wan_audio_runner.py 40.2 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
2
import io
3
import json
PengGao's avatar
PengGao committed
4
import os
sandy's avatar
sandy committed
5
import warnings
PengGao's avatar
PengGao committed
6
from dataclasses import dataclass
7
from typing import Dict, List, Optional, Tuple, Union
PengGao's avatar
PengGao committed
8

wangshankun's avatar
wangshankun committed
9
10
import numpy as np
import torch
11
import torch.distributed as dist
sandy's avatar
sandy committed
12
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
13
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
14
import torchvision.transforms.functional as TF
15
from PIL import Image, ImageCms, ImageOps
gushiqiao's avatar
gushiqiao committed
16
from einops import rearrange
PengGao's avatar
PengGao committed
17
from loguru import logger
gushiqiao's avatar
gushiqiao committed
18
19
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
20

LiangLiu's avatar
LiangLiu committed
21
22
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
LiangLiu's avatar
LiangLiu committed
23
from lightx2v.deploy.common.va_recorder_x264 import X264VARecorder
24
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
25
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
26
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
27
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
28
from lightx2v.models.runners.wan.wan_runner import WanRunner
29
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
30
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
yihuiwen's avatar
yihuiwen committed
31
from lightx2v.server.metrics import monitor_cli
32
from lightx2v.utils.envs import *
33
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
34
from lightx2v.utils.registry_factory import RUNNER_REGISTER
LiangLiu's avatar
LiangLiu committed
35
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image_inplace
36
from lightx2v_platform.base.global_var import AI_DEVICE
37

sandy's avatar
sandy committed
38
39
40
warnings.filterwarnings("ignore", category=UserWarning, module="torchaudio")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io")

wangshankun's avatar
wangshankun committed
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
57
58
                h_ratio *= 2
            else:
59
                patched_w //= 2
60
                w_ratio *= 2
61
    return patched_h * h_ratio, patched_w * w_ratio
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
83
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
84
85
    size: (H, W)
    """
86
87
88
89
90
91
92
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

93
94
95
96
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
97
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
98
99
100
101

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

102
103
104
    return resized_frames


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


126
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
127
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
128
129
130
131
132

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
133

134
135
136
137
138
139
140
141
142
143
144
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
145
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
146
147
148
149
150
151
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
152
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
153

154
155
156
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
157
158
159
160
161
162
163
164
165
166
167

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
168
        for resolution in bucket_config[closet_ratio]:
169
170
171
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
PengGao's avatar
PengGao committed
172
173
174
175
176
177
178
179
180
        area_in_pixels = 480 * 832
        if fixed_area == "480p":
            area_in_pixels = 480 * 832
        elif fixed_area == "720p":
            area_in_pixels = 720 * 1280
        else:
            area_in_pixels = 480 * 832
        target_h = round(np.sqrt(area_in_pixels * ori_ratio))
        target_w = round(np.sqrt(area_in_pixels / ori_ratio))
181
182
183
184
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
185
        target_h, target_w = bucket_config[closet_ratio][0]
186
    elif resize_mode == "fixed_min_side":
PengGao's avatar
PengGao committed
187
188
189
190
191
192
193
194
        min_side = 720
        if fixed_area == "720p":
            min_side = 720
        elif fixed_area == "480p":
            min_side = 480
        else:
            logger.warning(f"[wan_audio] fixed_area is not '480p' or '720p', using default 480p: {fixed_area}")
            min_side = 480
195
196
197
198
199
200
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
201
202
203
204
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
205
        target_h, target_w = bucket_config[closet_ratio][-1]
206

207
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
PengGao's avatar
PengGao committed
208
    logger.info(f"[wan_audio] resize_image: {img.shape} -> {cropped_img.shape}, resize_mode: {resize_mode}, target_h: {target_h}, target_w: {target_w}")
209
210
211
    return cropped_img, target_h, target_w


212
213
214
215
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

sandy's avatar
sandy committed
216
    audio_array: torch.Tensor
217
218
219
220
    start_frame: int
    end_frame: int


221
class FramePreprocessorTorchVersion:
222
223
224
225
226
227
228
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

229
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
230
231
        """Add noise to frames"""

232
        device = frames.device
233
234
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
235
236
237
238
239
240
241
242
243
244

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
245
246
        return frames + noise

247
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
248
249
        """Add mask to frames"""

250
        device = frames.device
251
        h, w = frames.shape[-2:]
252
253
254

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
255
256
257
258
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
259
260
261
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
262
263
264
265
266
267
268
269


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
270
        self.audio_frame_rate = audio_sr // target_fps
271

sandy's avatar
sandy committed
272
    def load_audio(self, audio_path: str):
273
274
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
sandy's avatar
sandy committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        return audio_array

    def load_multi_person_audio(self, audio_paths: List[str]):
        audio_arrays = []
        max_len = 0

        for audio_path in audio_paths:
            audio_array = self.load_audio(audio_path)
            audio_arrays.append(audio_array)
            max_len = max(max_len, audio_array.numel())

        num_files = len(audio_arrays)
        padded = torch.zeros(num_files, max_len, dtype=torch.float32)

        for i, arr in enumerate(audio_arrays):
            length = arr.numel()
            padded[i, :length] = arr

        return padded
294
295
296

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
297
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
298

sandy's avatar
sandy committed
299
300
301
302
303
    def segment_audio(self, audio_array: torch.Tensor, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """
        Segment audio based on frame requirements
        audio_array is (N, T) tensor
        """
304
        segments = []
sandy's avatar
sandy committed
305
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
306

sandy's avatar
sandy committed
307
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
sandy's avatar
sandy committed
308
        audio_array_ori = audio_array[:, audio_start:audio_end]
309

sandy's avatar
sandy committed
310
311
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
sandy's avatar
sandy committed
312
            audio_array = audio_array_ori[:, audio_start:audio_end]
313

sandy's avatar
sandy committed
314
315
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
sandy's avatar
sandy committed
316
317
318
319
320
            else:  # for last segments
                if audio_array.shape[1] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[1]
                    audio_array = F.pad(audio_array, (0, padding_len))
                    # Adjust end_idx to account for the frames added by padding
sandy's avatar
sandy committed
321
                    end_idx = end_idx - padding_len // self.audio_frame_rate
322

sandy's avatar
sandy committed
323
324
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
325
326
        return segments

sandy's avatar
sandy committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def load_image(image: Union[str, Image.Image], to_rgb: bool = True) -> Image.Image:
    _image = image
    if isinstance(image, str):
        if os.path.isfile(image):
            _image = Image.open(image)
        else:
            raise ValueError(f"Incorrect path. {image} is not a valid path.")
    # orientation transpose
    _image = ImageOps.exif_transpose(_image)
    # convert color space to sRGB
    icc_profile = _image.info.get("icc_profile")
    if icc_profile:
        srgb_profile = ImageCms.createProfile("sRGB")
        input_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc_profile))
        _image = ImageCms.profileToProfile(_image, input_profile, srgb_profile)
    # convert to "RGB"
    if to_rgb:
        _image = _image.convert("RGB")

    return _image


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
366
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
367
368
369
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
370
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
371
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
372
373
374

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
375
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
376

377
    def read_audio_input(self, audio_path):
sandy's avatar
sandy committed
378
        """Read audio input - handles both single and multi-person scenarios"""
helloyongyang's avatar
helloyongyang committed
379
380
381
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
sandy's avatar
sandy committed
382

LiangLiu's avatar
LiangLiu committed
383
384
385
        if not isinstance(audio_path, str):
            return [], 0, None, 0

sandy's avatar
sandy committed
386
        # Get audio files from person objects or legacy format
387
        audio_files, mask_files = self.get_audio_files_from_audio_path(audio_path)
helloyongyang's avatar
helloyongyang committed
388

sandy's avatar
sandy committed
389
390
391
392
393
394
395
396
397
        # Load audio based on single or multi-person mode
        if len(audio_files) == 1:
            audio_array = self._audio_processor.load_audio(audio_files[0])
            audio_array = audio_array.unsqueeze(0)  # Add batch dimension for consistency
        else:
            audio_array = self._audio_processor.load_multi_person_audio(audio_files)

        video_duration = self.config.get("video_duration", 5)
        audio_len = int(audio_array.shape[1] / audio_sr * target_fps)
yihuiwen's avatar
yihuiwen committed
398
399
400
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_input_audio_len.observe(audio_len)

helloyongyang's avatar
helloyongyang committed
401
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)
gushiqiao's avatar
gushiqiao committed
402
403
        if expected_frames < int(video_duration * target_fps):
            logger.warning(f"Input video duration is greater than actual audio duration, using audio duration instead: audio_duration={audio_len / target_fps}, video_duration={video_duration}")
helloyongyang's avatar
helloyongyang committed
404
405

        # Segment audio
406
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
407

408
409
410
411
412
413
        # Mask latent for multi-person s2v
        if mask_files is not None:
            mask_latents = [self.process_single_mask(mask_file) for mask_file in mask_files]
            mask_latents = torch.cat(mask_latents, dim=0)
        else:
            mask_latents = None
sandy's avatar
sandy committed
414

415
        return audio_segments, expected_frames, mask_latents, len(audio_files)
sandy's avatar
sandy committed
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    def get_audio_files_from_audio_path(self, audio_path):
        if os.path.isdir(audio_path):
            audio_files = []
            mask_files = []
            logger.info(f"audio_path is a directory, loading config.json from {audio_path}")
            audio_config_path = os.path.join(audio_path, "config.json")
            assert os.path.exists(audio_config_path), "config.json not found in audio_path"
            with open(audio_config_path, "r") as f:
                audio_config = json.load(f)
            for talk_object in audio_config["talk_objects"]:
                audio_files.append(os.path.join(audio_path, talk_object["audio"]))
                mask_files.append(os.path.join(audio_path, talk_object["mask"]))
        else:
            logger.info(f"audio_path is a file without mask: {audio_path}")
            audio_files = [audio_path]
            mask_files = None
sandy's avatar
sandy committed
433

434
        return audio_files, mask_files
sandy's avatar
sandy committed
435

436
    def process_single_mask(self, mask_file):
437
        mask_img = load_image(mask_file)
438
        mask_img = TF.to_tensor(mask_img).sub_(0.5).div_(0.5).unsqueeze(0).to(AI_DEVICE)
sandy's avatar
sandy committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

        if mask_img.shape[1] == 3:  # If it is an RGB three-channel image
            mask_img = mask_img[:, :1]  # Only take the first channel

        mask_img, h, w = resize_image(
            mask_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )

        mask_latent = torch.nn.functional.interpolate(
            mask_img,  # (1, 1, H, W)
            size=(h // 16, w // 16),
            mode="bicubic",
        )

        mask_latent = (mask_latent > 0).to(torch.int8)
        return mask_latent
helloyongyang's avatar
helloyongyang committed
459
460

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
461
462
463
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
464
            ref_img = load_image(img_path)
465
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).to(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
466

467
468
469
470
471
472
473
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
474
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
475
476
        patched_h = h // self.config["vae_stride"][1] // self.config["patch_size"][1]
        patched_w = w // self.config["vae_stride"][2] // self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
477
478
479

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

480
481
        latent_h = patched_h * self.config["patch_size"][1]
        latent_w = patched_w * self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
482

483
484
        latent_shape = self.get_latent_shape_with_lat_hw(latent_h, latent_w)
        target_shape = [latent_h * self.config["vae_stride"][1], latent_w * self.config["vae_stride"][2]]
helloyongyang's avatar
helloyongyang committed
485

486
        logger.info(f"[wan_audio] target_h: {target_shape[0]}, target_w: {target_shape[1]}, latent_h: {latent_h}, latent_w: {latent_w}")
helloyongyang's avatar
helloyongyang committed
487

488
489
        ref_img = torch.nn.functional.interpolate(ref_img, size=(target_shape[0], target_shape[1]), mode="bicubic")
        return ref_img, latent_shape, target_shape
helloyongyang's avatar
helloyongyang committed
490

yihuiwen's avatar
yihuiwen committed
491
492
493
494
495
496
    @ProfilingContext4DebugL1(
        "Run Image Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_img_encode_duration,
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
497
    def run_image_encoder(self, first_frame, last_frame=None):
498
499
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
500
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
501
502
503
504
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
505
506
        return clip_encoder_out

yihuiwen's avatar
yihuiwen committed
507
508
509
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
510
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
511
512
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
513
    def run_vae_encoder(self, img):
514
515
516
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
517
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
518
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
519

520
521
522
523
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
524
525
        return vae_encoder_out

526
    @ProfilingContext4DebugL2("Run Encoders")
527
528
    def _run_input_encoder_local_s2v(self):
        img, latent_shape, target_shape = self.read_image_input(self.input_info.image_path)
sandy's avatar
sandy committed
529
530
        if self.config.get("f2v_process", False):
            self.ref_img = img
531
532
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        self.input_info.target_shape = target_shape  # Important: set target_shape in input_info
helloyongyang's avatar
helloyongyang committed
533
534
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
sandy's avatar
sandy committed
535

536
537
538
539
        audio_segments, expected_frames, person_mask_latens, audio_num = self.read_audio_input(self.input_info.audio_path)
        self.input_info.audio_num = audio_num
        self.input_info.with_mask = person_mask_latens is not None
        text_encoder_output = self.run_text_encoder(self.input_info)
helloyongyang's avatar
helloyongyang committed
540
541
542
543
544
545
546
547
548
549
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
sandy's avatar
sandy committed
550
            "person_mask_latens": person_mask_latens,
helloyongyang's avatar
helloyongyang committed
551
        }
552
553
554

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
555
        dtype = GET_DTYPE()
556

557
        tgt_h, tgt_w = self.input_info.target_shape[0], self.input_info.target_shape[1]
558
        prev_frames = torch.zeros((1, 3, self.config["target_video_length"], tgt_h, tgt_w), device=AI_DEVICE)
559

560
561
        if prev_video is not None:
            # Extract and process last frames
562
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(AI_DEVICE)
sandy's avatar
sandy committed
563
            if self.config["model_cls"] != "wan2.2_audio" and not self.config.get("f2v_process", False):
sandy's avatar
sandy committed
564
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
565
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
566
567
568
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
569

570
571
572
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

573
        _, nframe, height, width = self.model.scheduler.latents.shape
574
575
576
577
578
579
        with ProfilingContext4DebugL1(
            "vae_encoder in init run segment",
            recorder_mode=GET_RECORDER_MODE(),
            metrics_func=monitor_cli.lightx2v_run_vae_encoder_pre_latent_duration,
            metrics_labels=["WanAudioRunner"],
        ):
580
            if self.config["model_cls"] == "wan2.2_audio":
581
582
583
584
585
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
586
            else:
587
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
588

589
            frames_n = (nframe - 1) * 4 + 1
590
            prev_mask = torch.ones((1, frames_n, height, width), device=AI_DEVICE, dtype=dtype)
591
592
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
593
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
594

sandy's avatar
sandy committed
595
596
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
597
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={tgt_h}, tgt_w={tgt_w}")
sandy's avatar
sandy committed
598
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
599

600
601
602
603
604
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
605
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
606
607
608
609
610
611
612
613
614
615
616

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
617
        return mask.transpose(0, 1).contiguous()
618

helloyongyang's avatar
helloyongyang committed
619
620
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
621

helloyongyang's avatar
helloyongyang committed
622
623
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
624
        self.scheduler.set_audio_adapter(self.audio_adapter)
sandy's avatar
sandy committed
625
626
627
628
        if self.config.get("f2v_process", False):
            self.prev_video = self.ref_img.unsqueeze(2)
        else:
            self.prev_video = None
629
630
        if self.input_info.return_result_tensor:
            self.gen_video_final = torch.zeros((self.inputs["expected_frames"], self.input_info.target_shape[0], self.input_info.target_shape[1], 3), dtype=torch.float32, device="cpu")
sandy's avatar
sandy committed
631
            self.cut_audio_final = torch.zeros((self.inputs["expected_frames"] * self._audio_processor.audio_frame_rate), dtype=torch.float32, device="cpu")
LiangLiu's avatar
LiangLiu committed
632
633
        else:
            self.gen_video_final = None
sandy's avatar
sandy committed
634
            self.cut_audio_final = None
wangshankun's avatar
wangshankun committed
635

636
637
638
639
640
641
    @ProfilingContext4DebugL1(
        "Init run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_init_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
LiangLiu's avatar
LiangLiu committed
642
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
643
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
644
        if audio_array is not None:
LiangLiu's avatar
LiangLiu committed
645
646
647
            end_idx = audio_array.shape[0] // self._audio_processor.audio_frame_rate - self.prev_frame_length
            audio_tensor = torch.Tensor(audio_array).float().unsqueeze(0)
            self.segment = AudioSegment(audio_tensor, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
648
649
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
650

651
652
        self.input_info.seed = self.input_info.seed + segment_idx
        torch.manual_seed(self.input_info.seed)
653
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
654

655
656
657
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

sandy's avatar
sandy committed
658
659
660
661
662
663
        features_list = []
        for i in range(self.segment.audio_array.shape[0]):
            feat = self.audio_encoder.infer(self.segment.audio_array[i])
            feat = self.audio_adapter.forward_audio_proj(feat, self.model.scheduler.latents.shape[1])
            features_list.append(feat.squeeze(0))
        audio_features = torch.stack(features_list, dim=0)
PengGao's avatar
PengGao committed
664

helloyongyang's avatar
helloyongyang committed
665
        self.inputs["audio_encoder_output"] = audio_features
666
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
667

helloyongyang's avatar
helloyongyang committed
668
669
        # Reset scheduler for non-first segments
        if segment_idx > 0:
670
            self.model.scheduler.reset(self.input_info.seed, self.input_info.latent_shape, self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
671

672
673
674
675
676
677
    @ProfilingContext4DebugL1(
        "End run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_end_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
678
    def end_run_segment(self, segment_idx):
helloyongyang's avatar
helloyongyang committed
679
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
680
        useful_length = self.segment.end_frame - self.segment.start_frame
LiangLiu's avatar
LiangLiu committed
681
        video_seg = self.gen_video[:, :, :useful_length].cpu()
sandy's avatar
sandy committed
682
683
        audio_seg = self.segment.audio_array[:, : useful_length * self._audio_processor.audio_frame_rate]
        audio_seg = audio_seg.sum(dim=0)  # Multiple audio tracks, mixed into one track
LiangLiu's avatar
LiangLiu committed
684
685
686
687
688
689
690
691
692
693
694
        video_seg = vae_to_comfyui_image_inplace(video_seg)

        # [Warning] Need check whether video segment interpolation works...
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            video_seg = self.vfi_model.interpolate_frames(
                video_seg,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
LiangLiu's avatar
LiangLiu committed
695

696
697
698
699
700
701
702
703
        if "video_super_resolution" in self.config and self.vsr_model is not None:
            logger.info(f"Applying video super resolution with scale {self.config['video_super_resolution']['scale']}")
            video_seg = self.vsr_model.super_resolve_frames(
                video_seg,
                seed=self.config["video_super_resolution"]["seed"],
                scale=self.config["video_super_resolution"]["scale"],
            )

LiangLiu's avatar
LiangLiu committed
704
705
        if self.va_recorder:
            self.va_recorder.pub_livestream(video_seg, audio_seg)
706
        elif self.input_info.return_result_tensor:
LiangLiu's avatar
LiangLiu committed
707
            self.gen_video_final[self.segment.start_frame : self.segment.end_frame].copy_(video_seg)
sandy's avatar
sandy committed
708
            self.cut_audio_final[self.segment.start_frame * self._audio_processor.audio_frame_rate : self.segment.end_frame * self._audio_processor.audio_frame_rate].copy_(audio_seg)
LiangLiu's avatar
LiangLiu committed
709

helloyongyang's avatar
helloyongyang committed
710
711
712
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

LiangLiu's avatar
LiangLiu committed
713
        del video_seg, audio_seg
helloyongyang's avatar
helloyongyang committed
714
715
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
716
717
718
719
720
721
722
723
724
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
725
        output_video_path = self.input_info.save_result_path
LiangLiu's avatar
LiangLiu committed
726
727
        self.va_recorder = None
        if isinstance(output_video_path, dict):
LiangLiu's avatar
LiangLiu committed
728
729
730
731
732
733
734
735
            output_video_path = output_video_path["data"]
        logger.info(f"init va_recorder with output_video_path: {output_video_path}")
        rank, world_size = self.get_rank_and_world_size()
        if output_video_path and rank == world_size - 1:
            record_fps = self.config.get("target_fps", 16)
            audio_sr = self.config.get("audio_sr", 16000)
            if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                record_fps = self.config["video_frame_interpolation"]["target_fps"]
LiangLiu's avatar
LiangLiu committed
736
737
738

            whip_shared_path = os.getenv("WHIP_SHARED_LIB", None)
            if whip_shared_path and output_video_path.startswith("http"):
LiangLiu's avatar
LiangLiu committed
739
                self.va_recorder = X264VARecorder(
LiangLiu's avatar
LiangLiu committed
740
741
742
743
744
745
746
747
748
749
750
                    whip_shared_path=whip_shared_path,
                    livestream_url=output_video_path,
                    fps=record_fps,
                    sample_rate=audio_sr,
                )
            else:
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path,
                    fps=record_fps,
                    sample_rate=audio_sr,
                )
LiangLiu's avatar
LiangLiu committed
751
752

    def init_va_reader(self):
LiangLiu's avatar
LiangLiu committed
753
        audio_path = self.input_info.audio_path
LiangLiu's avatar
LiangLiu committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

PengGao's avatar
PengGao committed
772
    def run_main(self):
LiangLiu's avatar
LiangLiu committed
773
774
775
776
777
778
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
PengGao's avatar
PengGao committed
779
                return super().run_main()
LiangLiu's avatar
LiangLiu committed
780

LiangLiu's avatar
LiangLiu committed
781
            self.va_reader.start()
LiangLiu's avatar
LiangLiu committed
782
            rank, world_size = self.get_rank_and_world_size()
LiangLiu's avatar
LiangLiu committed
783
784
            if rank == world_size - 1:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 2"
LiangLiu's avatar
LiangLiu committed
785
786
787
                self.va_recorder.start(self.input_info.target_shape[1], self.input_info.target_shape[0])
            if world_size > 1:
                dist.barrier()
LiangLiu's avatar
LiangLiu committed
788
789

            self.init_run()
LiangLiu's avatar
LiangLiu committed
790
            if self.config.get("compile", False):
791
                self.model.select_graph_for_compile(self.input_info)
LiangLiu's avatar
LiangLiu committed
792
793
794
795
796
797
798
799
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
800
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
801
802
803
804
805
806
807
808
809
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

810
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
811
812
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
PengGao's avatar
PengGao committed
813
                    latents = self.run_segment(segment_idx)
LiangLiu's avatar
LiangLiu committed
814
                    self.gen_video = self.run_vae_decoder(latents)
LiangLiu's avatar
LiangLiu committed
815
                    self.end_run_segment(segment_idx)
LiangLiu's avatar
LiangLiu committed
816
817
818
                    segment_idx += 1

        finally:
LiangLiu's avatar
LiangLiu committed
819
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
820
821
822
823
824
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
LiangLiu's avatar
LiangLiu committed
825
                self.va_recorder.stop()
LiangLiu's avatar
LiangLiu committed
826
827
                self.va_recorder = None

828
    @ProfilingContext4DebugL1("Process after vae decoder")
829
830
    def process_images_after_vae_decoder(self):
        if self.input_info.return_result_tensor:
sandy's avatar
sandy committed
831
            audio_waveform = self.cut_audio_final.unsqueeze(0).unsqueeze(0)
LiangLiu's avatar
LiangLiu committed
832
833
834
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
            return {"video": self.gen_video_final, "audio": comfyui_audio}
        return {"video": None, "audio": None}
835

wangshankun's avatar
wangshankun committed
836
    def load_transformer(self):
837
        """Load transformer with LoRA support"""
838
839
        base_model = WanAudioModel(self.config["model_path"], self.config, self.init_device)
        if self.config.get("lora_configs") and self.config["lora_configs"]:
840
            assert not self.config.get("dit_quantized", False)
wangshankun's avatar
wangshankun committed
841
            lora_wrapper = WanLoraWrapper(base_model)
842
            for lora_config in self.config["lora_configs"]:
843
844
845
846
847
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
848

wangshankun's avatar
wangshankun committed
849
850
        return base_model

helloyongyang's avatar
helloyongyang committed
851
    def load_audio_encoder(self):
gushiqiao's avatar
gushiqiao committed
852
        audio_encoder_path = self.config.get("audio_encoder_path", os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large"))
853
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
854
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
855
        return model
856

helloyongyang's avatar
helloyongyang committed
857
    def load_audio_adapter(self):
858
859
860
861
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
862
            device = torch.device(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
863
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
864
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
865
866
867
868
869
870
871
872
873
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
874
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
875
        )
876

877
        audio_adapter.to(device)
878
        load_from_rank0 = self.config.get("load_from_rank0", False)
879
        weights_dict = load_weights(self.config["adapter_model_path"], cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
880
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
881
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
882

helloyongyang's avatar
helloyongyang committed
883
884
    def load_model(self):
        super().load_model()
885
886
887
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
888

889
890
891
892
893
894
895
896
    def get_latent_shape_with_lat_hw(self, latent_h, latent_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            latent_h,
            latent_w,
        ]
        return latent_shape
sandy's avatar
sandy committed
897
898
899
900
901
902
903
904
905
906
907
908
909


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
910
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
911
        vae_config = {
gushiqiao's avatar
gushiqiao committed
912
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
913
914
915
916
917
918
919
920
921
922
923
924
925
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
926
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
927
        vae_config = {
gushiqiao's avatar
gushiqiao committed
928
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
929
930
931
932
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
933
        if self.config.task not in ["i2v", "s2v"]:
sandy's avatar
sandy committed
934
935
936
937
938
939
940
941
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder