wan_audio_runner.py 40 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
2
import io
3
import json
PengGao's avatar
PengGao committed
4
import os
sandy's avatar
sandy committed
5
import warnings
PengGao's avatar
PengGao committed
6
from dataclasses import dataclass
7
from typing import Dict, List, Optional, Tuple, Union
PengGao's avatar
PengGao committed
8

wangshankun's avatar
wangshankun committed
9
10
import numpy as np
import torch
11
import torch.distributed as dist
sandy's avatar
sandy committed
12
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
13
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
14
import torchvision.transforms.functional as TF
15
from PIL import Image, ImageCms, ImageOps
gushiqiao's avatar
gushiqiao committed
16
from einops import rearrange
PengGao's avatar
PengGao committed
17
from loguru import logger
gushiqiao's avatar
gushiqiao committed
18
19
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
20

LiangLiu's avatar
LiangLiu committed
21
22
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
LiangLiu's avatar
LiangLiu committed
23
from lightx2v.deploy.common.va_recorder_x264 import X264VARecorder
24
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
25
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
26
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
27
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
28
from lightx2v.models.runners.wan.wan_runner import WanRunner
29
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
30
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
yihuiwen's avatar
yihuiwen committed
31
from lightx2v.server.metrics import monitor_cli
32
from lightx2v.utils.envs import *
33
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
34
from lightx2v.utils.registry_factory import RUNNER_REGISTER
LiangLiu's avatar
LiangLiu committed
35
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image_inplace
36
from lightx2v_platform.base.global_var import AI_DEVICE
37

sandy's avatar
sandy committed
38
39
40
warnings.filterwarnings("ignore", category=UserWarning, module="torchaudio")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io")

wangshankun's avatar
wangshankun committed
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
57
58
                h_ratio *= 2
            else:
59
                patched_w //= 2
60
                w_ratio *= 2
61
    return patched_h * h_ratio, patched_w * w_ratio
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
83
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
84
85
    size: (H, W)
    """
86
87
88
89
90
91
92
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

93
94
95
96
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
97
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
98
99
100
101

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

102
103
104
    return resized_frames


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


126
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
127
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
128
129
130
131
132

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
133

134
135
136
137
138
139
140
141
142
143
144
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
145
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
146
147
148
149
150
151
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
152
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
153

154
155
156
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
157
158
159
160
161
162
163
164
165
166
167

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
168
        for resolution in bucket_config[closet_ratio]:
169
170
171
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
PengGao's avatar
PengGao committed
172
173
174
175
176
177
178
179
180
        area_in_pixels = 480 * 832
        if fixed_area == "480p":
            area_in_pixels = 480 * 832
        elif fixed_area == "720p":
            area_in_pixels = 720 * 1280
        else:
            area_in_pixels = 480 * 832
        target_h = round(np.sqrt(area_in_pixels * ori_ratio))
        target_w = round(np.sqrt(area_in_pixels / ori_ratio))
181
182
183
184
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
185
        target_h, target_w = bucket_config[closet_ratio][0]
186
    elif resize_mode == "fixed_min_side":
PengGao's avatar
PengGao committed
187
188
189
190
191
192
193
194
        min_side = 720
        if fixed_area == "720p":
            min_side = 720
        elif fixed_area == "480p":
            min_side = 480
        else:
            logger.warning(f"[wan_audio] fixed_area is not '480p' or '720p', using default 480p: {fixed_area}")
            min_side = 480
195
196
197
198
199
200
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
201
202
203
204
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
205
        target_h, target_w = bucket_config[closet_ratio][-1]
206

207
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
PengGao's avatar
PengGao committed
208
    logger.info(f"[wan_audio] resize_image: {img.shape} -> {cropped_img.shape}, resize_mode: {resize_mode}, target_h: {target_h}, target_w: {target_w}")
209
210
211
    return cropped_img, target_h, target_w


212
213
214
215
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

sandy's avatar
sandy committed
216
    audio_array: torch.Tensor
217
218
219
220
    start_frame: int
    end_frame: int


221
class FramePreprocessorTorchVersion:
222
223
224
225
226
227
228
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

229
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
230
231
        """Add noise to frames"""

232
        device = frames.device
233
234
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
235
236
237
238
239
240
241
242
243
244

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
245
246
        return frames + noise

247
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
248
249
        """Add mask to frames"""

250
        device = frames.device
251
        h, w = frames.shape[-2:]
252
253
254

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
255
256
257
258
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
259
260
261
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
262
263
264
265
266
267
268
269


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
270
        self.audio_frame_rate = audio_sr // target_fps
271

sandy's avatar
sandy committed
272
    def load_audio(self, audio_path: str):
273
274
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
sandy's avatar
sandy committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        return audio_array

    def load_multi_person_audio(self, audio_paths: List[str]):
        audio_arrays = []
        max_len = 0

        for audio_path in audio_paths:
            audio_array = self.load_audio(audio_path)
            audio_arrays.append(audio_array)
            max_len = max(max_len, audio_array.numel())

        num_files = len(audio_arrays)
        padded = torch.zeros(num_files, max_len, dtype=torch.float32)

        for i, arr in enumerate(audio_arrays):
            length = arr.numel()
            padded[i, :length] = arr

        return padded
294
295
296

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
297
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
298

sandy's avatar
sandy committed
299
300
301
302
303
    def segment_audio(self, audio_array: torch.Tensor, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """
        Segment audio based on frame requirements
        audio_array is (N, T) tensor
        """
304
        segments = []
sandy's avatar
sandy committed
305
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
306

sandy's avatar
sandy committed
307
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
sandy's avatar
sandy committed
308
        audio_array_ori = audio_array[:, audio_start:audio_end]
309

sandy's avatar
sandy committed
310
311
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
sandy's avatar
sandy committed
312
            audio_array = audio_array_ori[:, audio_start:audio_end]
313

sandy's avatar
sandy committed
314
315
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
sandy's avatar
sandy committed
316
317
318
319
320
            else:  # for last segments
                if audio_array.shape[1] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[1]
                    audio_array = F.pad(audio_array, (0, padding_len))
                    # Adjust end_idx to account for the frames added by padding
sandy's avatar
sandy committed
321
                    end_idx = end_idx - padding_len // self.audio_frame_rate
322

sandy's avatar
sandy committed
323
324
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
325
326
        return segments

sandy's avatar
sandy committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def load_image(image: Union[str, Image.Image], to_rgb: bool = True) -> Image.Image:
    _image = image
    if isinstance(image, str):
        if os.path.isfile(image):
            _image = Image.open(image)
        else:
            raise ValueError(f"Incorrect path. {image} is not a valid path.")
    # orientation transpose
    _image = ImageOps.exif_transpose(_image)
    # convert color space to sRGB
    icc_profile = _image.info.get("icc_profile")
    if icc_profile:
        srgb_profile = ImageCms.createProfile("sRGB")
        input_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc_profile))
        _image = ImageCms.profileToProfile(_image, input_profile, srgb_profile)
    # convert to "RGB"
    if to_rgb:
        _image = _image.convert("RGB")

    return _image


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
366
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
367
368
369
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
370
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
371
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
372
373
374

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
375
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
376

377
    def read_audio_input(self, audio_path):
sandy's avatar
sandy committed
378
        """Read audio input - handles both single and multi-person scenarios"""
helloyongyang's avatar
helloyongyang committed
379
380
381
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
sandy's avatar
sandy committed
382

LiangLiu's avatar
LiangLiu committed
383
384
385
        if not isinstance(audio_path, str):
            return [], 0, None, 0

sandy's avatar
sandy committed
386
        # Get audio files from person objects or legacy format
387
        audio_files, mask_files = self.get_audio_files_from_audio_path(audio_path)
helloyongyang's avatar
helloyongyang committed
388

sandy's avatar
sandy committed
389
390
391
392
393
394
395
396
397
        # Load audio based on single or multi-person mode
        if len(audio_files) == 1:
            audio_array = self._audio_processor.load_audio(audio_files[0])
            audio_array = audio_array.unsqueeze(0)  # Add batch dimension for consistency
        else:
            audio_array = self._audio_processor.load_multi_person_audio(audio_files)

        video_duration = self.config.get("video_duration", 5)
        audio_len = int(audio_array.shape[1] / audio_sr * target_fps)
yihuiwen's avatar
yihuiwen committed
398
399
400
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_input_audio_len.observe(audio_len)

helloyongyang's avatar
helloyongyang committed
401
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)
gushiqiao's avatar
gushiqiao committed
402
403
        if expected_frames < int(video_duration * target_fps):
            logger.warning(f"Input video duration is greater than actual audio duration, using audio duration instead: audio_duration={audio_len / target_fps}, video_duration={video_duration}")
helloyongyang's avatar
helloyongyang committed
404
405

        # Segment audio
406
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
407

408
409
410
411
412
413
        # Mask latent for multi-person s2v
        if mask_files is not None:
            mask_latents = [self.process_single_mask(mask_file) for mask_file in mask_files]
            mask_latents = torch.cat(mask_latents, dim=0)
        else:
            mask_latents = None
sandy's avatar
sandy committed
414

415
        return audio_segments, expected_frames, mask_latents, len(audio_files)
sandy's avatar
sandy committed
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    def get_audio_files_from_audio_path(self, audio_path):
        if os.path.isdir(audio_path):
            audio_files = []
            mask_files = []
            logger.info(f"audio_path is a directory, loading config.json from {audio_path}")
            audio_config_path = os.path.join(audio_path, "config.json")
            assert os.path.exists(audio_config_path), "config.json not found in audio_path"
            with open(audio_config_path, "r") as f:
                audio_config = json.load(f)
            for talk_object in audio_config["talk_objects"]:
                audio_files.append(os.path.join(audio_path, talk_object["audio"]))
                mask_files.append(os.path.join(audio_path, talk_object["mask"]))
        else:
            logger.info(f"audio_path is a file without mask: {audio_path}")
            audio_files = [audio_path]
            mask_files = None
sandy's avatar
sandy committed
433

434
        return audio_files, mask_files
sandy's avatar
sandy committed
435

436
    def process_single_mask(self, mask_file):
437
        mask_img = load_image(mask_file)
sandy's avatar
sandy committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        mask_img = TF.to_tensor(mask_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

        if mask_img.shape[1] == 3:  # If it is an RGB three-channel image
            mask_img = mask_img[:, :1]  # Only take the first channel

        mask_img, h, w = resize_image(
            mask_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )

        mask_latent = torch.nn.functional.interpolate(
            mask_img,  # (1, 1, H, W)
            size=(h // 16, w // 16),
            mode="bicubic",
        )

        mask_latent = (mask_latent > 0).to(torch.int8)
        return mask_latent
helloyongyang's avatar
helloyongyang committed
459
460

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
461
462
463
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
464
            ref_img = load_image(img_path)
465
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).to(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
466

467
468
469
470
471
472
473
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
474
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
475
476
        patched_h = h // self.config["vae_stride"][1] // self.config["patch_size"][1]
        patched_w = w // self.config["vae_stride"][2] // self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
477
478
479

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

480
481
        latent_h = patched_h * self.config["patch_size"][1]
        latent_w = patched_w * self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
482

483
484
        latent_shape = self.get_latent_shape_with_lat_hw(latent_h, latent_w)
        target_shape = [latent_h * self.config["vae_stride"][1], latent_w * self.config["vae_stride"][2]]
helloyongyang's avatar
helloyongyang committed
485

486
        logger.info(f"[wan_audio] target_h: {target_shape[0]}, target_w: {target_shape[1]}, latent_h: {latent_h}, latent_w: {latent_w}")
helloyongyang's avatar
helloyongyang committed
487

488
489
        ref_img = torch.nn.functional.interpolate(ref_img, size=(target_shape[0], target_shape[1]), mode="bicubic")
        return ref_img, latent_shape, target_shape
helloyongyang's avatar
helloyongyang committed
490

yihuiwen's avatar
yihuiwen committed
491
492
493
494
495
496
    @ProfilingContext4DebugL1(
        "Run Image Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_img_encode_duration,
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
497
    def run_image_encoder(self, first_frame, last_frame=None):
498
499
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
500
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
501
502
503
504
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
505
506
        return clip_encoder_out

yihuiwen's avatar
yihuiwen committed
507
508
509
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
510
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
511
512
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
513
    def run_vae_encoder(self, img):
514
515
516
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
517
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
518
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
519

520
521
522
523
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
524
525
        return vae_encoder_out

526
    @ProfilingContext4DebugL2("Run Encoders")
527
528
529
530
    def _run_input_encoder_local_s2v(self):
        img, latent_shape, target_shape = self.read_image_input(self.input_info.image_path)
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        self.input_info.target_shape = target_shape  # Important: set target_shape in input_info
helloyongyang's avatar
helloyongyang committed
531
532
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
sandy's avatar
sandy committed
533

534
535
536
537
        audio_segments, expected_frames, person_mask_latens, audio_num = self.read_audio_input(self.input_info.audio_path)
        self.input_info.audio_num = audio_num
        self.input_info.with_mask = person_mask_latens is not None
        text_encoder_output = self.run_text_encoder(self.input_info)
helloyongyang's avatar
helloyongyang committed
538
539
540
541
542
543
544
545
546
547
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
sandy's avatar
sandy committed
548
            "person_mask_latens": person_mask_latens,
helloyongyang's avatar
helloyongyang committed
549
        }
550
551
552

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
553
        dtype = GET_DTYPE()
554

555
        tgt_h, tgt_w = self.input_info.target_shape[0], self.input_info.target_shape[1]
556
        prev_frames = torch.zeros((1, 3, self.config["target_video_length"], tgt_h, tgt_w), device=AI_DEVICE)
557

558
559
        if prev_video is not None:
            # Extract and process last frames
560
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(AI_DEVICE)
561
            if self.config["model_cls"] != "wan2.2_audio":
sandy's avatar
sandy committed
562
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
563
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
564
565
566
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
567

568
569
570
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

571
        _, nframe, height, width = self.model.scheduler.latents.shape
572
573
574
575
576
577
        with ProfilingContext4DebugL1(
            "vae_encoder in init run segment",
            recorder_mode=GET_RECORDER_MODE(),
            metrics_func=monitor_cli.lightx2v_run_vae_encoder_pre_latent_duration,
            metrics_labels=["WanAudioRunner"],
        ):
578
            if self.config["model_cls"] == "wan2.2_audio":
579
580
581
582
583
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
584
            else:
585
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
586

587
            frames_n = (nframe - 1) * 4 + 1
588
            prev_mask = torch.ones((1, frames_n, height, width), device=AI_DEVICE, dtype=dtype)
589
590
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
591
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
592

sandy's avatar
sandy committed
593
594
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
595
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={tgt_h}, tgt_w={tgt_w}")
sandy's avatar
sandy committed
596
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
597

598
599
600
601
602
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
603
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
604
605
606
607
608
609
610
611
612
613
614

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
615
        return mask.transpose(0, 1).contiguous()
616

helloyongyang's avatar
helloyongyang committed
617
618
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
619

helloyongyang's avatar
helloyongyang committed
620
621
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
622
        self.scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
623
        self.prev_video = None
624
625
        if self.input_info.return_result_tensor:
            self.gen_video_final = torch.zeros((self.inputs["expected_frames"], self.input_info.target_shape[0], self.input_info.target_shape[1], 3), dtype=torch.float32, device="cpu")
sandy's avatar
sandy committed
626
            self.cut_audio_final = torch.zeros((self.inputs["expected_frames"] * self._audio_processor.audio_frame_rate), dtype=torch.float32, device="cpu")
LiangLiu's avatar
LiangLiu committed
627
628
        else:
            self.gen_video_final = None
sandy's avatar
sandy committed
629
            self.cut_audio_final = None
wangshankun's avatar
wangshankun committed
630

631
632
633
634
635
636
    @ProfilingContext4DebugL1(
        "Init run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_init_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
LiangLiu's avatar
LiangLiu committed
637
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
638
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
639
        if audio_array is not None:
LiangLiu's avatar
LiangLiu committed
640
641
642
            end_idx = audio_array.shape[0] // self._audio_processor.audio_frame_rate - self.prev_frame_length
            audio_tensor = torch.Tensor(audio_array).float().unsqueeze(0)
            self.segment = AudioSegment(audio_tensor, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
643
644
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
645

646
647
        self.input_info.seed = self.input_info.seed + segment_idx
        torch.manual_seed(self.input_info.seed)
648
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
649

650
651
652
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

sandy's avatar
sandy committed
653
654
655
656
657
658
        features_list = []
        for i in range(self.segment.audio_array.shape[0]):
            feat = self.audio_encoder.infer(self.segment.audio_array[i])
            feat = self.audio_adapter.forward_audio_proj(feat, self.model.scheduler.latents.shape[1])
            features_list.append(feat.squeeze(0))
        audio_features = torch.stack(features_list, dim=0)
PengGao's avatar
PengGao committed
659

helloyongyang's avatar
helloyongyang committed
660
        self.inputs["audio_encoder_output"] = audio_features
661
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
662

helloyongyang's avatar
helloyongyang committed
663
664
        # Reset scheduler for non-first segments
        if segment_idx > 0:
665
            self.model.scheduler.reset(self.input_info.seed, self.input_info.latent_shape, self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
666

667
668
669
670
671
672
    @ProfilingContext4DebugL1(
        "End run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_end_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
673
    def end_run_segment(self, segment_idx):
helloyongyang's avatar
helloyongyang committed
674
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
675
        useful_length = self.segment.end_frame - self.segment.start_frame
LiangLiu's avatar
LiangLiu committed
676
        video_seg = self.gen_video[:, :, :useful_length].cpu()
sandy's avatar
sandy committed
677
678
        audio_seg = self.segment.audio_array[:, : useful_length * self._audio_processor.audio_frame_rate]
        audio_seg = audio_seg.sum(dim=0)  # Multiple audio tracks, mixed into one track
LiangLiu's avatar
LiangLiu committed
679
680
681
682
683
684
685
686
687
688
689
        video_seg = vae_to_comfyui_image_inplace(video_seg)

        # [Warning] Need check whether video segment interpolation works...
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            video_seg = self.vfi_model.interpolate_frames(
                video_seg,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
LiangLiu's avatar
LiangLiu committed
690

691
692
693
694
695
696
697
698
        if "video_super_resolution" in self.config and self.vsr_model is not None:
            logger.info(f"Applying video super resolution with scale {self.config['video_super_resolution']['scale']}")
            video_seg = self.vsr_model.super_resolve_frames(
                video_seg,
                seed=self.config["video_super_resolution"]["seed"],
                scale=self.config["video_super_resolution"]["scale"],
            )

LiangLiu's avatar
LiangLiu committed
699
700
        if self.va_recorder:
            self.va_recorder.pub_livestream(video_seg, audio_seg)
701
        elif self.input_info.return_result_tensor:
LiangLiu's avatar
LiangLiu committed
702
            self.gen_video_final[self.segment.start_frame : self.segment.end_frame].copy_(video_seg)
sandy's avatar
sandy committed
703
            self.cut_audio_final[self.segment.start_frame * self._audio_processor.audio_frame_rate : self.segment.end_frame * self._audio_processor.audio_frame_rate].copy_(audio_seg)
LiangLiu's avatar
LiangLiu committed
704

helloyongyang's avatar
helloyongyang committed
705
706
707
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

LiangLiu's avatar
LiangLiu committed
708
        del video_seg, audio_seg
helloyongyang's avatar
helloyongyang committed
709
710
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
711
712
713
714
715
716
717
718
719
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
720
        output_video_path = self.input_info.save_result_path
LiangLiu's avatar
LiangLiu committed
721
722
        self.va_recorder = None
        if isinstance(output_video_path, dict):
LiangLiu's avatar
LiangLiu committed
723
724
725
726
727
728
729
730
            output_video_path = output_video_path["data"]
        logger.info(f"init va_recorder with output_video_path: {output_video_path}")
        rank, world_size = self.get_rank_and_world_size()
        if output_video_path and rank == world_size - 1:
            record_fps = self.config.get("target_fps", 16)
            audio_sr = self.config.get("audio_sr", 16000)
            if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                record_fps = self.config["video_frame_interpolation"]["target_fps"]
LiangLiu's avatar
LiangLiu committed
731
732
733

            whip_shared_path = os.getenv("WHIP_SHARED_LIB", None)
            if whip_shared_path and output_video_path.startswith("http"):
LiangLiu's avatar
LiangLiu committed
734
                self.va_recorder = X264VARecorder(
LiangLiu's avatar
LiangLiu committed
735
736
737
738
739
740
741
742
743
744
745
                    whip_shared_path=whip_shared_path,
                    livestream_url=output_video_path,
                    fps=record_fps,
                    sample_rate=audio_sr,
                )
            else:
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path,
                    fps=record_fps,
                    sample_rate=audio_sr,
                )
LiangLiu's avatar
LiangLiu committed
746
747

    def init_va_reader(self):
LiangLiu's avatar
LiangLiu committed
748
        audio_path = self.input_info.audio_path
LiangLiu's avatar
LiangLiu committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

PengGao's avatar
PengGao committed
767
    def run_main(self):
LiangLiu's avatar
LiangLiu committed
768
769
770
771
772
773
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
PengGao's avatar
PengGao committed
774
                return super().run_main()
LiangLiu's avatar
LiangLiu committed
775

LiangLiu's avatar
LiangLiu committed
776
            self.va_reader.start()
LiangLiu's avatar
LiangLiu committed
777
            rank, world_size = self.get_rank_and_world_size()
LiangLiu's avatar
LiangLiu committed
778
779
            if rank == world_size - 1:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 2"
LiangLiu's avatar
LiangLiu committed
780
781
782
                self.va_recorder.start(self.input_info.target_shape[1], self.input_info.target_shape[0])
            if world_size > 1:
                dist.barrier()
LiangLiu's avatar
LiangLiu committed
783
784

            self.init_run()
LiangLiu's avatar
LiangLiu committed
785
            if self.config.get("compile", False):
786
                self.model.select_graph_for_compile(self.input_info)
LiangLiu's avatar
LiangLiu committed
787
788
789
790
791
792
793
794
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
795
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
796
797
798
799
800
801
802
803
804
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

805
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
806
807
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
PengGao's avatar
PengGao committed
808
                    latents = self.run_segment(segment_idx)
LiangLiu's avatar
LiangLiu committed
809
                    self.gen_video = self.run_vae_decoder(latents)
LiangLiu's avatar
LiangLiu committed
810
                    self.end_run_segment(segment_idx)
LiangLiu's avatar
LiangLiu committed
811
812
813
                    segment_idx += 1

        finally:
LiangLiu's avatar
LiangLiu committed
814
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
815
816
817
818
819
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
LiangLiu's avatar
LiangLiu committed
820
                self.va_recorder.stop()
LiangLiu's avatar
LiangLiu committed
821
822
                self.va_recorder = None

823
    @ProfilingContext4DebugL1("Process after vae decoder")
824
825
    def process_images_after_vae_decoder(self):
        if self.input_info.return_result_tensor:
sandy's avatar
sandy committed
826
            audio_waveform = self.cut_audio_final.unsqueeze(0).unsqueeze(0)
LiangLiu's avatar
LiangLiu committed
827
828
829
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
            return {"video": self.gen_video_final, "audio": comfyui_audio}
        return {"video": None, "audio": None}
830

wangshankun's avatar
wangshankun committed
831
    def load_transformer(self):
832
        """Load transformer with LoRA support"""
833
834
        base_model = WanAudioModel(self.config["model_path"], self.config, self.init_device)
        if self.config.get("lora_configs") and self.config["lora_configs"]:
835
            assert not self.config.get("dit_quantized", False)
wangshankun's avatar
wangshankun committed
836
            lora_wrapper = WanLoraWrapper(base_model)
837
            for lora_config in self.config["lora_configs"]:
838
839
840
841
842
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
843

wangshankun's avatar
wangshankun committed
844
845
        return base_model

helloyongyang's avatar
helloyongyang committed
846
    def load_audio_encoder(self):
gushiqiao's avatar
gushiqiao committed
847
        audio_encoder_path = self.config.get("audio_encoder_path", os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large"))
848
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
849
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
850
        return model
851

helloyongyang's avatar
helloyongyang committed
852
    def load_audio_adapter(self):
853
854
855
856
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
857
            device = torch.device(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
858
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
859
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
860
861
862
863
864
865
866
867
868
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
869
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
870
        )
871

872
        audio_adapter.to(device)
873
        load_from_rank0 = self.config.get("load_from_rank0", False)
874
        weights_dict = load_weights(self.config["adapter_model_path"], cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
875
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
876
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
877

helloyongyang's avatar
helloyongyang committed
878
879
    def load_model(self):
        super().load_model()
880
881
882
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
883

884
885
886
887
888
889
890
891
    def get_latent_shape_with_lat_hw(self, latent_h, latent_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            latent_h,
            latent_w,
        ]
        return latent_shape
sandy's avatar
sandy committed
892
893
894
895
896
897
898
899
900
901
902
903
904


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
905
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
906
        vae_config = {
gushiqiao's avatar
gushiqiao committed
907
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
908
909
910
911
912
913
914
915
916
917
918
919
920
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
921
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
922
        vae_config = {
gushiqiao's avatar
gushiqiao committed
923
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
924
925
926
927
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
928
        if self.config.task not in ["i2v", "s2v"]:
sandy's avatar
sandy committed
929
930
931
932
933
934
935
936
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder