wan_audio_runner.py 35.7 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4
import os
import subprocess
from dataclasses import dataclass
5
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
6

wangshankun's avatar
wangshankun committed
7
8
import numpy as np
import torch
9
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
10
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
11
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
gushiqiao's avatar
gushiqiao committed
15
16
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
17

LiangLiu's avatar
LiangLiu committed
18
19
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
20
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
21
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
22
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
23
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
24
from lightx2v.models.runners.wan.wan_runner import WanRunner
25
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
26
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
27
from lightx2v.utils.envs import *
28
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
PengGao's avatar
PengGao committed
29
from lightx2v.utils.registry_factory import RUNNER_REGISTER
sandy's avatar
sandy committed
30
from lightx2v.utils.utils import find_torch_model_path, load_weights, save_to_video, vae_to_comfyui_image
31

wangshankun's avatar
wangshankun committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
48
49
                h_ratio *= 2
            else:
50
                patched_w //= 2
51
                w_ratio *= 2
52
    return patched_h * h_ratio, patched_w * w_ratio
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
81
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
82
83
84
    return resized_frames


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


106
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
107
108
109
110
111
112
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape"]

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
        logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
        logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")

134
135
136
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
137
138
139
140
141
142
143
144
145
146
147

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
148
        for resolution in bucket_config[closet_ratio]:
149
150
151
152
153
154
155
156
157
158
159
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
160
        target_h, target_w = bucket_config[closet_ratio][0]
161
162
163
164
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
165
        target_h, target_w = bucket_config[closet_ratio][-1]
166

167
168
169
170
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


171
172
173
174
175
176
177
178
179
180
181
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


182
class FramePreprocessorTorchVersion:
183
184
185
186
187
188
189
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

190
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
191
192
        """Add noise to frames"""

193
        device = frames.device
194
195
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
196
197
198
199
200
201
202
203
204
205

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
206
207
        return frames + noise

208
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
209
210
        """Add mask to frames"""

211
        device = frames.device
212
        h, w = frames.shape[-2:]
213
214
215

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
216
217
218
219
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
220
221
222
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
LiangLiu's avatar
LiangLiu committed
241
        return round(start_frame * audio_frame_rate), round(end_frame * audio_frame_rate)
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
256
            if res_frame_num > prev_frame_length:
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

274
            elif res_frame_num > prev_frame_length and idx == interval_num - 1:
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
298
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
299
300
301
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
302
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
303
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
304
305
306

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
307
        scheduler = EulerScheduler(self.config)
308
309
310
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.audio_adapter = self.load_audio_adapter()
            self.model.set_audio_adapter(self.audio_adapter)
311
        scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
312
313
314
315
316
317
318
        self.model.set_scheduler(scheduler)

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
LiangLiu's avatar
LiangLiu committed
319
320
        if not isinstance(self.config["audio_path"], str):
            return [], 0
helloyongyang's avatar
helloyongyang committed
321
322
323
324
325
326
327
328
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
329
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
330
331
332
333

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
334
335
336
337
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
            ref_img = Image.open(img_path).convert("RGB")
helloyongyang's avatar
helloyongyang committed
338
339
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

340
341
342
343
344
345
346
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
347
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
helloyongyang's avatar
helloyongyang committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
365
366
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
367
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
368
369
370
371
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
372
373
374
        return clip_encoder_out

    def run_vae_encoder(self, img):
375
376
377
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
378
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
379
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
380

381
382
383
384
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        return vae_encoder_out

    @ProfilingContext("Run Encoders")
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
406
407
408

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
409
        device = torch.device("cuda")
410
        dtype = GET_DTYPE()
411
412
413
414

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

415
416
417
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
sandy's avatar
sandy committed
418
419
            if self.config.model_cls != "wan2.2_audio":
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
420
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
421
422
423
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
424

425
426
427
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

428
        _, nframe, height, width = self.model.scheduler.latents.shape
429
430
431
432
433
434
435
        with ProfilingContext4Debug("vae_encoder in init run segment"):
            if self.config.model_cls == "wan2.2_audio":
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
436
            else:
437
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
438

439
440
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
441
442
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
443
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
444

sandy's avatar
sandy committed
445
446
447
448
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
449

450
451
452
453
454
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
455
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
456
457
458
459
460
461
462
463
464
465
466
467
468

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

helloyongyang's avatar
helloyongyang committed
469
470
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
471

helloyongyang's avatar
helloyongyang committed
472
473
    def init_run(self):
        super().init_run()
wangshankun's avatar
wangshankun committed
474

helloyongyang's avatar
helloyongyang committed
475
476
477
        self.gen_video_list = []
        self.cut_audio_list = []
        self.prev_video = None
wangshankun's avatar
wangshankun committed
478

479
    @ProfilingContext4Debug("Init run segment")
LiangLiu's avatar
LiangLiu committed
480
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
481
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
482
483
484
485
        if audio_array is not None:
            self.segment = AudioSegment(audio_array, 0, audio_array.shape[0], False)
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
486

helloyongyang's avatar
helloyongyang committed
487
488
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
489
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
490

491
492
493
494
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

        audio_features = self.audio_encoder.infer(self.segment.audio_array)
helloyongyang's avatar
helloyongyang committed
495
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
496

helloyongyang's avatar
helloyongyang committed
497
        self.inputs["audio_encoder_output"] = audio_features
498
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
499

helloyongyang's avatar
helloyongyang committed
500
501
        # Reset scheduler for non-first segments
        if segment_idx > 0:
sandy's avatar
sandy committed
502
            self.model.scheduler.reset(self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
503

504
    @ProfilingContext4Debug("End run segment")
helloyongyang's avatar
helloyongyang committed
505
506
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
wangshankun's avatar
wangshankun committed
507

helloyongyang's avatar
helloyongyang committed
508
        # Extract relevant frames
509
        start_frame = 0 if self.segment_idx == 0 else self.prev_frame_length
LiangLiu's avatar
LiangLiu committed
510
        start_audio_frame = 0 if self.segment_idx == 0 else int(self.prev_frame_length * self._audio_processor.audio_sr / self.config.get("target_fps", 16))
wangshankun's avatar
wangshankun committed
511

helloyongyang's avatar
helloyongyang committed
512
513
514
515
516
517
518
        if self.segment.is_last and self.segment.useful_length:
            end_frame = self.segment.end_frame - self.segment.start_frame
            self.gen_video_list.append(self.gen_video[:, :, start_frame:end_frame].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
        elif self.segment.useful_length and self.inputs["expected_frames"] < self.config.get("target_video_length", 81):
            self.gen_video_list.append(self.gen_video[:, :, start_frame : self.inputs["expected_frames"]].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
wangshankun's avatar
wangshankun committed
519
        else:
helloyongyang's avatar
helloyongyang committed
520
521
522
            self.gen_video_list.append(self.gen_video[:, :, start_frame:].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame:])

LiangLiu's avatar
LiangLiu committed
523
524
525
526
527
528
529
530
        if self.va_recorder:
            cur_video = vae_to_comfyui_image(self.gen_video_list[-1])
            self.va_recorder.pub_livestream(cur_video, self.cut_audio_list[-1])

        if self.va_reader:
            self.gen_video_list.pop()
            self.cut_audio_list.pop()

helloyongyang's avatar
helloyongyang committed
531
532
533
534
535
536
537
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

        # Clean up GPU memory after each segment
        del self.gen_video
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
        output_video_path = self.config.get("save_video_path", None)
        self.va_recorder = None
        if isinstance(output_video_path, dict):
            assert output_video_path["type"] == "stream", f"unexcept save_video_path: {output_video_path}"
            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                record_fps = self.config.get("target_fps", 16)
                audio_sr = self.config.get("audio_sr", 16000)
                if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                    record_fps = self.config["video_frame_interpolation"]["target_fps"]
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path["data"],
                    fps=record_fps,
                    sample_rate=audio_sr,
                )

    def init_va_reader(self):
        audio_path = self.config.get("audio_path", None)
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

    def run_main(self, total_steps=None):
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
                return super().run_main(total_steps)

            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 0"
            self.va_reader.start()

            self.init_run()
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
                with ProfilingContext4Debug(f"stream segment get audio segment {segment_idx}"):
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

                with ProfilingContext4Debug(f"stream segment end2end {segment_idx}"):
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
helloyongyang's avatar
helloyongyang committed
619
                    latents = self.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
                    self.gen_video = self.run_vae_decoder(latents)
                    self.end_run_segment()
                    segment_idx += 1

        finally:
            if hasattr(self.model, "scheduler"):
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
                self.va_recorder.stop(wait=False)
                self.va_recorder = None

634
    @ProfilingContext4Debug("Process after vae decoder")
helloyongyang's avatar
helloyongyang committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    def process_images_after_vae_decoder(self, save_video=True):
        # Merge results
        gen_lvideo = torch.cat(self.gen_video_list, dim=2).float()
        merge_audio = np.concatenate(self.cut_audio_list, axis=0).astype(np.float32)

        comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
651

LiangLiu's avatar
LiangLiu committed
652
        if save_video and isinstance(self.config["save_video_path"], str):
helloyongyang's avatar
helloyongyang committed
653
654
655
656
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
657

helloyongyang's avatar
helloyongyang committed
658
659
            if not dist.is_initialized() or dist.get_rank() == 0:
                logger.info(f"🎬 Start to save video 🎬")
660

helloyongyang's avatar
helloyongyang committed
661
662
                self._save_video_with_audio(comfyui_images, merge_audio, fps)
                logger.info(f"✅ Video saved successfully to: {self.config.save_video_path} ✅")
663

helloyongyang's avatar
helloyongyang committed
664
665
666
        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
667

helloyongyang's avatar
helloyongyang committed
668
        return {"video": comfyui_images, "audio": comfyui_audio}
669

helloyongyang's avatar
helloyongyang committed
670
671
672
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
673
674
675
676
677
678
679
680
681
682
683
684
685

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            save_to_video(images, video_path, fps)
686
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)  # type: ignore
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
703
704

    def load_transformer(self):
705
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
706
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
707
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
708
709
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
710
711
712
713
714
715
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
716

wangshankun's avatar
wangshankun committed
717
718
        return base_model

helloyongyang's avatar
helloyongyang committed
719
    def load_audio_encoder(self):
720
        audio_encoder_path = os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large")
721
722
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
723
        return model
724

helloyongyang's avatar
helloyongyang committed
725
    def load_audio_adapter(self):
726
727
728
729
730
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
731
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
732
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
733
734
735
736
737
738
739
740
741
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
742
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
743
        )
744
        audio_adapter.to(device)
helloyongyang's avatar
helloyongyang committed
745
        if self.config.get("adapter_quantized", False):
746
            if self.config.get("adapter_quant_scheme", None) in ["fp8", "fp8-q8f"]:
747
                model_name = "audio_adapter_model_fp8.safetensors"
helloyongyang's avatar
helloyongyang committed
748
            elif self.config.get("adapter_quant_scheme", None) == "int8":
749
                model_name = "audio_adapter_model_int8.safetensors"
helloyongyang's avatar
helloyongyang committed
750
751
            else:
                raise ValueError(f"Unsupported quant_scheme: {self.config.get('adapter_quant_scheme', None)}")
wangshankun's avatar
wangshankun committed
752
        else:
753
            model_name = "audio_adapter_model.safetensors"
754
755
756

        weights_dict = load_weights(os.path.join(self.config["model_path"], model_name), cpu_offload=audio_adapter_offload)
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
757
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
758

helloyongyang's avatar
helloyongyang committed
759
760
761
762
763
764
    @ProfilingContext("Load models")
    def load_model(self):
        super().load_model()
        self.audio_encoder = self.load_audio_encoder()
        self.audio_adapter = self.load_audio_adapter()
        self.model.set_audio_adapter(self.audio_adapter)
wangshankun's avatar
wangshankun committed
765
766

    def set_target_shape(self):
767
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
768
769
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
770
771
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
772

wangshankun's avatar
wangshankun committed
773
774
775
776
777
778
779
780
781
782
783
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
784
            assert False, error_msg
wangshankun's avatar
wangshankun committed
785
786
787

        ret["target_shape"] = self.config.target_shape
        return ret
sandy's avatar
sandy committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder