wan_audio_runner.py 34.1 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
import os
sandy's avatar
sandy committed
3
import warnings
PengGao's avatar
PengGao committed
4
from dataclasses import dataclass
5
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
6

wangshankun's avatar
wangshankun committed
7
8
import numpy as np
import torch
9
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
10
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
11
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
sandy's avatar
sandy committed
15
from torchvision.io import write_video
gushiqiao's avatar
gushiqiao committed
16
17
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
18

LiangLiu's avatar
LiangLiu committed
19
20
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
21
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
22
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
23
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
24
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
25
from lightx2v.models.runners.wan.wan_runner import WanRunner
26
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
27
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
28
from lightx2v.utils.envs import *
29
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
30
from lightx2v.utils.registry_factory import RUNNER_REGISTER
sandy's avatar
sandy committed
31
32
33
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image

warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io._video_deprecation_warning")
34

wangshankun's avatar
wangshankun committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
51
52
                h_ratio *= 2
            else:
53
                patched_w //= 2
54
                w_ratio *= 2
55
    return patched_h * h_ratio, patched_w * w_ratio
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
77
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
78
79
    size: (H, W)
    """
80
81
82
83
84
85
86
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

87
88
89
90
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
91
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
92
93
94
95

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

96
97
98
    return resized_frames


99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


120
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
121
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
122
123
124
125
126

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
127

128
129
130
131
132
133
134
135
136
137
138
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
139
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
140
141
142
143
144
145
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
146
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
147

148
149
150
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
151
152
153
154
155
156
157
158
159
160
161

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
162
        for resolution in bucket_config[closet_ratio]:
163
164
165
166
167
168
169
170
171
172
173
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
174
        target_h, target_w = bucket_config[closet_ratio][0]
175
176
177
178
179
180
181
182
183
184
    elif resize_mode == "fixed_min_side":
        assert fixed_area in ["480p", "720p"], f"fixed_min_side mode requires fixed_area to be '480p' or '720p', got {fixed_area}"

        min_side = 720 if fixed_area == "720p" else 480
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
185
186
187
188
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
189
        target_h, target_w = bucket_config[closet_ratio][-1]
190

191
192
193
194
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


195
196
197
198
199
200
201
202
203
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int


204
class FramePreprocessorTorchVersion:
205
206
207
208
209
210
211
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

212
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
213
214
        """Add noise to frames"""

215
        device = frames.device
216
217
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
218
219
220
221
222
223
224
225
226
227

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
228
229
        return frames + noise

230
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
231
232
        """Add mask to frames"""

233
        device = frames.device
234
        h, w = frames.shape[-2:]
235
236
237

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
238
239
240
241
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
242
243
244
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
245
246
247
248
249
250
251
252


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
253
        self.audio_frame_rate = audio_sr // target_fps
254
255
256
257
258
259
260
261
262

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
263
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
264
265
266
267

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []
sandy's avatar
sandy committed
268
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
269

sandy's avatar
sandy committed
270
271
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
        audio_array_ori = audio_array[audio_start:audio_end]
272

sandy's avatar
sandy committed
273
274
275
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
            audio_array = audio_array_ori[audio_start:audio_end]
276

sandy's avatar
sandy committed
277
278
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
279
            else:
sandy's avatar
sandy committed
280
281
282
283
                if audio_array.shape[0] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[0]
                    audio_array = np.concatenate((audio_array, np.zeros(padding_len)), axis=0)
                    end_idx = end_idx - padding_len // self.audio_frame_rate
284

sandy's avatar
sandy committed
285
286
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
287
288
        return segments

sandy's avatar
sandy committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

305

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
306
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
307
308
309
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
310
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
311
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
312
313
314

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
315
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
316
317
318
319
320
321

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
LiangLiu's avatar
LiangLiu committed
322
323
        if not isinstance(self.config["audio_path"], str):
            return [], 0
helloyongyang's avatar
helloyongyang committed
324
325
326
327
328
329
330
331
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
332
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
333
334
335
336

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
337
338
339
340
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
            ref_img = Image.open(img_path).convert("RGB")
helloyongyang's avatar
helloyongyang committed
341
342
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

343
344
345
346
347
348
349
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
350
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
helloyongyang's avatar
helloyongyang committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
368
369
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
370
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
371
372
373
374
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
375
376
377
        return clip_encoder_out

    def run_vae_encoder(self, img):
378
379
380
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
381
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
382
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
383

384
385
386
387
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
388
389
        return vae_encoder_out

390
    @ProfilingContext4DebugL2("Run Encoders")
helloyongyang's avatar
helloyongyang committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
409
410
411

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
412
        device = torch.device("cuda")
413
        dtype = GET_DTYPE()
414
415
416
417

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

418
419
420
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
sandy's avatar
sandy committed
421
422
            if self.config.model_cls != "wan2.2_audio":
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
423
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
424
425
426
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
427

428
429
430
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

431
        _, nframe, height, width = self.model.scheduler.latents.shape
432
        with ProfilingContext4DebugL1("vae_encoder in init run segment"):
433
434
435
436
437
438
            if self.config.model_cls == "wan2.2_audio":
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
439
            else:
440
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
441

442
443
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
444
445
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
446
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
447

sandy's avatar
sandy committed
448
449
450
451
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
452

453
454
455
456
457
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
458
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
459
460
461
462
463
464
465
466
467
468
469

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
470
        return mask.transpose(0, 1).contiguous()
471

helloyongyang's avatar
helloyongyang committed
472
473
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
474

helloyongyang's avatar
helloyongyang committed
475
476
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
477
        self.scheduler.set_audio_adapter(self.audio_adapter)
wangshankun's avatar
wangshankun committed
478

helloyongyang's avatar
helloyongyang committed
479
480
481
        self.gen_video_list = []
        self.cut_audio_list = []
        self.prev_video = None
wangshankun's avatar
wangshankun committed
482

483
    @ProfilingContext4DebugL1("Init run segment")
LiangLiu's avatar
LiangLiu committed
484
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
485
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
486
        if audio_array is not None:
LiangLiu's avatar
LiangLiu committed
487
488
            end_idx = audio_array.shape[0] // self._audio_processor.audio_frame_rate - self.prev_frame_length
            self.segment = AudioSegment(audio_array, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
489
490
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
491

helloyongyang's avatar
helloyongyang committed
492
493
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
494
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
495

496
497
498
499
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

        audio_features = self.audio_encoder.infer(self.segment.audio_array)
helloyongyang's avatar
helloyongyang committed
500
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
501

helloyongyang's avatar
helloyongyang committed
502
        self.inputs["audio_encoder_output"] = audio_features
503
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
504

helloyongyang's avatar
helloyongyang committed
505
506
        # Reset scheduler for non-first segments
        if segment_idx > 0:
sandy's avatar
sandy committed
507
            self.model.scheduler.reset(self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
508

509
    @ProfilingContext4DebugL1("End run segment")
helloyongyang's avatar
helloyongyang committed
510
511
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
512
513
514
        useful_length = self.segment.end_frame - self.segment.start_frame
        self.gen_video_list.append(self.gen_video[:, :, :useful_length].cpu())
        self.cut_audio_list.append(self.segment.audio_array[: useful_length * self._audio_processor.audio_frame_rate])
helloyongyang's avatar
helloyongyang committed
515

LiangLiu's avatar
LiangLiu committed
516
517
518
519
520
521
522
523
        if self.va_recorder:
            cur_video = vae_to_comfyui_image(self.gen_video_list[-1])
            self.va_recorder.pub_livestream(cur_video, self.cut_audio_list[-1])

        if self.va_reader:
            self.gen_video_list.pop()
            self.cut_audio_list.pop()

helloyongyang's avatar
helloyongyang committed
524
525
526
527
528
529
530
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

        # Clean up GPU memory after each segment
        del self.gen_video
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
        output_video_path = self.config.get("save_video_path", None)
        self.va_recorder = None
        if isinstance(output_video_path, dict):
            assert output_video_path["type"] == "stream", f"unexcept save_video_path: {output_video_path}"
            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                record_fps = self.config.get("target_fps", 16)
                audio_sr = self.config.get("audio_sr", 16000)
                if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                    record_fps = self.config["video_frame_interpolation"]["target_fps"]
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path["data"],
                    fps=record_fps,
                    sample_rate=audio_sr,
                )

    def init_va_reader(self):
        audio_path = self.config.get("audio_path", None)
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

    def run_main(self, total_steps=None):
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
                return super().run_main(total_steps)

            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 0"
            self.va_reader.start()

            self.init_run()
LiangLiu's avatar
LiangLiu committed
591
592
            if self.config.get("compile", False):
                self.model.select_graph_for_compile()
LiangLiu's avatar
LiangLiu committed
593
594
595
596
597
598
599
600
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
601
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
602
603
604
605
606
607
608
609
610
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

611
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
612
613
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
helloyongyang's avatar
helloyongyang committed
614
                    latents = self.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
615
616
617
618
619
                    self.gen_video = self.run_vae_decoder(latents)
                    self.end_run_segment()
                    segment_idx += 1

        finally:
LiangLiu's avatar
LiangLiu committed
620
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
621
622
623
624
625
626
627
628
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
                self.va_recorder.stop(wait=False)
                self.va_recorder = None

629
    @ProfilingContext4DebugL1("Process after vae decoder")
helloyongyang's avatar
helloyongyang committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    def process_images_after_vae_decoder(self, save_video=True):
        # Merge results
        gen_lvideo = torch.cat(self.gen_video_list, dim=2).float()
        merge_audio = np.concatenate(self.cut_audio_list, axis=0).astype(np.float32)

        comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
646

LiangLiu's avatar
LiangLiu committed
647
        if save_video and isinstance(self.config["save_video_path"], str):
helloyongyang's avatar
helloyongyang committed
648
649
650
651
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
652

helloyongyang's avatar
helloyongyang committed
653
654
            if not dist.is_initialized() or dist.get_rank() == 0:
                logger.info(f"🎬 Start to save video 🎬")
655

helloyongyang's avatar
helloyongyang committed
656
657
                self._save_video_with_audio(comfyui_images, merge_audio, fps)
                logger.info(f"✅ Video saved successfully to: {self.config.save_video_path} ✅")
658

helloyongyang's avatar
helloyongyang committed
659
660
661
        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
662

helloyongyang's avatar
helloyongyang committed
663
        return {"video": comfyui_images, "audio": comfyui_audio}
664

helloyongyang's avatar
helloyongyang committed
665
666
667
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
668
669

    def _save_video_with_audio(self, images, audio_array, fps):
sandy's avatar
sandy committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        output_path = self.config.get("save_video_path")
        parent_dir = os.path.dirname(output_path)
        if parent_dir and not os.path.exists(parent_dir):
            os.makedirs(parent_dir, exist_ok=True)

        sample_rate = self._audio_processor.audio_sr

        if images.dtype != torch.uint8:
            images = (images * 255).clamp(0, 255).to(torch.uint8)

        write_video(
            filename=output_path,
            video_array=images,
            fps=fps,
            video_codec="libx264",
            audio_array=torch.tensor(audio_array[None]),
            audio_fps=sample_rate,
            audio_codec="aac",
            options={"preset": "medium", "crf": "23"},  # 可调整视频输出质量
        )
wangshankun's avatar
wangshankun committed
690
691

    def load_transformer(self):
692
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
693
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
694
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
695
696
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
697
698
699
700
701
702
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
703

wangshankun's avatar
wangshankun committed
704
705
        return base_model

helloyongyang's avatar
helloyongyang committed
706
    def load_audio_encoder(self):
707
        audio_encoder_path = os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large")
708
709
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
710
        return model
711

helloyongyang's avatar
helloyongyang committed
712
    def load_audio_adapter(self):
713
714
715
716
717
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
718
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
719
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
720
721
722
723
724
725
726
727
728
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
729
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
730
        )
731

732
        audio_adapter.to(device)
733
734
        load_from_rank0 = self.config.get("load_from_rank0", False)
        weights_dict = load_weights(self.config.adapter_model_path, cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
735
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
736
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
737

helloyongyang's avatar
helloyongyang committed
738
739
    def load_model(self):
        super().load_model()
740
741
742
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
743
744

    def set_target_shape(self):
745
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
746
747
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
748
749
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
750

wangshankun's avatar
wangshankun committed
751
752
753
754
755
756
757
758
759
760
761
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
762
            assert False, error_msg
wangshankun's avatar
wangshankun committed
763
764
765

        ret["target_shape"] = self.config.target_shape
        return ret
sandy's avatar
sandy committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder