wan_audio_runner.py 26 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import os
import gc
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.wan.wan_runner import WanRunner
from lightx2v.models.runners.default_runner import DefaultRunner
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext
from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
wangshankun's avatar
wangshankun committed
14
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel, WanVideoIPHandler
wangshankun's avatar
wangshankun committed
15
16
17
18
19
from lightx2v.models.networks.wan.audio_model import WanAudioModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE

from lightx2v.models.networks.wan.audio_adapter import AudioAdapter, AudioAdapterPipe, rank0_load_state_dict_from_path
gaclove's avatar
gaclove committed
20
from lightx2v.utils.utils import save_to_video, vae_to_comfyui_image
wangshankun's avatar
wangshankun committed
21

wangshankun's avatar
wangshankun committed
22
from lightx2v.models.schedulers.wan.step_distill.scheduler import WanStepDistillScheduler
wangshankun's avatar
wangshankun committed
23
from lightx2v.models.schedulers.wan.audio.scheduler import EulerSchedulerTimestepFix, ConsistencyModelScheduler
wangshankun's avatar
wangshankun committed
24

wangshankun's avatar
wangshankun committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from loguru import logger
import torch.distributed as dist
from einops import rearrange
import torchaudio as ta
from transformers import AutoFeatureExtractor

from torchvision.datasets.folder import IMG_EXTENSIONS
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize

import subprocess
import warnings
from typing import Optional, Tuple, Union


wangshankun's avatar
wangshankun committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def add_mask_to_frames(
    frames: np.ndarray,
    mask_rate: float = 0.1,
    rnd_state: np.random.RandomState = None,
) -> np.ndarray:
    if mask_rate is None:
        return frames

    if rnd_state is None:
        rnd_state = np.random.RandomState()

    h, w = frames.shape[-2:]
    mask = rnd_state.rand(h, w) > mask_rate
    frames = frames * mask
    return frames


def add_noise_to_frames(
    frames: np.ndarray,
    noise_mean: float = -3.0,
    noise_std: float = 0.5,
    rnd_state: np.random.RandomState = None,
) -> np.ndarray:
    if noise_mean is None or noise_std is None:
        return frames

    if rnd_state is None:
        rnd_state = np.random.RandomState()

    shape = frames.shape
    bs = 1 if len(shape) == 4 else shape[0]
    sigma = rnd_state.normal(loc=noise_mean, scale=noise_std, size=(bs,))
    sigma = np.exp(sigma)
    sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
    noise = rnd_state.randn(*shape) * sigma
    frames = frames + noise
    return frames


wangshankun's avatar
wangshankun committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
    resized_frames = resize(cropped_frames, size, InterpolationMode.BICUBIC, antialias=True)
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
wangshankun's avatar
wangshankun committed
121
122
123
124
125
126
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
wangshankun's avatar
wangshankun committed
127
128
129
130
131
132
133
134
135
136
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


def array_to_video(
    image_array: np.ndarray,
    output_path: str,
wangshankun's avatar
wangshankun committed
137
138
    fps: int | float = 30,
    resolution: tuple[int, int] | tuple[float, float] | None = None,
wangshankun's avatar
wangshankun committed
139
140
    disable_log: bool = False,
    lossless: bool = True,
141
    output_pix_fmt: str = "yuv420p",
wangshankun's avatar
wangshankun committed
142
) -> None:
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    """Convert an array to a video directly, gif not supported.

    Args:
        image_array (np.ndarray): shape should be (f * h * w * 3).
        output_path (str): output video file path.
        fps (Union[int, float, optional): fps. Defaults to 30.
        resolution (Optional[Union[Tuple[int, int], Tuple[float, float]]],
            optional): (height, width) of the output video.
            Defaults to None.
        disable_log (bool, optional): whether close the ffmepg command info.
            Defaults to False.
        output_pix_fmt (str): output pix_fmt in ffmpeg command.
    Raises:
        FileNotFoundError: check output path.
        TypeError: check input array.

    Returns:
        None.
    """
wangshankun's avatar
wangshankun committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    if not isinstance(image_array, np.ndarray):
        raise TypeError("Input should be np.ndarray.")
    assert image_array.ndim == 4
    assert image_array.shape[-1] == 3
    if resolution:
        height, width = resolution
        width += width % 2
        height += height % 2
    else:
        image_array = pad_for_libx264(image_array)
        height, width = image_array.shape[1], image_array.shape[2]
    if lossless:
        command = [
            "/usr/bin/ffmpeg",
            "-y",  # (optional) overwrite output file if it exists
            "-f",
            "rawvideo",
            "-s",
            f"{int(width)}x{int(height)}",  # size of one frame
            "-pix_fmt",
            "bgr24",
            "-r",
            f"{fps}",  # frames per second
            "-loglevel",
            "error",
            "-threads",
            "4",
            "-i",
            "-",  # The input comes from a pipe
            "-vcodec",
            "libx264rgb",
            "-crf",
            "0",
            "-an",  # Tells FFMPEG not to expect any audio
            output_path,
        ]
    else:
199
        output_pix_fmt = output_pix_fmt or "yuv420p"
wangshankun's avatar
wangshankun committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        command = [
            "/usr/bin/ffmpeg",
            "-y",  # (optional) overwrite output file if it exists
            "-f",
            "rawvideo",
            "-s",
            f"{int(width)}x{int(height)}",  # size of one frame
            "-pix_fmt",
            "bgr24",
            "-r",
            f"{fps}",  # frames per second
            "-loglevel",
            "error",
            "-threads",
            "4",
            "-i",
            "-",  # The input comes from a pipe
            "-vcodec",
            "libx264",
219
220
            "-pix_fmt",
            f"{output_pix_fmt}",
wangshankun's avatar
wangshankun committed
221
222
223
224
            "-an",  # Tells FFMPEG not to expect any audio
            output_path,
        ]

wangshankun's avatar
wangshankun committed
225
226
227
    if output_pix_fmt is not None:
        command += ["-pix_fmt", output_pix_fmt]

wangshankun's avatar
wangshankun committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    if not disable_log:
        print(f'Running "{" ".join(command)}"')
    process = subprocess.Popen(
        command,
        stdin=subprocess.PIPE,
        stderr=subprocess.PIPE,
    )
    if process.stdin is None or process.stderr is None:
        raise BrokenPipeError("No buffer received.")
    index = 0
    while True:
        if index >= image_array.shape[0]:
            break
        process.stdin.write(image_array[index].tobytes())
        index += 1
    process.stdin.close()
    process.stderr.close()
    process.wait()


def pad_for_libx264(image_array):
    if image_array.ndim == 2 or (image_array.ndim == 3 and image_array.shape[2] == 3):
        hei_index = 0
        wid_index = 1
    elif image_array.ndim == 4 or (image_array.ndim == 3 and image_array.shape[2] != 3):
        hei_index = 1
        wid_index = 2
    else:
        return image_array
    hei_pad = image_array.shape[hei_index] % 2
    wid_pad = image_array.shape[wid_index] % 2
    if hei_pad + wid_pad > 0:
        pad_width = []
        for dim_index in range(image_array.ndim):
            if dim_index == hei_index:
                pad_width.append((0, hei_pad))
            elif dim_index == wid_index:
                pad_width.append((0, wid_pad))
            else:
                pad_width.append((0, 0))
        values = 0
        image_array = np.pad(image_array, pad_width, mode="constant", constant_values=values)
    return image_array


def generate_unique_path(path):
    if not os.path.exists(path):
        return path
    root, ext = os.path.splitext(path)
    index = 1
    new_path = f"{root}-{index}{ext}"
    while os.path.exists(new_path):
        index += 1
        new_path = f"{root}-{index}{ext}"
    return new_path


def save_audio(
wangshankun's avatar
wangshankun committed
286
    audio_array,
wangshankun's avatar
wangshankun committed
287
    audio_name: str,
PengGao's avatar
PengGao committed
288
    video_name: str,
wangshankun's avatar
wangshankun committed
289
    sr: int = 16000,
PengGao's avatar
PengGao committed
290
    output_path: Optional[str] = None,
wangshankun's avatar
wangshankun committed
291
292
):
    logger.info(f"Saving audio to {audio_name} type: {type(audio_array)}")
wangshankun's avatar
wangshankun committed
293
294
295
296
297
298

    ta.save(
        audio_name,
        torch.tensor(audio_array[None]),
        sample_rate=sr,
    )
wangshankun's avatar
wangshankun committed
299

PengGao's avatar
PengGao committed
300
301
302
303
304
    if output_path is None:
        out_video = f"{video_name[:-4]}_with_audio.mp4"
    else:
        out_video = output_path

wangshankun's avatar
wangshankun committed
305
306
307
308
309
310
311
    parent_dir = os.path.dirname(out_video)
    if parent_dir and not os.path.exists(parent_dir):
        os.makedirs(parent_dir, exist_ok=True)

    if os.path.exists(out_video):
        os.remove(out_video)

PengGao's avatar
PengGao committed
312
313
314
    subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_name, "-i", audio_name, out_video])

    return out_video
wangshankun's avatar
wangshankun committed
315
316
317
318
319
320
321


@RUNNER_REGISTER("wan2.1_audio")
class WanAudioRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)

wangshankun's avatar
wangshankun committed
322
    def init_scheduler(self):
wangshankun's avatar
wangshankun committed
323
        scheduler = ConsistencyModelScheduler(self.config)
wangshankun's avatar
wangshankun committed
324
325
        self.model.set_scheduler(scheduler)

wangshankun's avatar
wangshankun committed
326
    def load_audio_models(self):
wangshankun's avatar
wangshankun committed
327
328
        ##音频特征提取器
        self.audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")
wangshankun's avatar
wangshankun committed
329
330
331

        ##音频驱动视频生成adapter
        audio_adapter_path = self.config["model_path"] + "/audio_adapter.safetensors"
wangshankun's avatar
wangshankun committed
332
333
334
335
336
337
338
        audio_adaper = AudioAdapter.from_transformer(
            self.model,
            audio_feature_dim=1024,
            interval=1,
            time_freq_dim=256,
            projection_transformer_layers=4,
        )
wangshankun's avatar
wangshankun committed
339
        audio_adapter = rank0_load_state_dict_from_path(audio_adaper, audio_adapter_path, strict=False)
wangshankun's avatar
wangshankun committed
340

wangshankun's avatar
wangshankun committed
341
        ##音频特征编码器
wangshankun's avatar
wangshankun committed
342
        device = self.model.device
wangshankun's avatar
wangshankun committed
343
        audio_encoder_repo = self.config["model_path"] + "/audio_encoder"
wangshankun's avatar
wangshankun committed
344
345
346
347
348
349
        audio_adapter_pipe = AudioAdapterPipe(audio_adapter, audio_encoder_repo=audio_encoder_repo, dtype=torch.bfloat16, device=device, generator=torch.Generator(device), weight=1.0)

        return audio_adapter_pipe

    def load_transformer(self):
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
wangshankun's avatar
wangshankun committed
350

351
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
352
353
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
354
355
356
357
358
359
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
360

wangshankun's avatar
wangshankun committed
361
362
        return base_model

wangshankun's avatar
wangshankun committed
363
    def load_image_encoder(self):
wangshankun's avatar
wangshankun committed
364
365
        clip_model_dir = self.config["model_path"] + "/image_encoder"
        image_encoder = WanVideoIPHandler("CLIPModel", repo_or_path=clip_model_dir, require_grad=False, mode="eval", device=self.init_device, dtype=torch.float16)
wangshankun's avatar
wangshankun committed
366
367
368

        return image_encoder

wangshankun's avatar
wangshankun committed
369
370
371
372
373
374
375
376
377
378
379
    def run_image_encoder(self, config, vae_model):
        ref_img = Image.open(config.image_path)
        ref_img = (np.array(ref_img).astype(np.float32) - 127.5) / 127.5
        ref_img = torch.from_numpy(ref_img).to(vae_model.device)
        ref_img = rearrange(ref_img, "H W C -> 1 C H W")
        ref_img = ref_img[:, :3]

        # resize and crop image
        cond_frms, tgt_h, tgt_w = adaptive_resize(ref_img)
        config.tgt_h = tgt_h
        config.tgt_w = tgt_w
wangshankun's avatar
wangshankun committed
380
        clip_encoder_out = self.image_encoder.encode(cond_frms).squeeze(0).to(torch.bfloat16)
wangshankun's avatar
wangshankun committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

        cond_frms = rearrange(cond_frms, "1 C H W -> 1 C 1 H W")
        lat_h, lat_w = tgt_h // 8, tgt_w // 8
        config.lat_h = lat_h
        config.lat_w = lat_w
        vae_encode_out = vae_model.encode(cond_frms.to(torch.float), config)
        if isinstance(vae_encode_out, list):  #
            # list转tensor
            vae_encode_out = torch.stack(vae_encode_out, dim=0).to(torch.bfloat16)

        return vae_encode_out, clip_encoder_out

    def run_input_encoder_internal(self):
        image_encoder_output = None
        if os.path.isfile(self.config.image_path):
            with ProfilingContext("Run Img Encoder"):
                vae_encode_out, clip_encoder_out = self.run_image_encoder(self.config, self.vae_encoder)
                image_encoder_output = {
                    "clip_encoder_out": clip_encoder_out,
                    "vae_encode_out": vae_encode_out,
                }
                logger.info(f"clip_encoder_out:{clip_encoder_out.shape} vae_encode_out:{vae_encode_out.shape}")
PengGao's avatar
PengGao committed
403

wangshankun's avatar
wangshankun committed
404
        with ProfilingContext("Run Text Encoder"):
PengGao's avatar
PengGao committed
405
406
407
            logger.info(f"Prompt: {self.config['prompt']}")
            img = Image.open(self.config["image_path"]).convert("RGB")
            text_encoder_output = self.run_text_encoder(self.config["prompt"], img)
wangshankun's avatar
wangshankun committed
408
409
410
411

        self.set_target_shape()
        self.inputs = {"text_encoder_output": text_encoder_output, "image_encoder_output": image_encoder_output}

PengGao's avatar
PengGao committed
412
        # del self.image_encoder  # 删除ref的clip模型,只使用一次
wangshankun's avatar
wangshankun committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        gc.collect()
        torch.cuda.empty_cache()

    def set_target_shape(self):
        ret = {}
        num_channels_latents = 16
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
            assert 1 == 0, error_msg

        ret["target_shape"] = self.config.target_shape
        return ret

435
    def run(self, save_video=True):
wangshankun's avatar
wangshankun committed
436
437
438
439
440
441
442
443
444
        def load_audio(in_path: str, sr: float = 16000):
            audio_array, ori_sr = ta.load(in_path)
            audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=sr)
            return audio_array.numpy()

        def get_audio_range(start_frame: int, end_frame: int, fps: float, audio_sr: float = 16000):
            audio_frame_rate = audio_sr / fps
            return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

wangshankun's avatar
wangshankun committed
445
446
447
448
449
450
451
452
453
454
455
456
        def wan_mask_rearrange(mask: torch.Tensor):
            # mask: 1, T, H, W, where 1 means the input mask is one-channel
            if mask.ndim == 3:
                mask = mask[None]
            assert mask.ndim == 4
            _, t, h, w = mask.shape
            assert t == ((t - 1) // 4 * 4 + 1)
            mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
            mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
            mask = mask.view(mask.shape[1] // 4, 4, h, w)
            return mask.transpose(0, 1)  # 4, T // 4, H, W

wangshankun's avatar
wangshankun committed
457
458
459
        self.inputs["audio_adapter_pipe"] = self.load_audio_models()

        # process audio
wangshankun's avatar
wangshankun committed
460
461
        audio_sr = self.config.get("audio_sr", 16000)
        max_num_frames = self.config.get("target_video_length", 81)  # wan2.1一段最多81帧,5秒,16fps
wangshankun's avatar
wangshankun committed
462
        target_fps = self.config.get("target_fps", 16)  # 音视频同步帧率
wangshankun's avatar
wangshankun committed
463
        video_duration = self.config.get("video_duration", 5)  # 期望视频输出时长
wangshankun's avatar
wangshankun committed
464
465
466
467
        audio_array = load_audio(self.config["audio_path"], sr=audio_sr)
        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        prev_frame_length = 5
        prev_token_length = (prev_frame_length - 1) // 4 + 1
wangshankun's avatar
wangshankun committed
468
        max_num_audio_length = int((max_num_frames + 1) / target_fps * audio_sr)
wangshankun's avatar
wangshankun committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

        interval_num = 1
        # expected_frames
        expected_frames = min(max(1, int(float(video_duration) * target_fps)), audio_len)
        res_frame_num = 0
        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        audio_start, audio_end = get_audio_range(0, expected_frames, fps=target_fps, audio_sr=audio_sr)
        audio_array_ori = audio_array[audio_start:audio_end]

        gen_video_list = []
        cut_audio_list = []
        # reference latents

        tgt_h = self.config.tgt_h
        tgt_w = self.config.tgt_w
        device = self.model.scheduler.latents.device
        dtype = torch.bfloat16
        vae_dtype = torch.float

