wan_audio_runner.py 26.2 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
import os
import gc
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
7
8
9
10
from contextlib import contextmanager
from typing import Optional, Tuple, Union, List, Dict, Any
from dataclasses import dataclass

wangshankun's avatar
wangshankun committed
11
12
13
14
15
16
17
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.wan.wan_runner import WanRunner
from lightx2v.models.runners.default_runner import DefaultRunner
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext
from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
wangshankun's avatar
wangshankun committed
18
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel, WanVideoIPHandler
wangshankun's avatar
wangshankun committed
19
20
21
22
23
from lightx2v.models.networks.wan.audio_model import WanAudioModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE

from lightx2v.models.networks.wan.audio_adapter import AudioAdapter, AudioAdapterPipe, rank0_load_state_dict_from_path
gaclove's avatar
gaclove committed
24
from lightx2v.utils.utils import save_to_video, vae_to_comfyui_image
wangshankun's avatar
wangshankun committed
25

wangshankun's avatar
wangshankun committed
26
from lightx2v.models.schedulers.wan.step_distill.scheduler import WanStepDistillScheduler
wangshankun's avatar
wangshankun committed
27
from lightx2v.models.schedulers.wan.audio.scheduler import EulerSchedulerTimestepFix, ConsistencyModelScheduler
wangshankun's avatar
wangshankun committed
28

wangshankun's avatar
wangshankun committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from loguru import logger
import torch.distributed as dist
from einops import rearrange
import torchaudio as ta
from transformers import AutoFeatureExtractor

from torchvision.datasets.folder import IMG_EXTENSIONS
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize

import subprocess
import warnings


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
@contextmanager
def memory_efficient_inference():
    """Context manager for memory-efficient inference"""
    try:
        yield
    finally:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()


@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


class FramePreprocessor:
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

    def add_noise(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add noise to frames"""
        if self.noise_mean is None or self.noise_std is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
        sigma = rnd_state.normal(loc=self.noise_mean, scale=self.noise_std, size=(bs,))
        sigma = np.exp(sigma)
        sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
        noise = rnd_state.randn(*shape) * sigma
        return frames + noise

    def add_mask(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add mask to frames"""
        if self.mask_rate is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        h, w = frames.shape[-2:]
        mask = rnd_state.rand(h, w) > self.mask_rate
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
        frames_np = frames.cpu().detach().numpy()
        frames_np = self.add_noise(frames_np)
        frames_np = self.add_mask(frames_np)
        return torch.from_numpy(frames_np).to(dtype=frames.dtype, device=frames.device)


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
        return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

            elif res_frame_num > 5 and idx == interval_num - 1:
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


class VideoGenerator:
    """Handles video generation for each segment"""

    def __init__(self, model, vae_encoder, vae_decoder, config):
        self.model = model
        self.vae_encoder = vae_encoder
        self.vae_decoder = vae_decoder
        self.config = config
        self.frame_preprocessor = FramePreprocessor()

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
        if prev_video is None:
            return None

        device = self.model.device
        dtype = torch.bfloat16
        vae_dtype = torch.float

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

        # Extract and process last frames
        last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
        last_frames = self.frame_preprocessor.process_prev_frames(last_frames)

        prev_frames[:, :, :prev_frame_length] = last_frames
        prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)

        # Create mask
        prev_token_length = (prev_frame_length - 1) // 4 + 1
        _, nframe, height, width = self.model.scheduler.latents.shape
        frames_n = (nframe - 1) * 4 + 1
        prev_frame_len = max((prev_token_length - 1) * 4 + 1, 0)

        prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
        prev_mask[:, prev_frame_len:] = 0
        prev_mask = self._wan_mask_rearrange(prev_mask).unsqueeze(0)

        return {"prev_latents": prev_latents, "prev_mask": prev_mask}

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

    @torch.no_grad()
    def generate_segment(self, inputs: Dict[str, Any], audio_features: torch.Tensor, prev_video: Optional[torch.Tensor] = None, prev_frame_length: int = 5, segment_idx: int = 0) -> torch.Tensor:
        """Generate video segment"""
        # Update inputs with audio features
        inputs["audio_encoder_output"] = audio_features

        # Reset scheduler for non-first segments
        if segment_idx > 0:
            self.model.scheduler.reset()

        # Prepare previous latents - ALWAYS needed, even for first segment
        device = self.model.device
        dtype = torch.bfloat16
        vae_dtype = torch.float
        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        max_num_frames = self.config.target_video_length

        if segment_idx == 0:
            # First segment - create zero frames
            prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
            prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
            prev_len = 0
        else:
            # Subsequent segments - use previous video
            previmg_encoder_output = self.prepare_prev_latents(prev_video, prev_frame_length)
            if previmg_encoder_output:
                prev_latents = previmg_encoder_output["prev_latents"]
                prev_len = (prev_frame_length - 1) // 4 + 1
            else:
                # Fallback to zeros if prepare_prev_latents fails
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = 0

        # Create mask for prev_latents
        _, nframe, height, width = self.model.scheduler.latents.shape
        frames_n = (nframe - 1) * 4 + 1
        prev_frame_len = max((prev_len - 1) * 4 + 1, 0)

        prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
        prev_mask[:, prev_frame_len:] = 0
        prev_mask = self._wan_mask_rearrange(prev_mask).unsqueeze(0)
wangshankun's avatar
wangshankun committed
277

278
279
        # Always set previmg_encoder_output
        inputs["previmg_encoder_output"] = {"prev_latents": prev_latents, "prev_mask": prev_mask}
wangshankun's avatar
wangshankun committed
280

281
282
283
        # Run inference loop
        for step_index in range(self.model.scheduler.infer_steps):
            logger.info(f"==> Segment {segment_idx}, Step {step_index}/{self.model.scheduler.infer_steps}")
wangshankun's avatar
wangshankun committed
284

285
286
            with ProfilingContext4Debug("step_pre"):
                self.model.scheduler.step_pre(step_index=step_index)
wangshankun's avatar
wangshankun committed
287

288
289
            with ProfilingContext4Debug("infer"):
                self.model.infer(inputs)
wangshankun's avatar
wangshankun committed
290

291
292
            with ProfilingContext4Debug("step_post"):
                self.model.scheduler.step_post()
wangshankun's avatar
wangshankun committed
293

294
295
296
297
298
299
300
        # Decode latents
        latents = self.model.scheduler.latents
        generator = self.model.scheduler.generator
        gen_video = self.vae_decoder.decode(latents, generator=generator, config=self.config)
        gen_video = torch.clamp(gen_video, -1, 1).to(torch.float)

        return gen_video
wangshankun's avatar
wangshankun committed
301
302


wangshankun's avatar
wangshankun committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
    resized_frames = resize(cropped_frames, size, InterpolationMode.BICUBIC, antialias=True)
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
wangshankun's avatar
wangshankun committed
345
346
347
348
349
350
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
wangshankun's avatar
wangshankun committed
351
352
353
354
355
356
357
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


358
359
360
361
362
363
364
365
366
@RUNNER_REGISTER("wan2.1_audio")
class WanAudioRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)
        self._is_initialized = False
        self._audio_adapter_pipe = None
        self._audio_processor = None
        self._video_generator = None
        self._audio_preprocess = None
PengGao's avatar
PengGao committed
367

368
369
370
371
    def initialize_once(self):
        """Initialize all models once for multiple runs"""
        if self._is_initialized:
            return
wangshankun's avatar
wangshankun committed
372

373
        logger.info("Initializing models (one-time setup)...")
wangshankun's avatar
wangshankun committed
374

375
376
377
378
        # Initialize audio processor
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
PengGao's avatar
PengGao committed
379

380
381
        # Load audio feature extractor
        self._audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")
wangshankun's avatar
wangshankun committed
382

383
384
        # Initialize scheduler
        self.init_scheduler()
wangshankun's avatar
wangshankun committed
385

386
387
        self._is_initialized = True
        logger.info("Model initialization complete")
wangshankun's avatar
wangshankun committed
388

wangshankun's avatar
wangshankun committed
389
    def init_scheduler(self):
390
        """Initialize consistency model scheduler"""
wangshankun's avatar
wangshankun committed
391
        scheduler = ConsistencyModelScheduler(self.config)
wangshankun's avatar
wangshankun committed
392
393
        self.model.set_scheduler(scheduler)

394
395
396
397
    def load_audio_adapter_lazy(self):
        """Lazy load audio adapter when needed"""
        if self._audio_adapter_pipe is not None:
            return self._audio_adapter_pipe
wangshankun's avatar
wangshankun committed
398

399
        # Audio adapter
wangshankun's avatar
wangshankun committed
400
        audio_adapter_path = self.config["model_path"] + "/audio_adapter.safetensors"
401
        audio_adapter = AudioAdapter.from_transformer(
wangshankun's avatar
wangshankun committed
402
403
404
405
406
407
            self.model,
            audio_feature_dim=1024,
            interval=1,
            time_freq_dim=256,
            projection_transformer_layers=4,
        )
408
        audio_adapter = rank0_load_state_dict_from_path(audio_adapter, audio_adapter_path, strict=False)
wangshankun's avatar
wangshankun committed
409

410
        # Audio encoder
wangshankun's avatar
wangshankun committed
411
        device = self.model.device
wangshankun's avatar
wangshankun committed
412
        audio_encoder_repo = self.config["model_path"] + "/audio_encoder"
413
        self._audio_adapter_pipe = AudioAdapterPipe(audio_adapter, audio_encoder_repo=audio_encoder_repo, dtype=torch.bfloat16, device=device, generator=torch.Generator(device), weight=1.0)
wangshankun's avatar
wangshankun committed
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        return self._audio_adapter_pipe

    def prepare_inputs(self):
        """Prepare inputs for the model"""
        image_encoder_output = None

        if os.path.isfile(self.config.image_path):
            with ProfilingContext("Run Img Encoder"):
                vae_encode_out, clip_encoder_out = self.run_image_encoder(self.config, self.vae_encoder)
                image_encoder_output = {
                    "clip_encoder_out": clip_encoder_out,
                    "vae_encode_out": vae_encode_out,
                }

        with ProfilingContext("Run Text Encoder"):
            img = Image.open(self.config["image_path"]).convert("RGB")
            text_encoder_output = self.run_text_encoder(self.config["prompt"], img)

        self.set_target_shape()

        return {"text_encoder_output": text_encoder_output, "image_encoder_output": image_encoder_output, "audio_adapter_pipe": self.load_audio_adapter_lazy()}

    def run_pipeline(self, save_video=True):
        """Optimized pipeline with modular components"""
        # Ensure models are initialized
        self.initialize_once()

        # Initialize video generator if needed
        if self._video_generator is None:
            self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config)

        # Prepare inputs
        with memory_efficient_inference():
            if self.config["use_prompt_enhancer"]:
                self.config["prompt_enhanced"] = self.post_prompt_enhancer()

            self.inputs = self.prepare_inputs()
            self.model.scheduler.prepare(self.inputs["image_encoder_output"])

        # Process audio
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])
        video_duration = self.config.get("video_duration", 5)
        target_fps = self.config.get("target_fps", 16)
        max_num_frames = self.config.get("target_video_length", 81)

        audio_len = int(audio_array.shape[0] / self._audio_processor.audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, max_num_frames)

        # Generate video segments
        gen_video_list = []
        cut_audio_list = []
        prev_video = None

        for idx, segment in enumerate(audio_segments):
            # Update seed for each segment
            self.config.seed = self.config.seed + idx
            torch.manual_seed(self.config.seed)
            logger.info(f"Processing segment {idx + 1}/{len(audio_segments)}, seed: {self.config.seed}")

            # Process audio features
            audio_features = self._audio_preprocess(segment.audio_array, sampling_rate=self._audio_processor.audio_sr, return_tensors="pt").input_values.squeeze(0).to(self.model.device)

            # Generate video segment
            with memory_efficient_inference():
                gen_video = self._video_generator.generate_segment(
                    self.inputs.copy(),  # Copy to avoid modifying original
                    audio_features,
                    prev_video=prev_video,
                    prev_frame_length=5,
                    segment_idx=idx,
                )

            # Extract relevant frames
            start_frame = 0 if idx == 0 else 5
            start_audio_frame = 0 if idx == 0 else int(6 * self._audio_processor.audio_sr / target_fps)

            if segment.is_last and segment.useful_length:
                end_frame = segment.end_frame - segment.start_frame
                gen_video_list.append(gen_video[:, :, start_frame:end_frame].cpu())
                cut_audio_list.append(segment.audio_array[start_audio_frame : segment.useful_length])
            elif segment.useful_length and expected_frames < max_num_frames:
                gen_video_list.append(gen_video[:, :, start_frame:expected_frames].cpu())
                cut_audio_list.append(segment.audio_array[start_audio_frame : segment.useful_length])
            else:
                gen_video_list.append(gen_video[:, :, start_frame:].cpu())
                cut_audio_list.append(segment.audio_array[start_audio_frame:])

            # Update prev_video for next iteration
            prev_video = gen_video

            # Clean up GPU memory after each segment
            del gen_video
            torch.cuda.empty_cache()

        # Merge results
        with memory_efficient_inference():
            gen_lvideo = torch.cat(gen_video_list, dim=2).float()
            merge_audio = np.concatenate(cut_audio_list, axis=0).astype(np.float32)
            comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            interpolation_target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {target_fps} to {interpolation_target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=target_fps,
                target_fps=interpolation_target_fps,
            )
            target_fps = interpolation_target_fps

        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}

        # Save video if requested
        if save_video and self.config.get("save_video_path", None):
            self._save_video_with_audio(comfyui_images, merge_audio, target_fps)

        # Final cleanup
        self.end_run()

        return comfyui_images, comfyui_audio

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            # Save video
            save_to_video(images, video_path, fps)

            # Save audio
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)

            # Merge video and audio
            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
575
576

    def load_transformer(self):
577
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
578
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
wangshankun's avatar
wangshankun committed
579

580
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
581
582
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
583
584
585
586
587
588
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
589

wangshankun's avatar
wangshankun committed
590
591
        return base_model

wangshankun's avatar
wangshankun committed
592
    def load_image_encoder(self):
593
        """Load image encoder"""
wangshankun's avatar
wangshankun committed
594
595
        clip_model_dir = self.config["model_path"] + "/image_encoder"
        image_encoder = WanVideoIPHandler("CLIPModel", repo_or_path=clip_model_dir, require_grad=False, mode="eval", device=self.init_device, dtype=torch.float16)
wangshankun's avatar
wangshankun committed
596
597
        return image_encoder

wangshankun's avatar
wangshankun committed
598
    def run_image_encoder(self, config, vae_model):
599
600
        """Run image encoder"""

wangshankun's avatar
wangshankun committed
601
602
603
604
605
606
        ref_img = Image.open(config.image_path)
        ref_img = (np.array(ref_img).astype(np.float32) - 127.5) / 127.5
        ref_img = torch.from_numpy(ref_img).to(vae_model.device)
        ref_img = rearrange(ref_img, "H W C -> 1 C H W")
        ref_img = ref_img[:, :3]

607
        # Resize and crop image
wangshankun's avatar
wangshankun committed
608
609
610
        cond_frms, tgt_h, tgt_w = adaptive_resize(ref_img)
        config.tgt_h = tgt_h
        config.tgt_w = tgt_w
wangshankun's avatar
wangshankun committed
611
        clip_encoder_out = self.image_encoder.encode(cond_frms).squeeze(0).to(torch.bfloat16)
wangshankun's avatar
wangshankun committed
612
613
614
615
616
617

        cond_frms = rearrange(cond_frms, "1 C H W -> 1 C 1 H W")
        lat_h, lat_w = tgt_h // 8, tgt_w // 8
        config.lat_h = lat_h
        config.lat_w = lat_w
        vae_encode_out = vae_model.encode(cond_frms.to(torch.float), config)
618
        if isinstance(vae_encode_out, list):
wangshankun's avatar
wangshankun committed
619
620
621
622
623
            vae_encode_out = torch.stack(vae_encode_out, dim=0).to(torch.bfloat16)

        return vae_encode_out, clip_encoder_out

    def set_target_shape(self):
624
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
625
626
627
628
629
630
631
632
633
634
635
636
637
        ret = {}
        num_channels_latents = 16
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
638
            assert False, error_msg
wangshankun's avatar
wangshankun committed
639
640
641

        ret["target_shape"] = self.config.target_shape
        return ret