wan_audio_runner.py 36.4 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
2
import json
PengGao's avatar
PengGao committed
3
import os
sandy's avatar
sandy committed
4
import warnings
PengGao's avatar
PengGao committed
5
from dataclasses import dataclass
6
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
7

wangshankun's avatar
wangshankun committed
8
9
import numpy as np
import torch
10
import torch.distributed as dist
sandy's avatar
sandy committed
11
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
12
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
13
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
14
from PIL import Image
gushiqiao's avatar
gushiqiao committed
15
from einops import rearrange
PengGao's avatar
PengGao committed
16
from loguru import logger
gushiqiao's avatar
gushiqiao committed
17
18
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
19

LiangLiu's avatar
LiangLiu committed
20
21
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
22
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
23
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
24
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
25
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
26
from lightx2v.models.runners.wan.wan_runner import WanRunner
27
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
28
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
29
from lightx2v.utils.envs import *
30
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
31
from lightx2v.utils.registry_factory import RUNNER_REGISTER
LiangLiu's avatar
LiangLiu committed
32
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image_inplace
33

sandy's avatar
sandy committed
34
35
36
warnings.filterwarnings("ignore", category=UserWarning, module="torchaudio")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io")

wangshankun's avatar
wangshankun committed
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
53
54
                h_ratio *= 2
            else:
55
                patched_w //= 2
56
                w_ratio *= 2
57
    return patched_h * h_ratio, patched_w * w_ratio
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
79
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
80
81
    size: (H, W)
    """
82
83
84
85
86
87
88
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

89
90
91
92
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
93
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
94
95
96
97

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

98
99
100
    return resized_frames


101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


122
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
123
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
124
125
126
127
128

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
129

130
131
132
133
134
135
136
137
138
139
140
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
141
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
142
143
144
145
146
147
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
148
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
149

150
151
152
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
153
154
155
156
157
158
159
160
161
162
163

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
164
        for resolution in bucket_config[closet_ratio]:
165
166
167
168
169
170
171
172
173
174
175
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
176
        target_h, target_w = bucket_config[closet_ratio][0]
177
178
179
180
181
182
183
184
185
186
    elif resize_mode == "fixed_min_side":
        assert fixed_area in ["480p", "720p"], f"fixed_min_side mode requires fixed_area to be '480p' or '720p', got {fixed_area}"

        min_side = 720 if fixed_area == "720p" else 480
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
187
188
189
190
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
191
        target_h, target_w = bucket_config[closet_ratio][-1]
192

193
194
195
196
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


197
198
199
200
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

sandy's avatar
sandy committed
201
    audio_array: torch.Tensor
202
203
204
205
    start_frame: int
    end_frame: int


206
class FramePreprocessorTorchVersion:
207
208
209
210
211
212
213
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

214
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
215
216
        """Add noise to frames"""

217
        device = frames.device
218
219
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
220
221
222
223
224
225
226
227
228
229

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
230
231
        return frames + noise

232
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
233
234
        """Add mask to frames"""

235
        device = frames.device
236
        h, w = frames.shape[-2:]
237
238
239

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
240
241
242
243
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
244
245
246
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
247
248
249
250
251
252
253
254


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
255
        self.audio_frame_rate = audio_sr // target_fps
256

sandy's avatar
sandy committed
257
    def load_audio(self, audio_path: str):
258
259
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
sandy's avatar
sandy committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        return audio_array

    def load_multi_person_audio(self, audio_paths: List[str]):
        audio_arrays = []
        max_len = 0

        for audio_path in audio_paths:
            audio_array = self.load_audio(audio_path)
            audio_arrays.append(audio_array)
            max_len = max(max_len, audio_array.numel())

        num_files = len(audio_arrays)
        padded = torch.zeros(num_files, max_len, dtype=torch.float32)

        for i, arr in enumerate(audio_arrays):
            length = arr.numel()
            padded[i, :length] = arr

        return padded
279
280
281

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
282
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
283

sandy's avatar
sandy committed
284
285
286
287
288
    def segment_audio(self, audio_array: torch.Tensor, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """
        Segment audio based on frame requirements
        audio_array is (N, T) tensor
        """
289
        segments = []
sandy's avatar
sandy committed
290
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
291

sandy's avatar
sandy committed
292
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
sandy's avatar
sandy committed
293
        audio_array_ori = audio_array[:, audio_start:audio_end]
294

sandy's avatar
sandy committed
295
296
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
sandy's avatar
sandy committed
297
            audio_array = audio_array_ori[:, audio_start:audio_end]
298

sandy's avatar
sandy committed
299
300
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
sandy's avatar
sandy committed
301
302
303
304
305
            else:  # for last segments
                if audio_array.shape[1] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[1]
                    audio_array = F.pad(audio_array, (0, padding_len))
                    # Adjust end_idx to account for the frames added by padding
sandy's avatar
sandy committed
306
                    end_idx = end_idx - padding_len // self.audio_frame_rate
307

sandy's avatar
sandy committed
308
309
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
310
311
        return segments

sandy's avatar
sandy committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

328

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
329
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
330
331
332
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
333
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
334
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
335
336
337

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
338
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
339

340
    def read_audio_input(self, audio_path):
sandy's avatar
sandy committed
341
        """Read audio input - handles both single and multi-person scenarios"""
helloyongyang's avatar
helloyongyang committed
342
343
344
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
sandy's avatar
sandy committed
345
346

        # Get audio files from person objects or legacy format
347
        audio_files, mask_files = self.get_audio_files_from_audio_path(audio_path)
helloyongyang's avatar
helloyongyang committed
348

sandy's avatar
sandy committed
349
350
351
352
353
354
355
356
357
        # Load audio based on single or multi-person mode
        if len(audio_files) == 1:
            audio_array = self._audio_processor.load_audio(audio_files[0])
            audio_array = audio_array.unsqueeze(0)  # Add batch dimension for consistency
        else:
            audio_array = self._audio_processor.load_multi_person_audio(audio_files)

        video_duration = self.config.get("video_duration", 5)
        audio_len = int(audio_array.shape[1] / audio_sr * target_fps)
helloyongyang's avatar
helloyongyang committed
358
359
360
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
361
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
362

363
364
365
366
367
368
        # Mask latent for multi-person s2v
        if mask_files is not None:
            mask_latents = [self.process_single_mask(mask_file) for mask_file in mask_files]
            mask_latents = torch.cat(mask_latents, dim=0)
        else:
            mask_latents = None
sandy's avatar
sandy committed
369

370
        return audio_segments, expected_frames, mask_latents, len(audio_files)
sandy's avatar
sandy committed
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def get_audio_files_from_audio_path(self, audio_path):
        if os.path.isdir(audio_path):
            audio_files = []
            mask_files = []
            logger.info(f"audio_path is a directory, loading config.json from {audio_path}")
            audio_config_path = os.path.join(audio_path, "config.json")
            assert os.path.exists(audio_config_path), "config.json not found in audio_path"
            with open(audio_config_path, "r") as f:
                audio_config = json.load(f)
            for talk_object in audio_config["talk_objects"]:
                audio_files.append(os.path.join(audio_path, talk_object["audio"]))
                mask_files.append(os.path.join(audio_path, talk_object["mask"]))
        else:
            logger.info(f"audio_path is a file without mask: {audio_path}")
            audio_files = [audio_path]
            mask_files = None
sandy's avatar
sandy committed
388

389
        return audio_files, mask_files
sandy's avatar
sandy committed
390

391
    def process_single_mask(self, mask_file):
sandy's avatar
sandy committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        mask_img = Image.open(mask_file).convert("RGB")
        mask_img = TF.to_tensor(mask_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

        if mask_img.shape[1] == 3:  # If it is an RGB three-channel image
            mask_img = mask_img[:, :1]  # Only take the first channel

        mask_img, h, w = resize_image(
            mask_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )

        mask_latent = torch.nn.functional.interpolate(
            mask_img,  # (1, 1, H, W)
            size=(h // 16, w // 16),
            mode="bicubic",
        )

        mask_latent = (mask_latent > 0).to(torch.int8)
        return mask_latent
helloyongyang's avatar
helloyongyang committed
414
415

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
416
417
418
419
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
            ref_img = Image.open(img_path).convert("RGB")
helloyongyang's avatar
helloyongyang committed
420
421
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

422
423
424
425
426
427
428
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
429
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
430
431
        patched_h = h // self.config["vae_stride"][1] // self.config["patch_size"][1]
        patched_w = w // self.config["vae_stride"][2] // self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
432
433
434

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

435
436
        latent_h = patched_h * self.config["patch_size"][1]
        latent_w = patched_w * self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
437

438
439
        latent_shape = self.get_latent_shape_with_lat_hw(latent_h, latent_w)
        target_shape = [latent_h * self.config["vae_stride"][1], latent_w * self.config["vae_stride"][2]]
helloyongyang's avatar
helloyongyang committed
440

441
        logger.info(f"[wan_audio] target_h: {target_shape[0]}, target_w: {target_shape[1]}, latent_h: {latent_h}, latent_w: {latent_w}")
helloyongyang's avatar
helloyongyang committed
442

443
444
        ref_img = torch.nn.functional.interpolate(ref_img, size=(target_shape[0], target_shape[1]), mode="bicubic")
        return ref_img, latent_shape, target_shape
helloyongyang's avatar
helloyongyang committed
445
446

    def run_image_encoder(self, first_frame, last_frame=None):
447
448
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
449
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
450
451
452
453
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
454
455
456
        return clip_encoder_out

    def run_vae_encoder(self, img):
457
458
459
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
460
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
461
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
462

463
464
465
466
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
467
468
        return vae_encoder_out

469
    @ProfilingContext4DebugL2("Run Encoders")
470
471
472
473
    def _run_input_encoder_local_s2v(self):
        img, latent_shape, target_shape = self.read_image_input(self.input_info.image_path)
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        self.input_info.target_shape = target_shape  # Important: set target_shape in input_info
helloyongyang's avatar
helloyongyang committed
474
475
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
sandy's avatar
sandy committed
476

477
478
479
480
        audio_segments, expected_frames, person_mask_latens, audio_num = self.read_audio_input(self.input_info.audio_path)
        self.input_info.audio_num = audio_num
        self.input_info.with_mask = person_mask_latens is not None
        text_encoder_output = self.run_text_encoder(self.input_info)
helloyongyang's avatar
helloyongyang committed
481
482
483
484
485
486
487
488
489
490
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
sandy's avatar
sandy committed
491
            "person_mask_latens": person_mask_latens,
helloyongyang's avatar
helloyongyang committed
492
        }
493
494
495

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
496
        device = torch.device("cuda")
497
        dtype = GET_DTYPE()
498

499
500
        tgt_h, tgt_w = self.input_info.target_shape[0], self.input_info.target_shape[1]
        prev_frames = torch.zeros((1, 3, self.config["target_video_length"], tgt_h, tgt_w), device=device)
501

502
503
504
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
505
            if self.config["model_cls"] != "wan2.2_audio":
sandy's avatar
sandy committed
506
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
507
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
508
509
510
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
511

512
513
514
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

515
        _, nframe, height, width = self.model.scheduler.latents.shape
516
        with ProfilingContext4DebugL1("vae_encoder in init run segment"):
517
            if self.config["model_cls"] == "wan2.2_audio":
518
519
520
521
522
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
523
            else:
524
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
525

526
527
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
528
529
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
530
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
531

sandy's avatar
sandy committed
532
533
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
534
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={tgt_h}, tgt_w={tgt_w}")
sandy's avatar
sandy committed
535
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
536

537
538
539
540
541
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
542
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
543
544
545
546
547
548
549
550
551
552
553

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
554
        return mask.transpose(0, 1).contiguous()
555

helloyongyang's avatar
helloyongyang committed
556
557
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
558

helloyongyang's avatar
helloyongyang committed
559
560
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
561
        self.scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
562
        self.prev_video = None
563
564
        if self.input_info.return_result_tensor:
            self.gen_video_final = torch.zeros((self.inputs["expected_frames"], self.input_info.target_shape[0], self.input_info.target_shape[1], 3), dtype=torch.float32, device="cpu")
sandy's avatar
sandy committed
565
            self.cut_audio_final = torch.zeros((self.inputs["expected_frames"] * self._audio_processor.audio_frame_rate), dtype=torch.float32, device="cpu")
LiangLiu's avatar
LiangLiu committed
566
567
        else:
            self.gen_video_final = None
sandy's avatar
sandy committed
568
            self.cut_audio_final = None
wangshankun's avatar
wangshankun committed
569

570
    @ProfilingContext4DebugL1("Init run segment")
LiangLiu's avatar
LiangLiu committed
571
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
572
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
573
        if audio_array is not None:
sandy's avatar
sandy committed
574
            end_idx = audio_array.shape[1] // self._audio_processor.audio_frame_rate - self.prev_frame_length
LiangLiu's avatar
LiangLiu committed
575
            self.segment = AudioSegment(audio_array, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
576
577
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
578

579
580
        self.input_info.seed = self.input_info.seed + segment_idx
        torch.manual_seed(self.input_info.seed)
581
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
582

583
584
585
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

sandy's avatar
sandy committed
586
587
588
589
590
591
        features_list = []
        for i in range(self.segment.audio_array.shape[0]):
            feat = self.audio_encoder.infer(self.segment.audio_array[i])
            feat = self.audio_adapter.forward_audio_proj(feat, self.model.scheduler.latents.shape[1])
            features_list.append(feat.squeeze(0))
        audio_features = torch.stack(features_list, dim=0)
PengGao's avatar
PengGao committed
592

helloyongyang's avatar
helloyongyang committed
593
        self.inputs["audio_encoder_output"] = audio_features
594
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
595

helloyongyang's avatar
helloyongyang committed
596
597
        # Reset scheduler for non-first segments
        if segment_idx > 0:
598
            self.model.scheduler.reset(self.input_info.seed, self.input_info.latent_shape, self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
599

600
    @ProfilingContext4DebugL1("End run segment")
601
    def end_run_segment(self, segment_idx):
helloyongyang's avatar
helloyongyang committed
602
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
603
        useful_length = self.segment.end_frame - self.segment.start_frame
LiangLiu's avatar
LiangLiu committed
604
        video_seg = self.gen_video[:, :, :useful_length].cpu()
sandy's avatar
sandy committed
605
606
        audio_seg = self.segment.audio_array[:, : useful_length * self._audio_processor.audio_frame_rate]
        audio_seg = audio_seg.sum(dim=0)  # Multiple audio tracks, mixed into one track
LiangLiu's avatar
LiangLiu committed
607
608
609
610
611
612
613
614
615
616
617
        video_seg = vae_to_comfyui_image_inplace(video_seg)

        # [Warning] Need check whether video segment interpolation works...
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            video_seg = self.vfi_model.interpolate_frames(
                video_seg,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
LiangLiu's avatar
LiangLiu committed
618

LiangLiu's avatar
LiangLiu committed
619
620
        if self.va_recorder:
            self.va_recorder.pub_livestream(video_seg, audio_seg)
621
        elif self.input_info.return_result_tensor:
LiangLiu's avatar
LiangLiu committed
622
            self.gen_video_final[self.segment.start_frame : self.segment.end_frame].copy_(video_seg)
sandy's avatar
sandy committed
623
            self.cut_audio_final[self.segment.start_frame * self._audio_processor.audio_frame_rate : self.segment.end_frame * self._audio_processor.audio_frame_rate].copy_(audio_seg)
LiangLiu's avatar
LiangLiu committed
624

helloyongyang's avatar
helloyongyang committed
625
626
627
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

LiangLiu's avatar
LiangLiu committed
628
        del video_seg, audio_seg
helloyongyang's avatar
helloyongyang committed
629
630
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
631
632
633
634
635
636
637
638
639
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
640
        output_video_path = self.input_info.save_result_path
LiangLiu's avatar
LiangLiu committed
641
642
        self.va_recorder = None
        if isinstance(output_video_path, dict):
LiangLiu's avatar
LiangLiu committed
643
644
645
646
647
648
649
650
651
652
653
654
655
            output_video_path = output_video_path["data"]
        logger.info(f"init va_recorder with output_video_path: {output_video_path}")
        rank, world_size = self.get_rank_and_world_size()
        if output_video_path and rank == world_size - 1:
            record_fps = self.config.get("target_fps", 16)
            audio_sr = self.config.get("audio_sr", 16000)
            if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                record_fps = self.config["video_frame_interpolation"]["target_fps"]
            self.va_recorder = VARecorder(
                livestream_url=output_video_path,
                fps=record_fps,
                sample_rate=audio_sr,
            )
LiangLiu's avatar
LiangLiu committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

    def init_va_reader(self):
        audio_path = self.config.get("audio_path", None)
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

    def run_main(self, total_steps=None):
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
                return super().run_main(total_steps)

            rank, world_size = self.get_rank_and_world_size()
LiangLiu's avatar
LiangLiu committed
687
688
            if rank == world_size - 1:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 2"
LiangLiu's avatar
LiangLiu committed
689
690
691
            self.va_reader.start()

            self.init_run()
LiangLiu's avatar
LiangLiu committed
692
            if self.config.get("compile", False):
693
                self.model.select_graph_for_compile(self.input_info)
LiangLiu's avatar
LiangLiu committed
694
695
696
697
698
699
700
701
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
702
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
703
704
705
706
707
708
709
710
711
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

712
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
713
714
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
helloyongyang's avatar
helloyongyang committed
715
                    latents = self.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
716
717
718
719
720
                    self.gen_video = self.run_vae_decoder(latents)
                    self.end_run_segment()
                    segment_idx += 1

        finally:
LiangLiu's avatar
LiangLiu committed
721
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
722
723
724
725
726
727
728
729
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
                self.va_recorder.stop(wait=False)
                self.va_recorder = None

730
    @ProfilingContext4DebugL1("Process after vae decoder")
731
732
    def process_images_after_vae_decoder(self):
        if self.input_info.return_result_tensor:
sandy's avatar
sandy committed
733
            audio_waveform = self.cut_audio_final.unsqueeze(0).unsqueeze(0)
LiangLiu's avatar
LiangLiu committed
734
735
736
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
            return {"video": self.gen_video_final, "audio": comfyui_audio}
        return {"video": None, "audio": None}
737

wangshankun's avatar
wangshankun committed
738
    def load_transformer(self):
739
        """Load transformer with LoRA support"""
740
741
742
        base_model = WanAudioModel(self.config["model_path"], self.config, self.init_device)
        if self.config.get("lora_configs") and self.config["lora_configs"]:
            assert not self.config.get("dit_quantized", False) or self.config["mm_config"].get("weight_auto_quant", False)
wangshankun's avatar
wangshankun committed
743
            lora_wrapper = WanLoraWrapper(base_model)
744
            for lora_config in self.config["lora_configs"]:
745
746
747
748
749
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
750

wangshankun's avatar
wangshankun committed
751
752
        return base_model

helloyongyang's avatar
helloyongyang committed
753
    def load_audio_encoder(self):
gushiqiao's avatar
gushiqiao committed
754
        audio_encoder_path = self.config.get("audio_encoder_path", os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large"))
755
756
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
757
        return model
758

helloyongyang's avatar
helloyongyang committed
759
    def load_audio_adapter(self):
760
761
762
763
764
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
765
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
766
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
767
768
769
770
771
772
773
774
775
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
776
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
777
        )
778

779
        audio_adapter.to(device)
780
        load_from_rank0 = self.config.get("load_from_rank0", False)
781
        weights_dict = load_weights(self.config["adapter_model_path"], cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
782
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
783
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
784

helloyongyang's avatar
helloyongyang committed
785
786
    def load_model(self):
        super().load_model()
787
788
789
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
790

791
792
793
794
795
796
797
798
    def get_latent_shape_with_lat_hw(self, latent_h, latent_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            latent_h,
            latent_w,
        ]
        return latent_shape
sandy's avatar
sandy committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
835
        if self.config.task not in ["i2v", "s2v"]:
sandy's avatar
sandy committed
836
837
838
839
840
841
842
843
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder