
706
            self.cut_audio_final[self.segment.start_frame * self._audio_processor.audio_frame_rate : self.segment.end_frame * self._audio_processor.audio_frame_rate].copy_(audio_seg)
LiangLiu's avatar
LiangLiu committed
707

helloyongyang's avatar
helloyongyang committed
708
709
710
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

LiangLiu's avatar
LiangLiu committed
711
        del video_seg, audio_seg
helloyongyang's avatar
helloyongyang committed
712
713
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
714
715
716
717
718
719
720
721
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

PengGao's avatar
PengGao committed
722
    def run_main(self):
LiangLiu's avatar
LiangLiu committed
723
        try:
LiangLiu's avatar
LiangLiu committed
724
            self.va_controller = None
LiangLiu's avatar
LiangLiu committed
725
726
            self.va_controller = VAController(self)
            logger.info(f"init va_recorder: {self.va_controller.recorder} and va_reader: {self.va_controller.reader}")
LiangLiu's avatar
LiangLiu committed
727

LiangLiu's avatar
LiangLiu committed
728
729
            # fixed audio segments inputs
            if self.va_controller.reader is None:
PengGao's avatar
PengGao committed
730
                return super().run_main()
LiangLiu's avatar
LiangLiu committed
731

LiangLiu's avatar
LiangLiu committed
732
            self.va_controller.start()
LiangLiu's avatar
LiangLiu committed
733
            self.init_run()
LiangLiu's avatar
LiangLiu committed
734
            if self.config.get("compile", False) and hasattr(self.model, "comple"):
735
                self.model.select_graph_for_compile(self.input_info)
LiangLiu's avatar
LiangLiu committed
736
737
            # steam audio input, video segment num is unlimited
            self.video_segment_num = 1000000
LiangLiu's avatar
LiangLiu committed
738
            segment_idx = 0
LiangLiu's avatar
LiangLiu committed
739
740
            fail_count, max_fail_count = 0, 10
            self.va_controller.before_control()
LiangLiu's avatar
LiangLiu committed
741
742

            while True:
743
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
744
745
746
747
748
749
750
751
                    control = self.va_controller.next_control()
                    if control.action == "immediate":
                        self.prev_video = control.data
                    elif control.action == "wait":
                        time.sleep(0.01)
                        continue

                    audio_array = self.va_controller.reader.get_audio_segment()
LiangLiu's avatar
LiangLiu committed
752
753
754
755
756
757
758
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

759
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
                    try:
                        # reset pause signal
                        self.pause_signal = False
                        self.init_run_segment(segment_idx, audio_array)
                        self.check_stop()
                        latents = self.run_segment(segment_idx)
                        self.check_stop()
                        self.gen_video = self.run_vae_decoder(latents)
                        self.check_stop()
                        self.end_run_segment(segment_idx)
                        segment_idx += 1
                        fail_count = 0
                    except Exception as e:
                        if "pause_signal, pause running" in str(e):
                            logger.warning(f"model infer audio pause: {e}, should continue")
                        else:
                            raise
LiangLiu's avatar
LiangLiu committed
777
        finally:
LiangLiu's avatar
LiangLiu committed
778
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
779
                self.end_run()
LiangLiu's avatar
LiangLiu committed
780
781
782
            if self.va_controller is not None:
                self.va_controller.clear()
                self.va_controller = None
LiangLiu's avatar
LiangLiu committed
783

784
    @ProfilingContext4DebugL1("Process after vae decoder")
785
786
    def process_images_after_vae_decoder(self):
        if self.input_info.return_result_tensor:
sandy's avatar
sandy committed
787
            audio_waveform = self.cut_audio_final.unsqueeze(0).unsqueeze(0)
LiangLiu's avatar
LiangLiu committed
788
789
790
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
            return {"video": self.gen_video_final, "audio": comfyui_audio}
        return {"video": None, "audio": None}
791

wangshankun's avatar
wangshankun committed
792
    def load_transformer(self):
793
        """Load transformer with LoRA support"""
794
795
        base_model = WanAudioModel(self.config["model_path"], self.config, self.init_device)
        if self.config.get("lora_configs") and self.config["lora_configs"]:
796
            assert not self.config.get("dit_quantized", False)
wangshankun's avatar
wangshankun committed
797
            lora_wrapper = WanLoraWrapper(base_model)
798
            for lora_config in self.config["lora_configs"]:
799
800
801
802
803
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
804

wangshankun's avatar
wangshankun committed
805
806
        return base_model

helloyongyang's avatar
helloyongyang committed
807
    def load_audio_encoder(self):
gushiqiao's avatar
gushiqiao committed
808
        audio_encoder_path = self.config.get("audio_encoder_path", os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large"))
809
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
810
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
811
        return model
812

helloyongyang's avatar
helloyongyang committed
813
    def load_audio_adapter(self):
814
815
816
817
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
818
            device = torch.device(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
819
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
820
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
821
822
823
824
825
826
827
828
829
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
830
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
831
        )
832

833
        audio_adapter.to(device)
834
        load_from_rank0 = self.config.get("load_from_rank0", False)
835
        weights_dict = load_weights(self.config["adapter_model_path"], cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
836
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
837
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
838

helloyongyang's avatar
helloyongyang committed
839
840
    def load_model(self):
        super().load_model()
841
842
843
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
844

845
846
847
848
849
850
851
852
    def get_latent_shape_with_lat_hw(self, latent_h, latent_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            latent_h,
            latent_w,
        ]
        return latent_shape
sandy's avatar
sandy committed
853
854
855
856
857
858
859
860
861
862
863
864
865


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
866
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
867
        vae_config = {
gushiqiao's avatar
gushiqiao committed
868
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
869
870
871
872
873
874
875
876
877
878
879
880
881
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
882
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
883
        vae_config = {
gushiqiao's avatar
gushiqiao committed
884
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
885
886
887
888
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
889
        if self.config.task not in ["i2v", "s2v"]:
sandy's avatar
sandy committed
890
891
892
893
894
895
896
897
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder