wan_audio_runner.py 27.6 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4
import os
import subprocess
from dataclasses import dataclass
5
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
6

wangshankun's avatar
wangshankun committed
7
8
import numpy as np
import torch
9
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
10
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
11
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
gushiqiao's avatar
gushiqiao committed
15
16
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
PengGao's avatar
PengGao committed
17
from transformers import AutoFeatureExtractor
18

helloyongyang's avatar
helloyongyang committed
19
20
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter, rank0_load_state_dict_from_path
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
PengGao's avatar
PengGao committed
21
22
23
from lightx2v.models.networks.wan.audio_model import Wan22MoeAudioModel, WanAudioModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.runners.wan.wan_runner import MultiModelStruct, WanRunner
wangshankun's avatar
wangshankun committed
24
from lightx2v.models.schedulers.wan.audio.scheduler import ConsistencyModelScheduler
25
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
26
from lightx2v.utils.envs import *
helloyongyang's avatar
helloyongyang committed
27
from lightx2v.utils.profiler import ProfilingContext
PengGao's avatar
PengGao committed
28
from lightx2v.utils.registry_factory import RUNNER_REGISTER
29
30
from lightx2v.utils.utils import find_torch_model_path, save_to_video, vae_to_comfyui_image

wangshankun's avatar
wangshankun committed
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
47
48
                h_ratio *= 2
            else:
49
                patched_w //= 2
50
                w_ratio *= 2
51
    return patched_h * h_ratio, patched_w * w_ratio
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
80
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


class FramePreprocessor:
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

    def add_noise(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add noise to frames"""
        if self.noise_mean is None or self.noise_std is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
        sigma = rnd_state.normal(loc=self.noise_mean, scale=self.noise_std, size=(bs,))
        sigma = np.exp(sigma)
        sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
        noise = rnd_state.randn(*shape) * sigma
        return frames + noise

    def add_mask(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add mask to frames"""
        if self.mask_rate is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        h, w = frames.shape[-2:]
        mask = rnd_state.rand(h, w) > self.mask_rate
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
        frames_np = frames.cpu().detach().numpy()
        frames_np = self.add_noise(frames_np)
        frames_np = self.add_mask(frames_np)
        return torch.from_numpy(frames_np).to(dtype=frames.dtype, device=frames.device)


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
        return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

            elif res_frame_num > 5 and idx == interval_num - 1:
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


helloyongyang's avatar
helloyongyang committed
237
238
239
240
241
242
243
@RUNNER_REGISTER("wan2.1_audio")
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
        self._audio_processor = None
        self._video_generator = None
        self._audio_preprocess = None
244
        self.frame_preprocessor = FramePreprocessor()
helloyongyang's avatar
helloyongyang committed
245
246
247
248

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
        scheduler = ConsistencyModelScheduler(self.config)
249
        scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        self.model.set_scheduler(scheduler)

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81))

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
        ref_img = Image.open(img_path).convert("RGB")
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

        ref_img, h, w = adaptive_resize(ref_img)
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
        return clip_encoder_out

    def run_vae_encoder(self, img):
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
296
        vae_encoder_out = self.vae_encoder.encode(img.to(torch.float))[0]
helloyongyang's avatar
helloyongyang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        return vae_encoder_out

    @ProfilingContext("Run Encoders")
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
318
319
320

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
321
        device = torch.device("cuda")
322
        dtype = GET_DTYPE()
323
324
325
326
327
        vae_dtype = torch.float

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

328
329
330
331
332
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
            last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
            prev_frames[:, :, :prev_frame_length] = last_frames
333
334

        _, nframe, height, width = self.model.scheduler.latents.shape
335
        if self.config.model_cls == "wan2.2_audio":
336
            prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype)).to(dtype)
337
338
            _, prev_mask = self._wan22_masks_like([self.model.scheduler.latents], zero=True, prev_length=prev_latents.shape[1])
        else:
339
            prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype))[0].to(dtype)
340
341
342
343
344
345

            if prev_video is not None:
                prev_token_length = (prev_frame_length - 1) // 4 + 1
                prev_frame_len = max((prev_token_length - 1) * 4 + 1, 0)
            else:
                prev_frame_len = 0
346

347
348
349
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
            prev_mask[:, prev_frame_len:] = 0
350
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
351

352
353
        if prev_latents.shape[-2:] != (height, width):
            logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
helloyongyang's avatar
fix ci  
helloyongyang committed
354
            prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

        return {"prev_latents": prev_latents, "prev_mask": prev_mask}

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

helloyongyang's avatar
helloyongyang committed
370
371
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
372

helloyongyang's avatar
helloyongyang committed
373
374
    def init_run(self):
        super().init_run()
wangshankun's avatar
wangshankun committed
375

helloyongyang's avatar
helloyongyang committed
376
377
378
        self.gen_video_list = []
        self.cut_audio_list = []
        self.prev_video = None
wangshankun's avatar
wangshankun committed
379

helloyongyang's avatar
helloyongyang committed
380
381
    def init_run_segment(self, segment_idx):
        self.segment_idx = segment_idx
wangshankun's avatar
wangshankun committed
382

helloyongyang's avatar
helloyongyang committed
383
        self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
384

helloyongyang's avatar
helloyongyang committed
385
386
387
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
        logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
388

helloyongyang's avatar
helloyongyang committed
389
390
        audio_features = self.audio_encoder.infer(self.segment.audio_array).to(self.model.device)
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
391

helloyongyang's avatar
helloyongyang committed
392
        self.inputs["audio_encoder_output"] = audio_features
wangshankun's avatar
wangshankun committed
393

helloyongyang's avatar
helloyongyang committed
394
395
396
        # Reset scheduler for non-first segments
        if segment_idx > 0:
            self.model.scheduler.reset()
wangshankun's avatar
wangshankun committed
397

helloyongyang's avatar
helloyongyang committed
398
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=5)
wangshankun's avatar
wangshankun committed
399

helloyongyang's avatar
helloyongyang committed
400
401
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
wangshankun's avatar
wangshankun committed
402

helloyongyang's avatar
helloyongyang committed
403
404
405
        # Extract relevant frames
        start_frame = 0 if self.segment_idx == 0 else 5
        start_audio_frame = 0 if self.segment_idx == 0 else int(6 * self._audio_processor.audio_sr / self.config.get("target_fps", 16))
wangshankun's avatar
wangshankun committed
406

helloyongyang's avatar
helloyongyang committed
407
408
409
410
411
412
413
        if self.segment.is_last and self.segment.useful_length:
            end_frame = self.segment.end_frame - self.segment.start_frame
            self.gen_video_list.append(self.gen_video[:, :, start_frame:end_frame].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
        elif self.segment.useful_length and self.inputs["expected_frames"] < self.config.get("target_video_length", 81):
            self.gen_video_list.append(self.gen_video[:, :, start_frame : self.inputs["expected_frames"]].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame : self.segment.useful_length])
wangshankun's avatar
wangshankun committed
414
        else:
helloyongyang's avatar
helloyongyang committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            self.gen_video_list.append(self.gen_video[:, :, start_frame:].cpu())
            self.cut_audio_list.append(self.segment.audio_array[start_audio_frame:])

        # Update prev_video for next iteration
        self.prev_video = self.gen_video

        # Clean up GPU memory after each segment
        del self.gen_video
        torch.cuda.empty_cache()

    def process_images_after_vae_decoder(self, save_video=True):
        # Merge results
        gen_lvideo = torch.cat(self.gen_video_list, dim=2).float()
        merge_audio = np.concatenate(self.cut_audio_list, axis=0).astype(np.float32)

        comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
441

helloyongyang's avatar
helloyongyang committed
442
443
444
445
446
        if save_video:
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
447

helloyongyang's avatar
helloyongyang committed
448
449
            if not dist.is_initialized() or dist.get_rank() == 0:
                logger.info(f"🎬 Start to save video 🎬")
450

helloyongyang's avatar
helloyongyang committed
451
452
                self._save_video_with_audio(comfyui_images, merge_audio, fps)
                logger.info(f"✅ Video saved successfully to: {self.config.save_video_path} ✅")
453

helloyongyang's avatar
helloyongyang committed
454
455
456
        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
457

helloyongyang's avatar
helloyongyang committed
458
        return {"video": comfyui_images, "audio": comfyui_audio}
459

helloyongyang's avatar
helloyongyang committed
460
461
462
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
463
464
465
466
467
468
469
470
471
472
473
474
475

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            save_to_video(images, video_path, fps)
476
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)  # type: ignore
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
493
494

    def load_transformer(self):
495
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
496
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
497
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
498
499
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
500
501
502
503
504
505
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
506

wangshankun's avatar
wangshankun committed
507
508
        return base_model

helloyongyang's avatar
helloyongyang committed
509
510
511
    def load_audio_encoder(self):
        model = SekoAudioEncoderModel(os.path.join(self.config["model_path"], "audio_encoder"), self.config["audio_sr"])
        return model
512

helloyongyang's avatar
helloyongyang committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    def load_audio_adapter(self):
        audio_adapter = AudioAdapter(
            attention_head_dim=5120 // self.config["num_heads"],
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
        )
        if self.config.get("adapter_quantized", False):
            if self.config.get("adapter_quant_scheme", None) == "fp8":
                model_name = "audio_adapter_fp8.safetensors"
            elif self.config.get("adapter_quant_scheme", None) == "int8":
                model_name = "audio_adapter_int8.safetensors"
            else:
                raise ValueError(f"Unsupported quant_scheme: {self.config.get('adapter_quant_scheme', None)}")
wangshankun's avatar
wangshankun committed
533
        else:
helloyongyang's avatar
helloyongyang committed
534
535
536
            model_name = "audio_adapter.safetensors"
        rank0_load_state_dict_from_path(audio_adapter, os.path.join(self.config["model_path"], model_name), strict=False)
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
537

helloyongyang's avatar
helloyongyang committed
538
539
540
541
542
543
    @ProfilingContext("Load models")
    def load_model(self):
        super().load_model()
        self.audio_encoder = self.load_audio_encoder()
        self.audio_adapter = self.load_audio_adapter()
        self.model.set_audio_adapter(self.audio_adapter)
wangshankun's avatar
wangshankun committed
544
545

    def set_target_shape(self):
546
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
547
548
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
549
550
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
551

wangshankun's avatar
wangshankun committed
552
553
554
555
556
557
558
559
560
561
562
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
563
            assert False, error_msg
wangshankun's avatar
wangshankun committed
564
565
566

        ret["target_shape"] = self.config.target_shape
        return ret
wangshankun's avatar
wangshankun committed
567
568


wangshankun's avatar
wangshankun committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder

613

wangshankun's avatar
wangshankun committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
@RUNNER_REGISTER("wan2.2_moe_audio")
class Wan22MoeAudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_transformer(self):
        # encoder -> high_noise_model -> low_noise_model -> vae -> video_output
        high_noise_model = Wan22MoeAudioModel(
            os.path.join(self.config.model_path, "high_noise_model"),
            self.config,
            self.init_device,
        )
        low_noise_model = Wan22MoeAudioModel(
            os.path.join(self.config.model_path, "low_noise_model"),
            self.config,
            self.init_device,
        )

        if self.config.get("lora_configs") and self.config.lora_configs:
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)

            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                if lora_config.name == "high_noise_model":
                    lora_wrapper = WanLoraWrapper(high_noise_model)
                    lora_name = lora_wrapper.load_lora(lora_path)
                    lora_wrapper.apply_lora(lora_name, strength)
                    logger.info(f"{lora_config.name} Loaded LoRA: {lora_name} with strength: {strength}")

                if lora_config.name == "low_noise_model":
                    lora_wrapper = WanLoraWrapper(low_noise_model)
                    lora_name = lora_wrapper.load_lora(lora_path)
                    lora_wrapper.apply_lora(lora_name, strength)
                    logger.info(f"{lora_config.name} Loaded LoRA: {lora_name} with strength: {strength}")
        # XXX: trick
        self._audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")

        return MultiModelStruct([high_noise_model, low_noise_model], self.config, self.config.boundary)