        for idx in range(interval_num):
wangshankun's avatar
wangshankun committed
496
497
498
            self.config.seed = self.config.seed + idx
            torch.manual_seed(self.config.seed)
            logger.info(f"###  manual_seed: {self.config.seed} ####")
wangshankun's avatar
wangshankun committed
499
500
501
502
503
504
505
506
507
508
            useful_length = -1
            if idx == 0:  # 第一段 Condition padding0
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = 0
                audio_start, audio_end = get_audio_range(0, max_num_frames, fps=target_fps, audio_sr=audio_sr)
                audio_array = audio_array_ori[audio_start:audio_end]
                if expected_frames < max_num_frames:
                    useful_length = audio_array.shape[0]
                    audio_array = np.concatenate((audio_array, np.zeros(max_num_audio_length)[: max_num_audio_length - useful_length]), axis=0)
wangshankun's avatar
wangshankun committed
509
                audio_input_feat = self.audio_preprocess(audio_array, sampling_rate=audio_sr, return_tensors="pt").input_values.squeeze(0)
wangshankun's avatar
wangshankun committed
510
511
512

            elif res_frame_num > 5 and idx == interval_num - 1:  # 最后一段可能不够81帧
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
wangshankun's avatar
wangshankun committed
513
514
515
516
517
518
519
520
                last_frames = gen_video_list[-1][:, :, -prev_frame_length:].clone().to(device)

                last_frames = last_frames.cpu().detach().numpy()
                last_frames = add_noise_to_frames(last_frames)
                last_frames = add_mask_to_frames(last_frames, mask_rate=0.1)  # mask 0.10
                last_frames = torch.from_numpy(last_frames).to(dtype=dtype, device=device)

                prev_frames[:, :, :prev_frame_length] = last_frames
wangshankun's avatar
wangshankun committed
521
522
523
524
525
526
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = prev_token_length
                audio_start, audio_end = get_audio_range(idx * max_num_frames - idx * prev_frame_length, expected_frames, fps=target_fps, audio_sr=audio_sr)
                audio_array = audio_array_ori[audio_start:audio_end]
                useful_length = audio_array.shape[0]
                audio_array = np.concatenate((audio_array, np.zeros(max_num_audio_length)[: max_num_audio_length - useful_length]), axis=0)
wangshankun's avatar
wangshankun committed
527
                audio_input_feat = self.audio_preprocess(audio_array, sampling_rate=audio_sr, return_tensors="pt").input_values.squeeze(0)
wangshankun's avatar
wangshankun committed
528
529
530

            else:  # 中间段满81帧带pre_latens
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
wangshankun's avatar
wangshankun committed
531
532
533
                last_frames = gen_video_list[-1][:, :, -prev_frame_length:].clone().to(device)

                last_frames = last_frames.cpu().detach().numpy()
wangshankun's avatar
wangshankun committed
534
                last_frames = add_noise_to_frames(last_frames)  # mean:-3.0 std:0.5
wangshankun's avatar
wangshankun committed
535
536
537
538
                last_frames = add_mask_to_frames(last_frames, mask_rate=0.1)  # mask 0.10
                last_frames = torch.from_numpy(last_frames).to(dtype=dtype, device=device)

                prev_frames[:, :, :prev_frame_length] = last_frames
wangshankun's avatar
wangshankun committed
539
540
541
542
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = prev_token_length
                audio_start, audio_end = get_audio_range(idx * max_num_frames - idx * prev_frame_length, (idx + 1) * max_num_frames - idx * prev_frame_length, fps=target_fps, audio_sr=audio_sr)
                audio_array = audio_array_ori[audio_start:audio_end]
wangshankun's avatar
wangshankun committed
543
                audio_input_feat = self.audio_preprocess(audio_array, sampling_rate=audio_sr, return_tensors="pt").input_values.squeeze(0)
wangshankun's avatar
wangshankun committed
544
545
546
547
548
549
550

            self.inputs["audio_encoder_output"] = audio_input_feat.to(device)

            if idx != 0:
                self.model.scheduler.reset()

            if prev_latents is not None:
551
                _, nframe, height, width = self.model.scheduler.latents.shape
wangshankun's avatar
wangshankun committed
552
553
                # bs = 1
                frames_n = (nframe - 1) * 4 + 1
wangshankun's avatar
wangshankun committed
554
555
556
                prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
                prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
                prev_mask[:, prev_frame_len:] = 0
wangshankun's avatar
wangshankun committed
557
                prev_mask = wan_mask_rearrange(prev_mask).unsqueeze(0)
wangshankun's avatar
wangshankun committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
                previmg_encoder_output = {
                    "prev_latents": prev_latents,
                    "prev_mask": prev_mask,
                }
                self.inputs["previmg_encoder_output"] = previmg_encoder_output

            for step_index in range(self.model.scheduler.infer_steps):
                logger.info(f"==> step_index: {step_index} / {self.model.scheduler.infer_steps}")

                with ProfilingContext4Debug("step_pre"):
                    self.model.scheduler.step_pre(step_index=step_index)

                with ProfilingContext4Debug("infer"):
                    self.model.infer(self.inputs)

                with ProfilingContext4Debug("step_post"):
                    self.model.scheduler.step_post()

            latents = self.model.scheduler.latents
            generator = self.model.scheduler.generator
            gen_video = self.vae_decoder.decode(latents, generator=generator, config=self.config)
wangshankun's avatar
wangshankun committed
579
            gen_video = torch.clamp(gen_video, -1, 1).to(torch.float)
wangshankun's avatar
wangshankun committed
580
581
            start_frame = 0 if idx == 0 else prev_frame_length
            start_audio_frame = 0 if idx == 0 else int((prev_frame_length + 1) * audio_sr / target_fps)
wangshankun's avatar
wangshankun committed
582

wangshankun's avatar
wangshankun committed
583
            if res_frame_num > 5 and idx == interval_num - 1:
wangshankun's avatar
wangshankun committed
584
                gen_video_list.append(gen_video[:, :, start_frame:res_frame_num].cpu())
wangshankun's avatar
wangshankun committed
585
586
                cut_audio_list.append(audio_array[start_audio_frame:useful_length])
            elif expected_frames < max_num_frames and useful_length != -1:
wangshankun's avatar
wangshankun committed
587
                gen_video_list.append(gen_video[:, :, start_frame:expected_frames].cpu())
wangshankun's avatar
wangshankun committed
588
589
                cut_audio_list.append(audio_array[start_audio_frame:useful_length])
            else:
wangshankun's avatar
wangshankun committed
590
                gen_video_list.append(gen_video[:, :, start_frame:].cpu())
wangshankun's avatar
wangshankun committed
591
592
593
594
                cut_audio_list.append(audio_array[start_audio_frame:])

        gen_lvideo = torch.cat(gen_video_list, dim=2).float()
        merge_audio = np.concatenate(cut_audio_list, axis=0).astype(np.float32)
gaclove's avatar
gaclove committed
595
        comfyui_images = vae_to_comfyui_image(gen_lvideo)
wangshankun's avatar
wangshankun committed
596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config:
            assert self.vfi_model is not None and self.config["video_frame_interpolation"].get("target_fps", None) is not None
            interpolation_target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {target_fps} to {interpolation_target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=target_fps,
                target_fps=interpolation_target_fps,
            )
            # Update target_fps for saving
            target_fps = interpolation_target_fps

        # Convert audio to ComfyUI format
        # Convert numpy array to torch tensor and add batch dimension
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)  # [batch, channels, samples]
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": audio_sr}

        # Save video if requested
        if save_video and self.config.get("save_video_path", None):
            out_path = os.path.join("./", "video_merge.mp4")
            audio_file = os.path.join("./", "audio_merge.wav")
            # Use the updated target_fps (after interpolation if applied)
            save_to_video(comfyui_images, out_path, target_fps)
            save_audio(merge_audio, audio_file, out_path, output_path=self.config.get("save_video_path", None))
            os.remove(out_path)
            os.remove(audio_file)

        return comfyui_images, comfyui_audio

    def run_pipeline(self, save_video=True):
wangshankun's avatar
wangshankun committed
628
629
630
631
632
633
634
635
        if self.config["use_prompt_enhancer"]:
            self.config["prompt_enhanced"] = self.post_prompt_enhancer()

        self.run_input_encoder_internal()
        self.set_target_shape()

        self.init_scheduler()
        self.model.scheduler.prepare(self.inputs["image_encoder_output"])
636
        images, audio = self.run(save_video)  # run() now returns both images and audio
wangshankun's avatar
wangshankun committed
637
638
639
        self.end_run()

        gc.collect()
wangshankun's avatar
wangshankun committed
640
        torch.cuda.empty_cache()
641
642

        return images, audio