test_transforms_v2_refactored.py 214 KB
Newer Older
1
import contextlib
2
import decimal
3
import functools
4
import inspect
5
import itertools
Philip Meier's avatar
Philip Meier committed
6
import math
7
import pickle
8
import re
9
from copy import deepcopy
10
from pathlib import Path
11
12
13
14
15
16
17
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
18
19

import torchvision.ops
20
21
22
23
24
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    cache,
    cpu_and_cuda,
25
    freeze_rng_state,
26
    ignore_jit_no_profile_information_warning,
27
    make_bounding_boxes,
28
29
    make_detection_mask,
    make_image,
30
31
    make_image_pil,
    make_image_tensor,
32
33
    make_segmentation_mask,
    make_video,
34
    make_video_tensor,
35
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
36
    set_rng_seed,
37
)
38
39

from torch import nn
40
from torch.testing import assert_close
41
from torch.utils._pytree import tree_flatten, tree_map
42
from torch.utils.data import DataLoader, default_collate
43
from torchvision import tv_tensors
Philip Meier's avatar
Philip Meier committed
44
45

from torchvision.transforms._functional_tensor import _max_value as get_max_value
46
47
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
48
from torchvision.transforms.v2._utils import check_type, is_pure_tensor
49
from torchvision.transforms.v2.functional._geometry import _get_perspective_coeffs
50
from torchvision.transforms.v2.functional._utils import _get_kernel, _register_kernel_internal
51
52


Nicolas Hug's avatar
Nicolas Hug committed
53
54
55
56
57
58
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

76
77
78
79
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
80
81
82
83
84

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
85
def _script(obj):
86
    try:
87
        return torch.jit.script(obj)
88
    except Exception as error:
89
90
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

159
    if kernel not in {F.to_dtype_image, F.to_dtype_video}:
160
        assert output.dtype == input.dtype
161
162
163
164
165
166
167
168
169
170
171
172
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


Nicolas Hug's avatar
Nicolas Hug committed
173
174
def _check_functional_scripted_smoke(functional, input, *args, **kwargs):
    """Checks if the functional can be scripted and the scripted version can be called without error."""
175
    if not isinstance(input, tv_tensors.Image):
176
177
        return

Nicolas Hug's avatar
Nicolas Hug committed
178
    functional_scripted = _script(functional)
179
    with ignore_jit_no_profile_information_warning():
Nicolas Hug's avatar
Nicolas Hug committed
180
        functional_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)
181
182


Nicolas Hug's avatar
Nicolas Hug committed
183
def check_functional(functional, input, *args, check_scripted_smoke=True, **kwargs):
184
    unknown_input = object()
185
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
Nicolas Hug's avatar
Nicolas Hug committed
186
        functional(unknown_input, *args, **kwargs)
187

188
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
Nicolas Hug's avatar
Nicolas Hug committed
189
        output = functional(input, *args, **kwargs)
190

Nicolas Hug's avatar
Nicolas Hug committed
191
        spy.assert_any_call(f"{functional.__module__}.{functional.__name__}")
192

193
194
    assert isinstance(output, type(input))

195
    if isinstance(input, tv_tensors.BoundingBoxes) and functional is not F.convert_bounding_box_format:
196
197
        assert output.format == input.format

198
    if check_scripted_smoke:
Nicolas Hug's avatar
Nicolas Hug committed
199
        _check_functional_scripted_smoke(functional, input, *args, **kwargs)
200
201


Nicolas Hug's avatar
Nicolas Hug committed
202
203
204
def check_functional_kernel_signature_match(functional, *, kernel, input_type):
    """Checks if the signature of the functional matches the kernel signature."""
    functional_params = list(inspect.signature(functional).parameters.values())[1:]
205
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
206

207
208
    if issubclass(input_type, tv_tensors.TVTensor):
        # We filter out metadata that is implicitly passed to the functional through the input tv_tensor, but has to be
209
        # explicitly passed to the kernel.
210
        explicit_metadata = {
211
            tv_tensors.BoundingBoxes: {"format", "canvas_size"},
212
213
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
214

Nicolas Hug's avatar
Nicolas Hug committed
215
216
    functional_params = iter(functional_params)
    for functional_param, kernel_param in zip(functional_params, kernel_params):
217
        try:
Nicolas Hug's avatar
Nicolas Hug committed
218
219
220
221
            # In general, the functional parameters are a superset of the kernel parameters. Thus, we filter out
            # functional parameters that have no kernel equivalent while keeping the order intact.
            while functional_param.name != kernel_param.name:
                functional_param = next(functional_params)
222
223
224
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
Nicolas Hug's avatar
Nicolas Hug committed
225
                f"has no corresponding parameter on the functional `{functional.__name__}`."
226
227
228
229
230
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
Nicolas Hug's avatar
Nicolas Hug committed
231
            functional_param._annotation = kernel_param._annotation = inspect.Parameter.empty
232

Nicolas Hug's avatar
Nicolas Hug committed
233
        assert functional_param == kernel_param
234
235


236
def _check_transform_v1_compatibility(transform, input, *, rtol, atol):
237
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
238
239
    ``get_params`` method that is the v1 equivalent, the output is close to v1, is scriptable, and the scripted version
    can be called without error."""
Philip Meier's avatar
Philip Meier committed
240
    if not (type(input) is torch.Tensor or isinstance(input, PIL.Image.Image)):
241
242
        return

243
244
    v1_transform_cls = transform._v1_transform_cls
    if v1_transform_cls is None:
245
246
        return

247
248
    if hasattr(v1_transform_cls, "get_params"):
        assert type(transform).get_params is v1_transform_cls.get_params
249

250
251
252
253
254
255
256
257
    v1_transform = v1_transform_cls(**transform._extract_params_for_v1_transform())

    with freeze_rng_state():
        output_v2 = transform(input)

    with freeze_rng_state():
        output_v1 = v1_transform(input)

Philip Meier's avatar
Philip Meier committed
258
    assert_close(F.to_image(output_v2), F.to_image(output_v1), rtol=rtol, atol=atol)
259

260
261
262
263
    if isinstance(input, PIL.Image.Image):
        return

    _script(v1_transform)(input)
264
265


266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def _make_transform_sample(transform, *, image_or_video, adapter):
    device = image_or_video.device if isinstance(image_or_video, torch.Tensor) else "cpu"
    size = F.get_size(image_or_video)
    input = dict(
        image_or_video=image_or_video,
        image_tv_tensor=make_image(size, device=device),
        video_tv_tensor=make_video(size, device=device),
        image_pil=make_image_pil(size),
        bounding_boxes_xyxy=make_bounding_boxes(size, format=tv_tensors.BoundingBoxFormat.XYXY, device=device),
        bounding_boxes_xywh=make_bounding_boxes(size, format=tv_tensors.BoundingBoxFormat.XYWH, device=device),
        bounding_boxes_cxcywh=make_bounding_boxes(size, format=tv_tensors.BoundingBoxFormat.CXCYWH, device=device),
        bounding_boxes_degenerate_xyxy=tv_tensors.BoundingBoxes(
            [
                [0, 0, 0, 0],  # no height or width
                [0, 0, 0, 1],  # no height
                [0, 0, 1, 0],  # no width
                [2, 0, 1, 1],  # x1 > x2, y1 < y2
                [0, 2, 1, 1],  # x1 < x2, y1 > y2
                [2, 2, 1, 1],  # x1 > x2, y1 > y2
            ],
            format=tv_tensors.BoundingBoxFormat.XYXY,
            canvas_size=size,
            device=device,
        ),
        bounding_boxes_degenerate_xywh=tv_tensors.BoundingBoxes(
            [
                [0, 0, 0, 0],  # no height or width
                [0, 0, 0, 1],  # no height
                [0, 0, 1, 0],  # no width
                [0, 0, 1, -1],  # negative height
                [0, 0, -1, 1],  # negative width
                [0, 0, -1, -1],  # negative height and width
            ],
            format=tv_tensors.BoundingBoxFormat.XYWH,
            canvas_size=size,
            device=device,
        ),
        bounding_boxes_degenerate_cxcywh=tv_tensors.BoundingBoxes(
            [
                [0, 0, 0, 0],  # no height or width
                [0, 0, 0, 1],  # no height
                [0, 0, 1, 0],  # no width
                [0, 0, 1, -1],  # negative height
                [0, 0, -1, 1],  # negative width
                [0, 0, -1, -1],  # negative height and width
            ],
            format=tv_tensors.BoundingBoxFormat.CXCYWH,
            canvas_size=size,
            device=device,
        ),
        detection_mask=make_detection_mask(size, device=device),
        segmentation_mask=make_segmentation_mask(size, device=device),
        int=0,
        float=0.0,
        bool=True,
        none=None,
        str="str",
        path=Path.cwd(),
        object=object(),
        tensor=torch.empty(5),
        array=np.empty(5),
    )
    if adapter is not None:
        input = adapter(transform, input, device)
    return input


def _check_transform_sample_input_smoke(transform, input, *, adapter):
    # This is a bunch of input / output convention checks, using a big sample with different parts as input.

    if not check_type(input, (is_pure_tensor, PIL.Image.Image, tv_tensors.Image, tv_tensors.Video)):
        return

    sample = _make_transform_sample(
        # adapter might change transform inplace
        transform=transform if adapter is None else deepcopy(transform),
        image_or_video=input,
        adapter=adapter,
    )
    for container_type in [dict, list, tuple]:
        if container_type is dict:
            input = sample
        else:
            input = container_type(sample.values())

        input_flat, input_spec = tree_flatten(input)

        with freeze_rng_state():
            torch.manual_seed(0)
            output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

    # Enforce that the transform does not turn a degenerate bounding box, e.g. marked by RandomIoUCrop (or any other
    # future transform that does this), back into a valid one.
    for degenerate_bounding_boxes in (
        bounding_box
        for name, bounding_box in sample.items()
        if "degenerate" in name and isinstance(bounding_box, tv_tensors.BoundingBoxes)
    ):
        sample = dict(
            boxes=degenerate_bounding_boxes,
            labels=torch.randint(10, (degenerate_bounding_boxes.shape[0],), device=degenerate_bounding_boxes.device),
        )
        assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)


def check_transform(transform, input, check_v1_compatibility=True, check_sample_input=True):
383
384
    pickle.loads(pickle.dumps(transform))

385
386
387
    output = transform(input)
    assert isinstance(output, type(input))

388
    if isinstance(input, tv_tensors.BoundingBoxes) and not isinstance(transform, transforms.ConvertBoundingBoxFormat):
389
390
        assert output.format == input.format

391
392
393
394
395
    if check_sample_input:
        _check_transform_sample_input_smoke(
            transform, input, adapter=check_sample_input if callable(check_sample_input) else None
        )

396
397
    if check_v1_compatibility:
        _check_transform_v1_compatibility(transform, input, **_to_tolerances(check_v1_compatibility))
398

399
400
    return output

401

402
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
403
    def wrapper(input, *args, **kwargs):
404
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
405
406
407
408
409
410
411
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)
440
    value_type = float if dtype.is_floating_point else int
Philip Meier's avatar
Philip Meier committed
441
442

    if isinstance(value, (int, float)):
443
        return value_type(value * max_value)
Philip Meier's avatar
Philip Meier committed
444
    elif isinstance(value, (list, tuple)):
445
        return type(value)(value_type(v * max_value) for v in value)
Philip Meier's avatar
Philip Meier committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


468
469
470
471
472
473
474
475
476
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


477
478
479
480
481
482
def reference_affine_bounding_boxes_helper(bounding_boxes, *, affine_matrix, new_canvas_size=None, clamp=True):
    format = bounding_boxes.format
    canvas_size = new_canvas_size or bounding_boxes.canvas_size

    def affine_bounding_boxes(bounding_boxes):
        dtype = bounding_boxes.dtype
483
        device = bounding_boxes.device
484

485
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
486
        input_xyxy = F.convert_bounding_box_format(
487
            bounding_boxes.to(dtype=torch.float64, device="cpu", copy=True),
488
            old_format=format,
489
            new_format=tv_tensors.BoundingBoxFormat.XYXY,
490
491
            inplace=True,
        )
492
493
        x1, y1, x2, y2 = input_xyxy.squeeze(0).tolist()

494
495
        points = np.array(
            [
496
497
498
499
                [x1, y1, 1.0],
                [x2, y1, 1.0],
                [x1, y2, 1.0],
                [x2, y2, 1.0],
500
501
            ]
        )
502
503
504
        transformed_points = np.matmul(points, affine_matrix.astype(points.dtype).T)

        output_xyxy = torch.Tensor(
505
            [
506
507
508
509
510
                float(np.min(transformed_points[:, 0])),
                float(np.min(transformed_points[:, 1])),
                float(np.max(transformed_points[:, 0])),
                float(np.max(transformed_points[:, 1])),
            ]
511
        )
512
513

        output = F.convert_bounding_box_format(
514
            output_xyxy, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format
515
516
        )

517
518
519
520
521
522
        if clamp:
            # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
            output = F.clamp_bounding_boxes(
                output,
                format=format,
                canvas_size=canvas_size,
523
524
525
526
527
            )
        else:
            # We leave the bounding box as float64 so the caller gets the full precision to perform any additional
            # operation
            dtype = output.dtype
528

529
        return output.to(dtype=dtype, device=device)
530

531
    return tv_tensors.BoundingBoxes(
532
533
534
535
536
537
        torch.cat([affine_bounding_boxes(b) for b in bounding_boxes.reshape(-1, 4).unbind()], dim=0).reshape(
            bounding_boxes.shape
        ),
        format=format,
        canvas_size=canvas_size,
    )
538
539


540
541
542
543
# turns all warnings into errors for this module
pytestmark = pytest.mark.filterwarnings("error")


544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
594
    def test_kernel_image(self, size, interpolation, use_max_size, antialias, dtype, device):
595
596
597
598
599
600
601
602
603
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
604
            F.resize_image,
605
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
606
607
608
609
610
611
612
613
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

614
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
615
616
617
618
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
619
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
620
621
622
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

623
        bounding_boxes = make_bounding_boxes(
624
            format=format,
Philip Meier's avatar
Philip Meier committed
625
            canvas_size=self.INPUT_SIZE,
626
627
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
628
        )
629
        check_kernel(
630
631
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
632
            canvas_size=bounding_boxes.canvas_size,
633
634
635
636
637
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

638
639
640
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
641
642

    def test_kernel_video(self):
643
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
644
645
646

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
647
        "make_input",
648
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
649
    )
Nicolas Hug's avatar
Nicolas Hug committed
650
651
    def test_functional(self, size, make_input):
        check_functional(
652
            F.resize,
653
            make_input(self.INPUT_SIZE),
654
655
656
657
658
659
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
660
        ("kernel", "input_type"),
661
        [
662
663
            (F.resize_image, torch.Tensor),
            (F._resize_image_pil, PIL.Image.Image),
664
665
666
667
            (F.resize_image, tv_tensors.Image),
            (F.resize_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.resize_mask, tv_tensors.Mask),
            (F.resize_video, tv_tensors.Video),
668
669
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
670
671
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
672
673
674
675

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
676
677
678
679
680
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
681
            make_bounding_boxes,
682
683
684
685
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
686
    )
687
    def test_transform(self, size, device, make_input):
688
689
690
691
692
693
        check_transform(
            transforms.Resize(size=size, antialias=True),
            make_input(self.INPUT_SIZE, device=device),
            # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
694
695

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
696
697
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
698
699
700
701
702
703
704
705
706
707
708
709
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

710
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
711
712

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
713
        expected = F.to_image(F.resize(F.to_pil_image(image), size=size, interpolation=interpolation, **max_size_kwarg))
714
715
716
717

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

718
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
719
        old_height, old_width = bounding_boxes.canvas_size
720
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
721
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
722
723
724
        )

        if (old_height, old_width) == (new_height, new_width):
725
            return bounding_boxes
726
727
728
729
730
731
732
733

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
        )

734
        return reference_affine_bounding_boxes_helper(
735
            bounding_boxes,
736
            affine_matrix=affine_matrix,
737
            new_canvas_size=(new_height, new_width),
738
739
        )

740
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
741
742
743
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
744
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
745
746
747
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

748
        bounding_boxes = make_bounding_boxes(format=format, canvas_size=self.INPUT_SIZE)
749

750
751
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
752

753
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
754
755
756
757
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
758
759
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
760
    )
761
762
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
763
764
765
766
767
768
769
770
771
772
773
774
775

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

Nicolas Hug's avatar
Nicolas Hug committed
776
    def test_functional_pil_antialias_warning(self):
777
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
778
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
779
780
781

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
782
783
784
785
786
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
787
            make_bounding_boxes,
788
789
790
791
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
792
    )
793
    def test_max_size_error(self, size, make_input):
794
795
796
797
798
799
800
801
802
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
803
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
804
805
806

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
807
808
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
809
    )
810
811
812
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

813
814
815
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
816
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
817
818
819
820
821
822
823
824
825
826
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
827
        with pytest.raises(ValueError, match="size can either be an integer or a sequence of one or two integers"):
828
829
830
831
832
833
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
834
835
836
837
838
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
839
            make_bounding_boxes,
840
841
842
843
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
844
    )
845
846
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
847

Philip Meier's avatar
Philip Meier committed
848
        output = F.resize(input, size=F.get_size(input), antialias=True)
849
850
851

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
852
        if isinstance(input, tv_tensors.TVTensor):
853
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
854
            # tv_tensors unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
855
856
857
858
859
860
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
861
862
863
864
865
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
866
            make_bounding_boxes,
867
868
869
870
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
871
    )
872
    def test_no_regression_5405(self, make_input):
873
874
875
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

876
        input = make_input(self.INPUT_SIZE)
877

Philip Meier's avatar
Philip Meier committed
878
        size = min(F.get_size(input))
879
880
881
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
882
        assert max(F.get_size(output)) == max_size
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    def _make_image(self, *args, batch_dims=(), memory_format=torch.contiguous_format, **kwargs):
        # torch.channels_last memory_format is only available for 4D tensors, i.e. (B, C, H, W). However, images coming
        # from PIL or our own I/O functions do not have a batch dimensions and are thus 3D, i.e. (C, H, W). Still, the
        # layout of the data in memory is channels last. To emulate this when a 3D input is requested here, we create
        # the image as 4D and create a view with the right shape afterwards. With this the layout in memory is channels
        # last although PyTorch doesn't recognizes it as such.
        emulate_channels_last = memory_format is torch.channels_last and len(batch_dims) != 1

        image = make_image(
            *args,
            batch_dims=(math.prod(batch_dims),) if emulate_channels_last else batch_dims,
            memory_format=memory_format,
            **kwargs,
        )

        if emulate_channels_last:
900
            image = tv_tensors.wrap(image.view(*batch_dims, *image.shape[-3:]), like=image)
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

        return image

    def _check_stride(self, image, *, memory_format):
        C, H, W = F.get_dimensions(image)
        if memory_format is torch.contiguous_format:
            expected_stride = (H * W, W, 1)
        elif memory_format is torch.channels_last:
            expected_stride = (1, W * C, C)
        else:
            raise ValueError(f"Unknown memory_format: {memory_format}")

        assert image.stride() == expected_stride

    # TODO: We can remove this test and related torchvision workaround
    #  once we fixed related pytorch issue: https://github.com/pytorch/pytorch/issues/68430
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("memory_format", [torch.contiguous_format, torch.channels_last])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_memory_format_consistency(self, interpolation, antialias, memory_format, dtype, device):
        size = self.OUTPUT_SIZES[0]

        input = self._make_image(self.INPUT_SIZE, dtype=dtype, device=device, memory_format=memory_format)

        # Smoke test to make sure we aren't starting with wrong assumptions
        self._check_stride(input, memory_format=memory_format)

        output = F.resize_image(input, size=size, interpolation=interpolation, antialias=antialias)

        self._check_stride(output, memory_format=memory_format)

    def test_float16_no_rounding(self):
        # Make sure Resize() doesn't round float16 images
        # Non-regression test for https://github.com/pytorch/vision/issues/7667

        input = make_image_tensor(self.INPUT_SIZE, dtype=torch.float16)
939
        output = F.resize_image(input, size=self.OUTPUT_SIZES[0], antialias=True)
940
941
942
943

        assert output.dtype is torch.float16
        assert (output.round() - output).abs().sum() > 0

944
945
946
947

class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
948
    def test_kernel_image(self, dtype, device):
949
        check_kernel(F.horizontal_flip_image, make_image(dtype=dtype, device=device))
950

951
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
952
953
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
954
    def test_kernel_bounding_boxes(self, format, dtype, device):
955
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
956
        check_kernel(
957
958
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
959
            format=format,
Philip Meier's avatar
Philip Meier committed
960
            canvas_size=bounding_boxes.canvas_size,
961
962
        )

963
964
965
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
966
967

    def test_kernel_video(self):
968
        check_kernel(F.horizontal_flip_video, make_video())
969
970

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
971
        "make_input",
972
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
973
    )
Nicolas Hug's avatar
Nicolas Hug committed
974
975
    def test_functional(self, make_input):
        check_functional(F.horizontal_flip, make_input())
976
977

    @pytest.mark.parametrize(
978
        ("kernel", "input_type"),
979
        [
980
981
            (F.horizontal_flip_image, torch.Tensor),
            (F._horizontal_flip_image_pil, PIL.Image.Image),
982
983
984
985
            (F.horizontal_flip_image, tv_tensors.Image),
            (F.horizontal_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.horizontal_flip_mask, tv_tensors.Mask),
            (F.horizontal_flip_video, tv_tensors.Video),
986
987
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
988
989
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
990
991

    @pytest.mark.parametrize(
992
        "make_input",
993
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
994
995
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
996
    def test_transform(self, make_input, device):
997
        check_transform(transforms.RandomHorizontalFlip(p=1), make_input(device=device))
998
999
1000
1001
1002

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
1003
        image = make_image(dtype=torch.uint8, device="cpu")
1004
1005

        actual = fn(image)
1006
        expected = F.to_image(F.horizontal_flip(F.to_pil_image(image)))
1007
1008
1009

        torch.testing.assert_close(actual, expected)

1010
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
1011
1012
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
1013
                [-1, 0, bounding_boxes.canvas_size[1]],
1014
1015
1016
1017
                [0, 1, 0],
            ],
        )

1018
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
1019

1020
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
1021
1022
1023
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
1024
    def test_bounding_boxes_correctness(self, format, fn):
1025
        bounding_boxes = make_bounding_boxes(format=format)
1026

1027
1028
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
1029
1030
1031
1032

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1033
        "make_input",
1034
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
1035
1036
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1037
1038
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
1039
1040
1041
1042
1043
1044

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
1088
1089
1090
1091
1092
1093
1094
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
1095
1096
1097
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1098
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
1099
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
1100
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
1101
        self._check_kernel(
1102
            F.affine_image,
1103
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1104
1105
1106
1107
1108
1109
1110
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
1111
1112
1113
1114
1115
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
1116
    )
1117
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1118
1119
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1120
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
1121
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1122
        self._check_kernel(
1123
1124
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1125
            format=format,
Philip Meier's avatar
Philip Meier committed
1126
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1127
1128
1129
1130
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

1131
1132
1133
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1134
1135

    def test_kernel_video(self):
1136
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
1137
1138

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1139
        "make_input",
1140
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1141
    )
Nicolas Hug's avatar
Nicolas Hug committed
1142
1143
    def test_functional(self, make_input):
        check_functional(F.affine, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1144
1145

    @pytest.mark.parametrize(
1146
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1147
        [
1148
1149
            (F.affine_image, torch.Tensor),
            (F._affine_image_pil, PIL.Image.Image),
1150
1151
1152
1153
            (F.affine_image, tv_tensors.Image),
            (F.affine_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.affine_mask, tv_tensors.Mask),
            (F.affine_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1154
1155
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1156
1157
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1158
1159

    @pytest.mark.parametrize(
1160
        "make_input",
1161
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1162
1163
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1164
1165
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1166

1167
        check_transform(transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), input)
Philip Meier's avatar
Philip Meier committed
1168
1169
1170
1171
1172
1173
1174
1175
1176

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1177
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1178
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1179
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1180

Philip Meier's avatar
Philip Meier committed
1181
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
1193
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1194
            F.affine(
1195
                F.to_pil_image(image),
Philip Meier's avatar
Philip Meier committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1213
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1214
1215
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1216
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1217

Philip Meier's avatar
Philip Meier committed
1218
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1219
1220
1221
1222
1223
1224
1225
1226
1227

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1228
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
1253
        return true_matrix[:2, :]
Philip Meier's avatar
Philip Meier committed
1254

1255
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1256
        if center is None:
Philip Meier's avatar
Philip Meier committed
1257
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1258

1259
        return reference_affine_bounding_boxes_helper(
1260
            bounding_boxes,
1261
1262
1263
            affine_matrix=self._compute_affine_matrix(
                angle=angle, translate=translate, scale=scale, shear=shear, center=center
            ),
Philip Meier's avatar
Philip Meier committed
1264
1265
        )

1266
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1267
1268
1269
1270
1271
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1272
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
1273
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1274
1275

        actual = F.affine(
1276
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1277
1278
1279
1280
1281
1282
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1283
1284
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

1294
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1295
1296
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1297
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
1298
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1299
1300
1301
1302

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1303
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1304
1305

        torch.manual_seed(seed)
1306
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1307

1308
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1309
1310
1311
1312
1313
1314
1315
1316
1317

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1318
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1319
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1393
1394
1395
1396
1397


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1398
    def test_kernel_image(self, dtype, device):
1399
        check_kernel(F.vertical_flip_image, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1400

1401
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1402
1403
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1404
    def test_kernel_bounding_boxes(self, format, dtype, device):
1405
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1406
        check_kernel(
1407
1408
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1409
            format=format,
Philip Meier's avatar
Philip Meier committed
1410
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1411
1412
        )

1413
1414
1415
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1416
1417

    def test_kernel_video(self):
1418
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1419
1420

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1421
        "make_input",
1422
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1423
    )
Nicolas Hug's avatar
Nicolas Hug committed
1424
1425
    def test_functional(self, make_input):
        check_functional(F.vertical_flip, make_input())
Philip Meier's avatar
Philip Meier committed
1426
1427

    @pytest.mark.parametrize(
1428
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1429
        [
1430
1431
            (F.vertical_flip_image, torch.Tensor),
            (F._vertical_flip_image_pil, PIL.Image.Image),
1432
1433
1434
1435
            (F.vertical_flip_image, tv_tensors.Image),
            (F.vertical_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.vertical_flip_mask, tv_tensors.Mask),
            (F.vertical_flip_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1436
1437
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1438
1439
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1440
1441

    @pytest.mark.parametrize(
1442
        "make_input",
1443
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1444
1445
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1446
    def test_transform(self, make_input, device):
1447
        check_transform(transforms.RandomVerticalFlip(p=1), make_input(device=device))
Philip Meier's avatar
Philip Meier committed
1448
1449
1450

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1451
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1452
1453

        actual = fn(image)
1454
        expected = F.to_image(F.vertical_flip(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1455
1456
1457

        torch.testing.assert_close(actual, expected)

1458
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1459
1460
1461
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1462
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1463
1464
1465
            ],
        )

1466
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
Philip Meier's avatar
Philip Meier committed
1467

1468
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1469
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1470
    def test_bounding_boxes_correctness(self, format, fn):
1471
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1472

1473
1474
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1475
1476
1477
1478

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1479
        "make_input",
1480
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1481
1482
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1483
1484
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1485
1486
1487
1488
1489
1490

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1521
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
1522
1523
1524
1525
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
1526
            F.rotate_image,
1527
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
1537
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1538
1539
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1540
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1541
1542
1543
1544
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1545
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1546
1547

        check_kernel(
1548
1549
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1550
            format=format,
Philip Meier's avatar
Philip Meier committed
1551
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1552
1553
1554
            **kwargs,
        )

1555
1556
1557
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1558
1559

    def test_kernel_video(self):
1560
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1561
1562

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1563
        "make_input",
1564
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1565
    )
Nicolas Hug's avatar
Nicolas Hug committed
1566
1567
    def test_functional(self, make_input):
        check_functional(F.rotate, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1568
1569

    @pytest.mark.parametrize(
1570
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1571
        [
1572
1573
            (F.rotate_image, torch.Tensor),
            (F._rotate_image_pil, PIL.Image.Image),
1574
1575
1576
1577
            (F.rotate_image, tv_tensors.Image),
            (F.rotate_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.rotate_mask, tv_tensors.Mask),
            (F.rotate_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1578
1579
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1580
1581
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1582
1583

    @pytest.mark.parametrize(
1584
        "make_input",
1585
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1586
1587
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1588
1589
    def test_transform(self, make_input, device):
        check_transform(
1590
            transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), make_input(device=device)
1591
        )
Philip Meier's avatar
Philip Meier committed
1592
1593
1594
1595
1596
1597
1598
1599
1600

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1601
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1602
1603
1604
1605

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
1606
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1607
            F.rotate(
1608
                F.to_pil_image(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
Philip Meier's avatar
Philip Meier committed
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1623
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1639
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1640
1641
1642
1643

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1644
1645
1646
1647
1648
    def _compute_output_canvas_size(self, *, expand, canvas_size, affine_matrix):
        if not expand:
            return canvas_size, (0.0, 0.0)

        input_height, input_width = canvas_size
Philip Meier's avatar
Philip Meier committed
1649

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
        input_image_frame = np.array(
            [
                [0.0, 0.0, 1.0],
                [0.0, input_height, 1.0],
                [input_width, input_height, 1.0],
                [input_width, 0.0, 1.0],
            ],
            dtype=np.float64,
        )
        output_image_frame = np.matmul(input_image_frame, affine_matrix.astype(input_image_frame.dtype).T)

        recenter_x = float(np.min(output_image_frame[:, 0]))
        recenter_y = float(np.min(output_image_frame[:, 1]))

        output_width = int(np.max(output_image_frame[:, 0]) - recenter_x)
        output_height = int(np.max(output_image_frame[:, 1]) - recenter_y)

        return (output_height, output_width), (recenter_x, recenter_y)

    def _recenter_bounding_boxes_after_expand(self, bounding_boxes, *, recenter_xy):
        x, y = recenter_xy
1671
        if bounding_boxes.format is tv_tensors.BoundingBoxFormat.XYXY:
1672
1673
1674
            translate = [x, y, x, y]
        else:
            translate = [x, y, 0.0, 0.0]
1675
        return tv_tensors.wrap(
1676
1677
1678
1679
            (bounding_boxes.to(torch.float64) - torch.tensor(translate)).to(bounding_boxes.dtype), like=bounding_boxes
        )

    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1680
        if center is None:
Philip Meier's avatar
Philip Meier committed
1681
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
1682
        cx, cy = center
Philip Meier's avatar
Philip Meier committed
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
        )

1693
1694
1695
1696
1697
        new_canvas_size, recenter_xy = self._compute_output_canvas_size(
            expand=expand, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix
        )

        output = reference_affine_bounding_boxes_helper(
1698
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1699
            affine_matrix=affine_matrix,
1700
1701
            new_canvas_size=new_canvas_size,
            clamp=False,
Philip Meier's avatar
Philip Meier committed
1702
1703
        )

1704
1705
1706
        return F.clamp_bounding_boxes(self._recenter_bounding_boxes_after_expand(output, recenter_xy=recenter_xy)).to(
            bounding_boxes
        )
Philip Meier's avatar
Philip Meier committed
1707

1708
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1709
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
1710
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1711
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1712
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
1713
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1714

1715
1716
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1717
1718

        torch.testing.assert_close(actual, expected)
1719
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1720

1721
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
1722
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1723
1724
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1725
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
1726
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1727
1728
1729
1730

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1731
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1732
1733

        torch.manual_seed(seed)
1734
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1735

1736
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1737
1738

        torch.testing.assert_close(actual, expected)
1739
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1776
1777


1778
class TestContainerTransforms:
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
1793
1794
1795
1796
        "transform_cls", [transforms.Compose, functools.partial(transforms.RandomApply, p=1), transforms.RandomOrder]
    )
    @pytest.mark.parametrize(
        "wrapped_transform_clss",
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
1811
1812
1813
    def test_packed_unpacked(self, transform_cls, wrapped_transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in wrapped_transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in wrapped_transform_clss)
1814
1815
        assert not (needs_packed_inputs and needs_unpacked_inputs)

1816
        transform = transform_cls([cls() for cls in wrapped_transform_clss])
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1840

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
    def test_compose(self):
        transform = transforms.Compose(
            [
                transforms.RandomHorizontalFlip(p=1),
                transforms.RandomVerticalFlip(p=1),
            ]
        )

        input = make_image()

        actual = check_transform(transform, input)
        expected = F.vertical_flip(F.horizontal_flip(input))

        assert_equal(actual, expected)

    @pytest.mark.parametrize("p", [0.0, 1.0])
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
        transform = transforms.RandomApply(
            sequence_type(
                [
                    transforms.RandomHorizontalFlip(p=1),
                    transforms.RandomVerticalFlip(p=1),
                ]
            ),
            p=p,
        )

        # This needs to be a pure tensor (or a PIL image), because otherwise check_transforms skips the v1 compatibility
        # check
        input = make_image_tensor()
        output = check_transform(transform, input, check_v1_compatibility=issubclass(sequence_type, nn.ModuleList))

        if p == 1:
            assert_equal(output, F.vertical_flip(F.horizontal_flip(input)))
        else:
            assert output is input

    @pytest.mark.parametrize("p", [(0, 1), (1, 0)])
    def test_random_choice(self, p):
        transform = transforms.RandomChoice(
            [
                transforms.RandomHorizontalFlip(p=1),
                transforms.RandomVerticalFlip(p=1),
            ],
            p=p,
        )

        input = make_image()
        output = check_transform(transform, input)

        p_horz, p_vert = p
        if p_horz:
            assert_equal(output, F.horizontal_flip(input))
        else:
            assert_equal(output, F.vertical_flip(input))

    def test_random_order(self):
        transform = transforms.Compose(
            [
                transforms.RandomHorizontalFlip(p=1),
                transforms.RandomVerticalFlip(p=1),
            ]
        )

        input = make_image()

        actual = check_transform(transform, input)
        # We can't really check whether the transforms are actually applied in random order. However, horizontal and
        # vertical flip are commutative. Meaning, even under the assumption that the transform applies them in random
        # order, we can use a fixed order to compute the expected value.
        expected = F.vertical_flip(F.horizontal_flip(input))

        assert_equal(actual, expected)

    def test_errors(self):
        for cls in [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder]:
            with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
                cls(lambda x: x)

        with pytest.raises(ValueError, match="at least one transform"):
            transforms.Compose([])

        for p in [-1, 2]:
            with pytest.raises(ValueError, match=re.escape("value in the interval [0.0, 1.0]")):
                transforms.RandomApply([lambda x: x], p=p)

        for transforms_, p in [([lambda x: x], []), ([], [1.0])]:
            with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
                transforms.RandomChoice(transforms_, p=p)

1932
1933
1934
1935
1936

class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1937
1938
            (F.to_dtype_image, make_image_tensor),
            (F.to_dtype_image, make_image),
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

Philip Meier's avatar
Philip Meier committed
1954
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
1955
1956
1957
1958
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
Nicolas Hug's avatar
Nicolas Hug committed
1959
1960
    def test_functional(self, make_input, input_dtype, output_dtype, device, scale):
        check_functional(
1961
1962
1963
1964
1965
1966
1967
1968
            F.to_dtype,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
1969
        [make_image_tensor, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
1980
        check_transform(transforms.ToDtype(dtype=output_dtype, scale=scale), input, check_sample_input=not as_dict)
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
2044
            "bbox": make_bounding_boxes(canvas_size=(H, W), dtype=bbox_dtype),
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
2072
        out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.int64, "others": None})(sample)
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
2085
            dtype={type(sample["inpt"]): torch.float32, tv_tensors.Mask: torch.int64, "others": None}, scale=True
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
2099
            out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.float32})(sample)
2100
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
2101
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, tv_tensors.Image: torch.float32})
2102
2103
2104
2105
2106
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
2107
2108


2109
2110
2111
2112
2113
2114
2115
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2116
            (F.adjust_brightness_image, make_image),
2117
2118
2119
2120
2121
2122
2123
2124
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

Philip Meier's avatar
Philip Meier committed
2125
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
2126
2127
    def test_functional(self, make_input):
        check_functional(F.adjust_brightness, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)
2128
2129
2130
2131

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
2132
2133
            (F.adjust_brightness_image, torch.Tensor),
            (F._adjust_brightness_image_pil, PIL.Image.Image),
2134
2135
            (F.adjust_brightness_image, tv_tensors.Image),
            (F.adjust_brightness_video, tv_tensors.Video),
2136
2137
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2138
2139
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)
2140
2141
2142
2143
2144
2145

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
2146
        expected = F.to_image(F.adjust_brightness(F.to_pil_image(image), brightness_factor=brightness_factor))
2147
2148
2149
2150

        torch.testing.assert_close(actual, expected)


2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
2166
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2167
2168
2169
2170
2171
2172
2173
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

2174
        cutmix_mixup = T(num_classes=num_classes)
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
2216
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
2228
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
2239
2240
            tv_tensors.Mask(torch.rand(12, 12)),
            tv_tensors.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
2288
2289
2290
2291
2292
2293


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2294
2295
2296
            (F.get_dimensions_image, make_image_tensor),
            (F._get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image, make_image),
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2311
2312
2313
            (F.get_num_channels_image, make_image_tensor),
            (F._get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image, make_image),
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2327
2328
2329
            (F.get_size_image, make_image_tensor),
            (F._get_size_image_pil, make_image_pil),
            (F.get_size_image, make_image),
2330
            (F.get_size_bounding_boxes, make_bounding_boxes),
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
Nicolas Hug's avatar
Nicolas Hug committed
2358
        ("functional", "make_input"),
2359
        [
2360
            (F.get_dimensions, make_bounding_boxes),
2361
2362
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
2363
            (F.get_num_channels, make_bounding_boxes),
2364
2365
2366
2367
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
2368
            (F.get_num_frames, make_bounding_boxes),
2369
2370
2371
2372
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2373
    def test_unsupported_types(self, functional, make_input):
2374
2375
2376
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
Nicolas Hug's avatar
Nicolas Hug committed
2377
            functional(input)
2378
2379
2380


class TestRegisterKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2381
2382
    @pytest.mark.parametrize("functional", (F.resize, "resize"))
    def test_register_kernel(self, functional):
2383
        class CustomTVTensor(tv_tensors.TVTensor):
2384
2385
2386
2387
            pass

        kernel_was_called = False

2388
        @F.register_kernel(functional, CustomTVTensor)
2389
2390
2391
2392
2393
2394
2395
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

2396
        my_dp = CustomTVTensor(torch.rand(3, 10, 10))
2397
2398
2399
2400
2401
2402
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
2403
        t(tv_tensors.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)
2404

2405
    def test_errors(self):
Nicolas Hug's avatar
Nicolas Hug committed
2406
        with pytest.raises(ValueError, match="Could not find functional with name"):
2407
            F.register_kernel("bad_name", tv_tensors.Image)
2408

Nicolas Hug's avatar
Nicolas Hug committed
2409
        with pytest.raises(ValueError, match="Kernels can only be registered on functionals"):
2410
            F.register_kernel(tv_tensors.Image, F.resize)
2411
2412
2413
2414

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

2415
2416
        with pytest.raises(ValueError, match="cannot be registered for the builtin tv_tensor classes"):
            F.register_kernel(F.resize, tv_tensors.Image)(F.resize_image)
2417

2418
        class CustomTVTensor(tv_tensors.TVTensor):
2419
2420
            pass

2421
        def resize_custom_tv_tensor():
2422
2423
            pass

2424
        F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2425
2426

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
2427
            F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2428

2429
2430

class TestGetKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2431
    # We are using F.resize as functional and the kernels below as proxy. Any other functional / kernels combination
2432
2433
    # would also be fine
    KERNELS = {
2434
2435
        torch.Tensor: F.resize_image,
        PIL.Image.Image: F._resize_image_pil,
2436
2437
2438
2439
        tv_tensors.Image: F.resize_image,
        tv_tensors.BoundingBoxes: F.resize_bounding_boxes,
        tv_tensors.Mask: F.resize_mask,
        tv_tensors.Video: F.resize_video,
2440
2441
    }

2442
2443
2444
2445
    @pytest.mark.parametrize("input_type", [str, int, object])
    def test_unsupported_types(self, input_type):
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, input_type)
2446
2447
2448

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2449
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2450
2451
2452
2453
2454
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
2455
            _register_kernel_internal(resize_with_pure_kernels, input_type, tv_tensor_wrapper=False)(kernel)
2456
2457
2458

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

2459
    def test_builtin_tv_tensor_subclass(self):
2460
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2461
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2462
        # here, register the kernels without wrapper, and check if subclasses of our builtin tv_tensors get dispatched
2463
2464
2465
2466
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

2467
        class MyImage(tv_tensors.Image):
2468
2469
            pass

2470
        class MyBoundingBoxes(tv_tensors.BoundingBoxes):
2471
2472
            pass

2473
        class MyMask(tv_tensors.Mask):
2474
2475
            pass

2476
        class MyVideo(tv_tensors.Video):
2477
2478
            pass

2479
        for custom_tv_tensor_subclass in [
2480
2481
2482
2483
2484
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
2485
2486
2487
2488
            builtin_tv_tensor_class = custom_tv_tensor_subclass.__mro__[1]
            builtin_tv_tensor_kernel = self.KERNELS[builtin_tv_tensor_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_tv_tensor_class, tv_tensor_wrapper=False)(
                builtin_tv_tensor_kernel
2489
2490
            )

2491
            assert _get_kernel(resize_with_pure_kernels, custom_tv_tensor_subclass) is builtin_tv_tensor_kernel
2492

2493
2494
    def test_tv_tensor_subclass(self):
        class MyTVTensor(tv_tensors.TVTensor):
2495
2496
            pass

2497
        with pytest.raises(TypeError, match="supports inputs of type"):
2498
            _get_kernel(F.resize, MyTVTensor)
2499

2500
        def resize_my_tv_tensor():
2501
2502
            pass

2503
        _register_kernel_internal(F.resize, MyTVTensor, tv_tensor_wrapper=False)(resize_my_tv_tensor)
2504

2505
        assert _get_kernel(F.resize, MyTVTensor) is resize_my_tv_tensor
2506

2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
    def test_pil_image_subclass(self):
        opened_image = PIL.Image.open(Path(__file__).parent / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")
        loaded_image = opened_image.convert("RGB")

        # check the assumptions
        assert isinstance(opened_image, PIL.Image.Image)
        assert type(opened_image) is not PIL.Image.Image

        assert type(loaded_image) is PIL.Image.Image

        size = [17, 11]
        for image in [opened_image, loaded_image]:
            kernel = _get_kernel(F.resize, type(image))

            output = kernel(image, size=size)

            assert F.get_size(output) == size

2525
2526
2527
2528
2529
2530
2531

class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2532
            (F.permute_channels_image, make_image_tensor),
2533
2534
            # FIXME
            # check_kernel does not support PIL kernel, but it should
2535
            (F.permute_channels_image, make_image),
2536
2537
2538
2539
2540
2541
2542
2543
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

Nicolas Hug's avatar
Nicolas Hug committed
2544
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
2545
2546
    def test_functional(self, make_input):
        check_functional(F.permute_channels, make_input(), permutation=self._DEFAULT_PERMUTATION)
2547
2548
2549
2550

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
2551
2552
            (F.permute_channels_image, torch.Tensor),
            (F._permute_channels_image_pil, PIL.Image.Image),
2553
2554
            (F.permute_channels_image, tv_tensors.Image),
            (F.permute_channels_video, tv_tensors.Video),
2555
2556
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2557
2558
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)
2559
2560
2561
2562

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
2563
        return tv_tensors.Image(torch.concat(permuted_channel_images, dim=-3))
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)
Philip Meier's avatar
Philip Meier committed
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589


class TestElastic:
    def _make_displacement(self, inpt):
        return torch.rand(
            1,
            *F.get_size(inpt),
            2,
            dtype=torch.float32,
            device=inpt.device if isinstance(inpt, torch.Tensor) else "cpu",
        )

    @param_value_parametrization(
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
2590
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8, torch.float16])
Philip Meier's avatar
Philip Meier committed
2591
    @pytest.mark.parametrize("device", cpu_and_cuda())
2592
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
2593
2594
2595
        image = make_image_tensor(dtype=dtype, device=device)

        check_kernel(
Philip Meier's avatar
Philip Meier committed
2596
            F.elastic_image,
Philip Meier's avatar
Philip Meier committed
2597
2598
2599
2600
            image,
            displacement=self._make_displacement(image),
            **{param: value},
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
2601
            check_cuda_vs_cpu=dtype is not torch.float16,
Philip Meier's avatar
Philip Meier committed
2602
2603
        )

2604
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
2605
2606
2607
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_boxes(self, format, dtype, device):
2608
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628

        check_kernel(
            F.elastic_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            displacement=self._make_displacement(bounding_boxes),
        )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        mask = make_mask()
        check_kernel(F.elastic_mask, mask, displacement=self._make_displacement(mask))

    def test_kernel_video(self):
        video = make_video()
        check_kernel(F.elastic_video, video, displacement=self._make_displacement(video))

    @pytest.mark.parametrize(
        "make_input",
2629
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2630
2631
2632
2633
2634
2635
2636
2637
    )
    def test_functional(self, make_input):
        input = make_input()
        check_functional(F.elastic, input, displacement=self._make_displacement(input))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
Philip Meier's avatar
Philip Meier committed
2638
2639
            (F.elastic_image, torch.Tensor),
            (F._elastic_image_pil, PIL.Image.Image),
2640
2641
2642
2643
            (F.elastic_image, tv_tensors.Image),
            (F.elastic_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.elastic_mask, tv_tensors.Mask),
            (F.elastic_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
2644
2645
2646
2647
2648
2649
2650
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.elastic, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
2651
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
    )
    def test_displacement_error(self, make_input):
        input = make_input()

        with pytest.raises(TypeError, match="displacement should be a Tensor"):
            F.elastic(input, displacement=None)

        with pytest.raises(ValueError, match="displacement shape should be"):
            F.elastic(input, displacement=torch.rand(F.get_size(input)))

    @pytest.mark.parametrize(
        "make_input",
2664
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2665
2666
2667
2668
2669
    )
    # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
    @pytest.mark.parametrize("size", [(163, 163), (72, 333), (313, 95)])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, size, device):
2670
2671
2672
2673
2674
2675
        check_transform(
            transforms.ElasticTransform(),
            make_input(size, device=device),
            # We updated gaussian blur kernel generation with a faster and numerically more stable version
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685


class TestToPureTensor:
    def test_correctness(self):
        input = {
            "img": make_image(),
            "img_tensor": make_image_tensor(),
            "img_pil": make_image_pil(),
            "mask": make_detection_mask(),
            "video": make_video(),
2686
            "bbox": make_bounding_boxes(),
2687
2688
2689
2690
2691
2692
            "str": "str",
        }

        out = transforms.ToPureTensor()(input)

        for input_value, out_value in zip(input.values(), out.values()):
2693
2694
            if isinstance(input_value, tv_tensors.TVTensor):
                assert isinstance(out_value, torch.Tensor) and not isinstance(out_value, tv_tensors.TVTensor)
2695
2696
            else:
                assert isinstance(out_value, type(input_value))
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781


class TestCrop:
    INPUT_SIZE = (21, 11)

    CORRECTNESS_CROP_KWARGS = [
        # center
        dict(top=5, left=5, height=10, width=5),
        # larger than input, i.e. pad
        dict(top=-5, left=-5, height=30, width=20),
        # sides: left, right, top, bottom
        dict(top=-5, left=-5, height=30, width=10),
        dict(top=-5, left=5, height=30, width=10),
        dict(top=-5, left=-5, height=20, width=20),
        dict(top=5, left=-5, height=20, width=20),
        # corners: top-left, top-right, bottom-left, bottom-right
        dict(top=-5, left=-5, height=20, width=10),
        dict(top=-5, left=5, height=20, width=10),
        dict(top=5, left=-5, height=20, width=10),
        dict(top=5, left=5, height=20, width=10),
    ]
    MINIMAL_CROP_KWARGS = CORRECTNESS_CROP_KWARGS[0]

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, kwargs, dtype, device):
        check_kernel(F.crop_image, make_image(self.INPUT_SIZE, dtype=dtype, device=device), **kwargs)

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, kwargs, format, dtype, device):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)
        check_kernel(F.crop_bounding_boxes, bounding_boxes, format=format, **kwargs)

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.crop_mask, make_mask(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    def test_kernel_video(self):
        check_kernel(F.crop_video, make_video(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.crop, make_input(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.crop_image, torch.Tensor),
            (F._crop_image_pil, PIL.Image.Image),
            (F.crop_image, tv_tensors.Image),
            (F.crop_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.crop_mask, tv_tensors.Mask),
            (F.crop_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.crop, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    def test_functional_image_correctness(self, kwargs):
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8, device="cpu")

        actual = F.crop(image, **kwargs)
        expected = F.to_image(F.crop(F.to_pil_image(image), **kwargs))

        assert_equal(actual, expected)

    @param_value_parametrization(
        size=[(10, 5), (25, 15), (25, 5), (10, 15)],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, param, value, make_input):
        input = make_input(self.INPUT_SIZE)

2782
        check_sample_input = True
2783
        if param == "fill":
2784
2785
2786
2787
2788
            if isinstance(value, (tuple, list)):
                if isinstance(input, tv_tensors.Mask):
                    pytest.skip("F.pad_mask doesn't support non-scalar fill.")
                else:
                    check_sample_input = False
2789

2790
2791
2792
2793
2794
2795
2796
2797
2798
            kwargs = dict(
                # 1. size is required
                # 2. the fill parameter only has an affect if we need padding
                size=[s + 4 for s in self.INPUT_SIZE],
                fill=adapt_fill(value, dtype=input.dtype if isinstance(input, torch.Tensor) else torch.uint8),
            )
        else:
            kwargs = {param: value}

2799
2800
2801
2802
        check_transform(
            transforms.RandomCrop(**kwargs, pad_if_needed=True),
            input,
            check_v1_compatibility=param != "fill" or isinstance(value, (int, float)),
2803
            check_sample_input=check_sample_input,
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
        )

    @pytest.mark.parametrize("padding", [1, (1, 1), (1, 1, 1, 1)])
    def test_transform_padding(self, padding):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s + 2 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, padding=padding)

        output = transform(inpt)

        assert F.get_size(output) == output_size

    @pytest.mark.parametrize("padding", [None, 1, (1, 1), (1, 1, 1, 1)])
    def test_transform_insufficient_padding(self, padding):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s + 3 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, padding=padding)

        with pytest.raises(ValueError, match="larger than (padded )?input image size"):
            transform(inpt)

    def test_transform_pad_if_needed(self):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s * 2 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, pad_if_needed=True)

        output = transform(inpt)

        assert F.get_size(output) == output_size

    @param_value_parametrization(
        size=[(10, 5), (25, 15), (25, 5), (10, 15)],
        fill=CORRECTNESS_FILLS,
        padding_mode=["constant", "edge", "reflect", "symmetric"],
    )
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, param, value, seed):
        kwargs = {param: value}
        if param != "size":
            # 1. size is required
            # 2. the fill / padding_mode parameters only have an affect if we need padding
            kwargs["size"] = [s + 4 for s in self.INPUT_SIZE]
        if param == "fill":
            kwargs["fill"] = adapt_fill(kwargs["fill"], dtype=torch.uint8)

        transform = transforms.RandomCrop(pad_if_needed=True, **kwargs)

        image = make_image(self.INPUT_SIZE)

        with freeze_rng_state():
            torch.manual_seed(seed)
            actual = transform(image)

            torch.manual_seed(seed)
            expected = F.to_image(transform(F.to_pil_image(image)))

        assert_equal(actual, expected)

    def _reference_crop_bounding_boxes(self, bounding_boxes, *, top, left, height, width):
        affine_matrix = np.array(
            [
                [1, 0, -left],
                [0, 1, -top],
            ],
        )
        return reference_affine_bounding_boxes_helper(
            bounding_boxes, affine_matrix=affine_matrix, new_canvas_size=(height, width)
        )

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_bounding_box_correctness(self, kwargs, format, dtype, device):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)

        actual = F.crop(bounding_boxes, **kwargs)
        expected = self._reference_crop_bounding_boxes(bounding_boxes, **kwargs)

        assert_equal(actual, expected, atol=1, rtol=0)
        assert_equal(F.get_size(actual), F.get_size(expected))

    @pytest.mark.parametrize("output_size", [(17, 11), (11, 17), (11, 11)])
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_boxes_correctness(self, output_size, format, dtype, device, seed):
        input_size = [s * 2 for s in output_size]
        bounding_boxes = make_bounding_boxes(input_size, format=format, dtype=dtype, device=device)

        transform = transforms.RandomCrop(output_size)

        with freeze_rng_state():
            torch.manual_seed(seed)
            params = transform._get_params([bounding_boxes])
            assert not params.pop("needs_pad")
            del params["padding"]
            assert params.pop("needs_crop")

            torch.manual_seed(seed)
            actual = transform(bounding_boxes)

        expected = self._reference_crop_bounding_boxes(bounding_boxes, **params)

        assert_equal(actual, expected)
        assert_equal(F.get_size(actual), F.get_size(expected))

    def test_errors(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987


class TestErase:
    INPUT_SIZE = (17, 11)
    FUNCTIONAL_KWARGS = dict(
        zip("ijhwv", [2, 2, 10, 8, torch.tensor(0.0, dtype=torch.float32, device="cpu").reshape(-1, 1, 1)])
    )

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.erase_image, make_image(self.INPUT_SIZE, dtype=dtype, device=device), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_inplace(self, dtype, device):
        input = make_image(self.INPUT_SIZE, dtype=dtype, device=device)
        input_version = input._version

        output_out_of_place = F.erase_image(input, **self.FUNCTIONAL_KWARGS)
        assert output_out_of_place.data_ptr() != input.data_ptr()
        assert output_out_of_place is not input

        output_inplace = F.erase_image(input, **self.FUNCTIONAL_KWARGS, inplace=True)
        assert output_inplace.data_ptr() == input.data_ptr()
        assert output_inplace._version > input_version
        assert output_inplace is input

        assert_equal(output_inplace, output_out_of_place)

    def test_kernel_video(self):
        check_kernel(F.erase_video, make_video(self.INPUT_SIZE), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.erase, make_input(), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.erase_image, torch.Tensor),
            (F._erase_image_pil, PIL.Image.Image),
            (F.erase_image, tv_tensors.Image),
            (F.erase_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.erase, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, device):
Philip Meier's avatar
Philip Meier committed
2988
        input = make_input(device=device)
2989
2990
2991
2992
2993
2994
2995

        with pytest.warns(UserWarning, match="currently passing through inputs of type"):
            check_transform(
                transforms.RandomErasing(p=1),
                input,
                check_v1_compatibility=not isinstance(input, PIL.Image.Image),
            )
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066

    def _reference_erase_image(self, image, *, i, j, h, w, v):
        mask = torch.zeros_like(image, dtype=torch.bool)
        mask[..., i : i + h, j : j + w] = True

        # The broadcasting and type casting logic is handled automagically in the kernel through indexing
        value = torch.broadcast_to(v, (*image.shape[:-2], h, w)).to(image)

        erased_image = torch.empty_like(image)
        erased_image[mask] = value.flatten()
        erased_image[~mask] = image[~mask]

        return erased_image

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_image_correctness(self, dtype, device):
        image = make_image(dtype=dtype, device=device)

        actual = F.erase(image, **self.FUNCTIONAL_KWARGS)
        expected = self._reference_erase_image(image, **self.FUNCTIONAL_KWARGS)

        assert_equal(actual, expected)

    @param_value_parametrization(
        scale=[(0.1, 0.2), [0.0, 1.0]],
        ratio=[(0.3, 0.7), [0.1, 5.0]],
        value=[0, 0.5, (0, 1, 0), [-0.2, 0.0, 1.3], "random"],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, param, value, dtype, device, seed):
        transform = transforms.RandomErasing(**{param: value}, p=1)

        image = make_image(dtype=dtype, device=device)

        with freeze_rng_state():
            torch.manual_seed(seed)
            # This emulates the random apply check that happens before _get_params is called
            torch.rand(1)
            params = transform._get_params([image])

            torch.manual_seed(seed)
            actual = transform(image)

        expected = self._reference_erase_image(image, **params)

        assert_equal(actual, expected)

    def test_transform_errors(self):
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([make_image()])

3067
3068

class TestGaussianBlur:
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
    @pytest.mark.parametrize("kernel_size", [1, 3, (3, 1), [3, 5]])
    @pytest.mark.parametrize("sigma", [None, 1.0, 1, (0.5,), [0.3], (0.3, 0.7), [0.9, 0.2]])
    def test_kernel_image(self, kernel_size, sigma):
        check_kernel(
            F.gaussian_blur_image,
            make_image(),
            kernel_size=kernel_size,
            sigma=sigma,
            check_scripted_vs_eager=not (isinstance(kernel_size, int) or isinstance(sigma, (float, int))),
        )

    def test_kernel_image_errors(self):
        image = make_image_tensor()

        with pytest.raises(ValueError, match="kernel_size is a sequence its length should be 2"):
            F.gaussian_blur_image(image, kernel_size=[1, 2, 3])

        for kernel_size in [2, -1]:
            with pytest.raises(ValueError, match="kernel_size should have odd and positive integers"):
                F.gaussian_blur_image(image, kernel_size=kernel_size)

        with pytest.raises(ValueError, match="sigma is a sequence, its length should be 2"):
            F.gaussian_blur_image(image, kernel_size=1, sigma=[1, 2, 3])

        with pytest.raises(TypeError, match="sigma should be either float or sequence of floats"):
            F.gaussian_blur_image(image, kernel_size=1, sigma=object())

        with pytest.raises(ValueError, match="sigma should have positive values"):
            F.gaussian_blur_image(image, kernel_size=1, sigma=-1)

    def test_kernel_video(self):
        check_kernel(F.gaussian_blur_video, make_video(), kernel_size=(3, 3))

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.gaussian_blur, make_input(), kernel_size=(3, 3))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.gaussian_blur_image, torch.Tensor),
            (F._gaussian_blur_image_pil, PIL.Image.Image),
            (F.gaussian_blur_image, tv_tensors.Image),
            (F.gaussian_blur_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.gaussian_blur, kernel=kernel, input_type=input_type)

3121
3122
3123
3124
3125
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
3126
    @pytest.mark.parametrize("sigma", [5, 2.0, (0.5, 2), [1.3, 2.7]])
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
    def test_transform(self, make_input, device, sigma):
        check_transform(transforms.GaussianBlur(kernel_size=3, sigma=sigma), make_input(device=device))

    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(ValueError, match="If sigma is a sequence its length should be 1 or 2. Got 3"):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

        with pytest.raises(TypeError, match="sigma should be a number or a sequence of numbers"):
            transforms.GaussianBlur(3, sigma={})

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0], (10, 12.0), [10]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == sigma
        elif isinstance(sigma, list) and len(sigma) == 1:
            assert params["sigma"][0] == params["sigma"][1] == sigma[0]
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]
Philip Meier's avatar
Philip Meier committed
3161

3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
    # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    # {
    #     "10_12_3__3_3_0.8": cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8),
    #     "10_12_3__3_3_0.5": cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5),
    #     "10_12_3__3_5_0.8": cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8),
    #     "10_12_3__3_5_0.5": cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5),
    #     "26_28_1__23_23_1.7": cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7),
    # }
    REFERENCE_GAUSSIAN_BLUR_IMAGE_RESULTS = torch.load(
        Path(__file__).parent / "assets" / "gaussian_blur_opencv_results.pt"
    )

    @pytest.mark.parametrize(
        ("dimensions", "kernel_size", "sigma"),
        [
            ((3, 10, 12), (3, 3), 0.8),
            ((3, 10, 12), (3, 3), 0.5),
            ((3, 10, 12), (3, 5), 0.8),
            ((3, 10, 12), (3, 5), 0.5),
            ((1, 26, 28), (23, 23), 1.7),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float64, torch.float16])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_image_correctness(self, dimensions, kernel_size, sigma, dtype, device):
        if dtype is torch.float16 and device == "cpu":
            pytest.skip("The CPU implementation of float16 on CPU differs from opencv")

        num_channels, height, width = dimensions

        reference_results_key = f"{height}_{width}_{num_channels}__{kernel_size[0]}_{kernel_size[1]}_{sigma}"
        expected = (
            torch.tensor(self.REFERENCE_GAUSSIAN_BLUR_IMAGE_RESULTS[reference_results_key])
            .reshape(height, width, num_channels)
            .permute(2, 0, 1)
            .to(dtype=dtype, device=device)
        )

        image = tv_tensors.Image(
            torch.arange(num_channels * height * width, dtype=torch.uint8)
            .reshape(height, width, num_channels)
            .permute(2, 0, 1),
            dtype=dtype,
            device=device,
        )

        actual = F.gaussian_blur_image(image, kernel_size=kernel_size, sigma=sigma)

        torch.testing.assert_close(actual, expected, rtol=0, atol=1)

Philip Meier's avatar
Philip Meier committed
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282

class TestAutoAugmentTransforms:
    # These transforms have a lot of branches in their `forward()` passes which are conditioned on random sampling.
    # It's typically very hard to test the effect on some parameters without heavy mocking logic.
    # This class adds correctness tests for the kernels that are specific to those transforms. The rest of kernels, e.g.
    # rotate, are tested in their respective classes. The rest of the tests here are mostly smoke tests.

    def _reference_shear_translate(self, image, *, transform_id, magnitude, interpolation, fill):
        if isinstance(image, PIL.Image.Image):
            input = image
        else:
            input = F.to_pil_image(image)

        matrix = {
            "ShearX": (1, magnitude, 0, 0, 1, 0),
            "ShearY": (1, 0, 0, magnitude, 1, 0),
            "TranslateX": (1, 0, -int(magnitude), 0, 1, 0),
            "TranslateY": (1, 0, 0, 0, 1, -int(magnitude)),
        }[transform_id]

        output = input.transform(
            input.size, PIL.Image.AFFINE, matrix, resample=pil_modes_mapping[interpolation], fill=fill
        )

        if isinstance(image, PIL.Image.Image):
            return output
        else:
            return F.to_image(output)

    @pytest.mark.parametrize("transform_id", ["ShearX", "ShearY", "TranslateX", "TranslateY"])
    @pytest.mark.parametrize("magnitude", [0.3, -0.2, 0.0])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("input_type", ["Tensor", "PIL"])
    def test_correctness_shear_translate(self, transform_id, magnitude, interpolation, fill, input_type):
        # ShearX/Y and TranslateX/Y are the only ops that are native to the AA transforms. They are modeled after the
        # reference implementation:
        # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L362
        # All other ops are checked in their respective dedicated tests.

        image = make_image(dtype=torch.uint8, device="cpu")
        if input_type == "PIL":
            image = F.to_pil_image(image)

        if "Translate" in transform_id:
            # For TranslateX/Y magnitude is a value in pixels
            magnitude *= min(F.get_size(image))

        actual = transforms.AutoAugment()._apply_image_or_video_transform(
            image,
            transform_id=transform_id,
            magnitude=magnitude,
            interpolation=interpolation,
            fill={type(image): fill},
        )
        expected = self._reference_shear_translate(
            image, transform_id=transform_id, magnitude=magnitude, interpolation=interpolation, fill=fill
        )

        if input_type == "PIL":
            actual, expected = F.to_image(actual), F.to_image(expected)

        if "Shear" in transform_id and input_type == "Tensor":
            mae = (actual.float() - expected.float()).abs().mean()
            assert mae < (12 if interpolation is transforms.InterpolationMode.NEAREST else 5)
        else:
            assert_close(actual, expected, rtol=0, atol=1)

3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
    def _sample_input_adapter(self, transform, input, device):
        adapted_input = {}
        image_or_video_found = False
        for key, value in input.items():
            if isinstance(value, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
                # AA transforms don't support bounding boxes or masks
                continue
            elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor, PIL.Image.Image)):
                if image_or_video_found:
                    # AA transforms only support a single image or video
                    continue
                image_or_video_found = True
            adapted_input[key] = value
        return adapted_input

Philip Meier's avatar
Philip Meier committed
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
    @pytest.mark.parametrize(
        "transform",
        [transforms.AutoAugment(), transforms.RandAugment(), transforms.TrivialAugmentWide(), transforms.AugMix()],
    )
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform_smoke(self, transform, make_input, dtype, device):
        if make_input is make_image_pil and not (dtype is torch.uint8 and device == "cpu"):
            pytest.skip(
                "PIL image tests with parametrization other than dtype=torch.uint8 and device='cpu' "
                "will degenerate to that anyway."
            )
        input = make_input(dtype=dtype, device=device)

        with freeze_rng_state():
            # By default every test starts from the same random seed. This leads to minimal coverage of the sampling
            # that happens inside forward(). To avoid calling the transform multiple times to achieve higher coverage,
            # we build a reproducible random seed from the input type, dtype, and device.
            torch.manual_seed(hash((make_input, dtype, device)))

            # For v2, we changed the random sampling of the AA transforms. This makes it impossible to compare the v1
            # and v2 outputs without complicated mocking and monkeypatching. Thus, we skip the v1 compatibility checks
            # here and only check if we can script the v2 transform and subsequently call the result.
3322
3323
3324
            check_transform(
                transform, input, check_v1_compatibility=False, check_sample_input=self._sample_input_adapter
            )
Philip Meier's avatar
Philip Meier committed
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336

            if type(input) is torch.Tensor and dtype is torch.uint8:
                _script(transform)(input)

    def test_auto_augment_policy_error(self):
        with pytest.raises(ValueError, match="provided policy"):
            transforms.AutoAugment(policy=None)

    @pytest.mark.parametrize("severity", [0, 11])
    def test_aug_mix_severity_error(self, severity):
        with pytest.raises(ValueError, match="severity must be between"):
            transforms.AugMix(severity=severity)
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435


class TestConvertBoundingBoxFormat:
    old_new_formats = list(itertools.permutations(iter(tv_tensors.BoundingBoxFormat), 2))

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    def test_kernel(self, old_format, new_format):
        check_kernel(
            F.convert_bounding_box_format,
            make_bounding_boxes(format=old_format),
            new_format=new_format,
            old_format=old_format,
        )

    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("inplace", [False, True])
    def test_kernel_noop(self, format, inplace):
        input = make_bounding_boxes(format=format).as_subclass(torch.Tensor)
        input_version = input._version

        output = F.convert_bounding_box_format(input, old_format=format, new_format=format, inplace=inplace)

        assert output is input
        assert output.data_ptr() == input.data_ptr()
        assert output._version == input_version

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    def test_kernel_inplace(self, old_format, new_format):
        input = make_bounding_boxes(format=old_format).as_subclass(torch.Tensor)
        input_version = input._version

        output_out_of_place = F.convert_bounding_box_format(input, old_format=old_format, new_format=new_format)
        assert output_out_of_place.data_ptr() != input.data_ptr()
        assert output_out_of_place is not input

        output_inplace = F.convert_bounding_box_format(
            input, old_format=old_format, new_format=new_format, inplace=True
        )
        assert output_inplace.data_ptr() == input.data_ptr()
        assert output_inplace._version > input_version
        assert output_inplace is input

        assert_equal(output_inplace, output_out_of_place)

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    def test_functional(self, old_format, new_format):
        check_functional(F.convert_bounding_box_format, make_bounding_boxes(format=old_format), new_format=new_format)

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    @pytest.mark.parametrize("format_type", ["enum", "str"])
    def test_transform(self, old_format, new_format, format_type):
        check_transform(
            transforms.ConvertBoundingBoxFormat(new_format.name if format_type == "str" else new_format),
            make_bounding_boxes(format=old_format),
        )

    def _reference_convert_bounding_box_format(self, bounding_boxes, new_format):
        return tv_tensors.wrap(
            torchvision.ops.box_convert(
                bounding_boxes.as_subclass(torch.Tensor),
                in_fmt=bounding_boxes.format.name.lower(),
                out_fmt=new_format.name.lower(),
            ).to(bounding_boxes.dtype),
            like=bounding_boxes,
            format=new_format,
        )

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("fn_type", ["functional", "transform"])
    def test_correctness(self, old_format, new_format, dtype, device, fn_type):
        bounding_boxes = make_bounding_boxes(format=old_format, dtype=dtype, device=device)

        if fn_type == "functional":
            fn = functools.partial(F.convert_bounding_box_format, new_format=new_format)
        else:
            fn = transforms.ConvertBoundingBoxFormat(format=new_format)

        actual = fn(bounding_boxes)
        expected = self._reference_convert_bounding_box_format(bounding_boxes, new_format)

        assert_equal(actual, expected)

    def test_errors(self):
        input_tv_tensor = make_bounding_boxes()
        input_pure_tensor = input_tv_tensor.as_subclass(torch.Tensor)

        for input in [input_tv_tensor, input_pure_tensor]:
            with pytest.raises(TypeError, match="missing 1 required argument: 'new_format'"):
                F.convert_bounding_box_format(input)

        with pytest.raises(ValueError, match="`old_format` has to be passed"):
            F.convert_bounding_box_format(input_pure_tensor, new_format=input_tv_tensor.format)

        with pytest.raises(ValueError, match="`old_format` must not be passed"):
            F.convert_bounding_box_format(
                input_tv_tensor, old_format=input_tv_tensor.format, new_format=input_tv_tensor.format
            )
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568


class TestResizedCrop:
    INPUT_SIZE = (17, 11)
    CROP_KWARGS = dict(top=2, left=2, height=5, width=7)
    OUTPUT_SIZE = (19, 32)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.resized_crop_image, make_image),
            (F.resized_crop_bounding_boxes, make_bounding_boxes),
            (F.resized_crop_mask, make_segmentation_mask),
            (F.resized_crop_mask, make_detection_mask),
            (F.resized_crop_video, make_video),
        ],
    )
    def test_kernel(self, kernel, make_input):
        input = make_input(self.INPUT_SIZE)
        if isinstance(input, tv_tensors.BoundingBoxes):
            extra_kwargs = dict(format=input.format)
        elif isinstance(input, tv_tensors.Mask):
            extra_kwargs = dict()
        else:
            extra_kwargs = dict(antialias=True)

        check_kernel(kernel, input, **self.CROP_KWARGS, size=self.OUTPUT_SIZE, **extra_kwargs)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(
            F.resized_crop, make_input(self.INPUT_SIZE), **self.CROP_KWARGS, size=self.OUTPUT_SIZE, antialias=True
        )

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.resized_crop_image, torch.Tensor),
            (F._resized_crop_image_pil, PIL.Image.Image),
            (F.resized_crop_image, tv_tensors.Image),
            (F.resized_crop_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.resized_crop_mask, tv_tensors.Mask),
            (F.resized_crop_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.resized_crop, kernel=kernel, input_type=input_type)

    @param_value_parametrization(
        scale=[(0.1, 0.2), [0.0, 1.0]],
        ratio=[(0.3, 0.7), [0.1, 5.0]],
    )
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, param, value, make_input):
        check_transform(
            transforms.RandomResizedCrop(size=self.OUTPUT_SIZE, **{param: value}, antialias=True),
            make_input(self.INPUT_SIZE),
            check_v1_compatibility=dict(rtol=0, atol=1),
        )

    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    def test_functional_image_correctness(self, interpolation):
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)

        actual = F.resized_crop(
            image, **self.CROP_KWARGS, size=self.OUTPUT_SIZE, interpolation=interpolation, antialias=True
        )
        expected = F.to_image(
            F.resized_crop(
                F.to_pil_image(image), **self.CROP_KWARGS, size=self.OUTPUT_SIZE, interpolation=interpolation
            )
        )

        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

    def _reference_resized_crop_bounding_boxes(self, bounding_boxes, *, top, left, height, width, size):
        new_height, new_width = size

        crop_affine_matrix = np.array(
            [
                [1, 0, -left],
                [0, 1, -top],
                [0, 0, 1],
            ],
        )
        resize_affine_matrix = np.array(
            [
                [new_width / width, 0, 0],
                [0, new_height / height, 0],
                [0, 0, 1],
            ],
        )
        affine_matrix = (resize_affine_matrix @ crop_affine_matrix)[:2, :]

        return reference_affine_bounding_boxes_helper(
            bounding_boxes,
            affine_matrix=affine_matrix,
            new_canvas_size=size,
        )

    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    def test_functional_bounding_boxes_correctness(self, format):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format)

        actual = F.resized_crop(bounding_boxes, **self.CROP_KWARGS, size=self.OUTPUT_SIZE)
        expected = self._reference_resized_crop_bounding_boxes(
            bounding_boxes, **self.CROP_KWARGS, size=self.OUTPUT_SIZE
        )

        assert_equal(actual, expected)
        assert_equal(F.get_size(actual), F.get_size(expected))

    def test_transform_errors_warnings(self):
        with pytest.raises(ValueError, match="provide only two dimensions"):
            transforms.RandomResizedCrop(size=(1, 2, 3))

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomResizedCrop(size=self.INPUT_SIZE, scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomResizedCrop(size=self.INPUT_SIZE, ratio=123)

        for param in ["scale", "ratio"]:
            with pytest.warns(match="Scale and ratio should be of kind"):
                transforms.RandomResizedCrop(size=self.INPUT_SIZE, **{param: [1, 0]})
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643


class TestPad:
    EXHAUSTIVE_TYPE_PADDINGS = [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    CORRECTNESS_PADDINGS = [
        padding
        for padding in EXHAUSTIVE_TYPE_PADDINGS
        if isinstance(padding, int) or isinstance(padding, list) and len(padding) > 1
    ]
    PADDING_MODES = ["constant", "symmetric", "edge", "reflect"]

    @param_value_parametrization(
        padding=EXHAUSTIVE_TYPE_PADDINGS,
        fill=EXHAUSTIVE_TYPE_FILLS,
        padding_mode=PADDING_MODES,
    )
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, param, value, dtype, device):
        if param == "fill":
            value = adapt_fill(value, dtype=dtype)
        kwargs = {param: value}
        if param != "padding":
            kwargs["padding"] = [1]

        image = make_image(dtype=dtype, device=device)

        check_kernel(
            F.pad_image,
            image,
            **kwargs,
            check_scripted_vs_eager=not (
                (param == "padding" and isinstance(value, int))
                # See https://github.com/pytorch/vision/pull/7252#issue-1585585521 for details
                or (
                    param == "fill"
                    and (
                        isinstance(value, tuple) or (isinstance(value, list) and any(isinstance(v, int) for v in value))
                    )
                )
            ),
        )

    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    def test_kernel_bounding_boxes(self, format):
        bounding_boxes = make_bounding_boxes(format=format)
        check_kernel(
            F.pad_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            padding=[1],
        )

    @pytest.mark.parametrize("padding_mode", ["symmetric", "edge", "reflect"])
    def test_kernel_bounding_boxes_errors(self, padding_mode):
        bounding_boxes = make_bounding_boxes()
        with pytest.raises(ValueError, match=f"'{padding_mode}' is not supported"):
            F.pad_bounding_boxes(
                bounding_boxes,
                format=bounding_boxes.format,
                canvas_size=bounding_boxes.canvas_size,
                padding=[1],
                padding_mode=padding_mode,
            )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.pad_mask, make_mask(), padding=[1])

    @pytest.mark.parametrize("fill", [[1], (0,), [1, 0, 1], (0, 1, 0)])
    def test_kernel_mask_errors(self, fill):
        with pytest.raises(ValueError, match="Non-scalar fill value is not supported"):
            check_kernel(F.pad_mask, make_segmentation_mask(), padding=[1], fill=fill)

3644
3645
3646
    def test_kernel_video(self):
        check_kernel(F.pad_video, make_video(), padding=[1])

3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.pad, make_input(), padding=[1])

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.pad_image, torch.Tensor),
            # The PIL kernel uses fill=0 as default rather than fill=None as all others.
            # Since the whole fill story is already really inconsistent, we won't introduce yet another case to allow
            # for this test to pass.
            # See https://github.com/pytorch/vision/issues/6623 for a discussion.
            # (F._pad_image_pil, PIL.Image.Image),
            (F.pad_image, tv_tensors.Image),
            (F.pad_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.pad_mask, tv_tensors.Mask),
            (F.pad_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.pad, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, make_input):
        check_transform(transforms.Pad(padding=[1]), make_input())

    def test_transform_errors(self):
        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.Pad("abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.Pad([-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.Pad(12, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.Pad(12, padding_mode="abc")

    @pytest.mark.parametrize("padding", CORRECTNESS_PADDINGS)
    @pytest.mark.parametrize(
        ("padding_mode", "fill"),
        [
            *[("constant", fill) for fill in CORRECTNESS_FILLS],
            *[(padding_mode, None) for padding_mode in ["symmetric", "edge", "reflect"]],
        ],
    )
    @pytest.mark.parametrize("fn", [F.pad, transform_cls_to_functional(transforms.Pad)])
    def test_image_correctness(self, padding, padding_mode, fill, fn):
        image = make_image(dtype=torch.uint8, device="cpu")

3704
3705
        fill = adapt_fill(fill, dtype=torch.uint8)

3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
        actual = fn(image, padding=padding, padding_mode=padding_mode, fill=fill)
        expected = F.to_image(F.pad(F.to_pil_image(image), padding=padding, padding_mode=padding_mode, fill=fill))

        assert_equal(actual, expected)

    def _reference_pad_bounding_boxes(self, bounding_boxes, *, padding):
        if isinstance(padding, int):
            padding = [padding]
        left, top, right, bottom = padding * (4 // len(padding))

        affine_matrix = np.array(
            [
                [1, 0, left],
                [0, 1, top],
            ],
        )

        height = bounding_boxes.canvas_size[0] + top + bottom
        width = bounding_boxes.canvas_size[1] + left + right

        return reference_affine_bounding_boxes_helper(
            bounding_boxes, affine_matrix=affine_matrix, new_canvas_size=(height, width)
        )

    @pytest.mark.parametrize("padding", CORRECTNESS_PADDINGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("fn", [F.pad, transform_cls_to_functional(transforms.Pad)])
    def test_bounding_boxes_correctness(self, padding, format, dtype, device, fn):
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)

        actual = fn(bounding_boxes, padding=padding)
        expected = self._reference_pad_bounding_boxes(bounding_boxes, padding=padding)

        assert_equal(actual, expected)
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849


class TestCenterCrop:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [(3, 5), (5, 3), (4, 4), (21, 9), (13, 15), (19, 14), 3, (4,), [5], INPUT_SIZE]

    @pytest.mark.parametrize("output_size", OUTPUT_SIZES)
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, output_size, dtype, device):
        check_kernel(
            F.center_crop_image,
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
            output_size=output_size,
            check_scripted_vs_eager=not isinstance(output_size, int),
        )

    @pytest.mark.parametrize("output_size", OUTPUT_SIZES)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    def test_kernel_bounding_boxes(self, output_size, format):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format)
        check_kernel(
            F.center_crop_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            output_size=output_size,
            check_scripted_vs_eager=not isinstance(output_size, int),
        )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.center_crop_mask, make_mask(), output_size=self.OUTPUT_SIZES[0])

    def test_kernel_video(self):
        check_kernel(F.center_crop_video, make_video(self.INPUT_SIZE), output_size=self.OUTPUT_SIZES[0])

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.center_crop, make_input(self.INPUT_SIZE), output_size=self.OUTPUT_SIZES[0])

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.center_crop_image, torch.Tensor),
            (F._center_crop_image_pil, PIL.Image.Image),
            (F.center_crop_image, tv_tensors.Image),
            (F.center_crop_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.center_crop_mask, tv_tensors.Mask),
            (F.center_crop_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.center_crop, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, make_input):
        check_transform(transforms.CenterCrop(self.OUTPUT_SIZES[0]), make_input(self.INPUT_SIZE))

    @pytest.mark.parametrize("output_size", OUTPUT_SIZES)
    @pytest.mark.parametrize("fn", [F.center_crop, transform_cls_to_functional(transforms.CenterCrop)])
    def test_image_correctness(self, output_size, fn):
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8, device="cpu")

        actual = fn(image, output_size)
        expected = F.to_image(F.center_crop(F.to_pil_image(image), output_size=output_size))

        assert_equal(actual, expected)

    def _reference_center_crop_bounding_boxes(self, bounding_boxes, output_size):
        image_height, image_width = bounding_boxes.canvas_size
        if isinstance(output_size, int):
            output_size = (output_size, output_size)
        elif len(output_size) == 1:
            output_size *= 2
        crop_height, crop_width = output_size

        top = int(round((image_height - crop_height) / 2))
        left = int(round((image_width - crop_width) / 2))

        affine_matrix = np.array(
            [
                [1, 0, -left],
                [0, 1, -top],
            ],
        )
        return reference_affine_bounding_boxes_helper(
            bounding_boxes, affine_matrix=affine_matrix, new_canvas_size=output_size
        )

    @pytest.mark.parametrize("output_size", OUTPUT_SIZES)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("fn", [F.center_crop, transform_cls_to_functional(transforms.CenterCrop)])
    def test_bounding_boxes_correctness(self, output_size, format, dtype, device, fn):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)

        actual = fn(bounding_boxes, output_size)
        expected = self._reference_center_crop_bounding_boxes(bounding_boxes, output_size)

        assert_equal(actual, expected)
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093


class TestPerspective:
    COEFFICIENTS = [
        [1.2405, 0.1772, -6.9113, 0.0463, 1.251, -5.235, 0.00013, 0.0018],
        [0.7366, -0.11724, 1.45775, -0.15012, 0.73406, 2.6019, -0.0072, -0.0063],
    ]
    START_END_POINTS = [
        ([[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]),
        ([[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]),
        ([[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]),
    ]
    MINIMAL_KWARGS = dict(startpoints=None, endpoints=None, coefficients=COEFFICIENTS[0])

    @param_value_parametrization(
        coefficients=COEFFICIENTS,
        start_end_points=START_END_POINTS,
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, param, value, dtype, device):
        if param == "start_end_points":
            kwargs = dict(zip(["startpoints", "endpoints"], value))
        else:
            kwargs = {"startpoints": None, "endpoints": None, param: value}
        if param == "fill":
            kwargs["coefficients"] = self.COEFFICIENTS[0]

        check_kernel(
            F.perspective_image,
            make_image(dtype=dtype, device=device),
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    def test_kernel_image_error(self):
        image = make_image_tensor()

        with pytest.raises(ValueError, match="startpoints/endpoints or the coefficients must have non `None` values"):
            F.perspective_image(image, startpoints=None, endpoints=None)

        with pytest.raises(
            ValueError, match="startpoints/endpoints and the coefficients shouldn't be defined concurrently"
        ):
            startpoints, endpoints = self.START_END_POINTS[0]
            coefficients = self.COEFFICIENTS[0]
            F.perspective_image(image, startpoints=startpoints, endpoints=endpoints, coefficients=coefficients)

        with pytest.raises(ValueError, match="coefficients should have 8 float values"):
            F.perspective_image(image, startpoints=None, endpoints=None, coefficients=list(range(7)))

    @param_value_parametrization(
        coefficients=COEFFICIENTS,
        start_end_points=START_END_POINTS,
    )
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    def test_kernel_bounding_boxes(self, param, value, format):
        if param == "start_end_points":
            kwargs = dict(zip(["startpoints", "endpoints"], value))
        else:
            kwargs = {"startpoints": None, "endpoints": None, param: value}

        bounding_boxes = make_bounding_boxes(format=format)

        check_kernel(
            F.perspective_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            **kwargs,
        )

    def test_kernel_bounding_boxes_error(self):
        bounding_boxes = make_bounding_boxes()
        format, canvas_size = bounding_boxes.format, bounding_boxes.canvas_size
        bounding_boxes = bounding_boxes.as_subclass(torch.Tensor)

        with pytest.raises(RuntimeError, match="Denominator is zero"):
            F.perspective_bounding_boxes(
                bounding_boxes,
                format=format,
                canvas_size=canvas_size,
                startpoints=None,
                endpoints=None,
                coefficients=[0.0] * 8,
            )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.perspective_mask, make_mask(), **self.MINIMAL_KWARGS)

    def test_kernel_video(self):
        check_kernel(F.perspective_video, make_video(), **self.MINIMAL_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.perspective, make_input(), **self.MINIMAL_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.perspective_image, torch.Tensor),
            (F._perspective_image_pil, PIL.Image.Image),
            (F.perspective_image, tv_tensors.Image),
            (F.perspective_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.perspective_mask, tv_tensors.Mask),
            (F.perspective_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.perspective, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("distortion_scale", [0.5, 0.0, 1.0])
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, distortion_scale, make_input):
        check_transform(transforms.RandomPerspective(distortion_scale=distortion_scale, p=1), make_input())

    @pytest.mark.parametrize("distortion_scale", [-1, 2])
    def test_transform_error(self, distortion_scale):
        with pytest.raises(ValueError, match="distortion_scale value should be between 0 and 1"):
            transforms.RandomPerspective(distortion_scale=distortion_scale)

    @pytest.mark.parametrize("coefficients", COEFFICIENTS)
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_image_functional_correctness(self, coefficients, interpolation, fill):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.perspective(
            image, startpoints=None, endpoints=None, coefficients=coefficients, interpolation=interpolation, fill=fill
        )
        expected = F.to_image(
            F.perspective(
                F.to_pil_image(image),
                startpoints=None,
                endpoints=None,
                coefficients=coefficients,
                interpolation=interpolation,
                fill=fill,
            )
        )

        if interpolation is transforms.InterpolationMode.BILINEAR:
            abs_diff = (actual.float() - expected.float()).abs()
            assert (abs_diff > 1).float().mean() < 7e-2
            mae = abs_diff.mean()
            assert mae < 3
        else:
            assert_equal(actual, expected)

    def _reference_perspective_bounding_boxes(self, bounding_boxes, *, startpoints, endpoints):
        format = bounding_boxes.format
        canvas_size = bounding_boxes.canvas_size
        dtype = bounding_boxes.dtype
        device = bounding_boxes.device

        coefficients = _get_perspective_coeffs(endpoints, startpoints)

        def perspective_bounding_boxes(bounding_boxes):
            m1 = np.array(
                [
                    [coefficients[0], coefficients[1], coefficients[2]],
                    [coefficients[3], coefficients[4], coefficients[5]],
                ]
            )
            m2 = np.array(
                [
                    [coefficients[6], coefficients[7], 1.0],
                    [coefficients[6], coefficients[7], 1.0],
                ]
            )

            # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
            input_xyxy = F.convert_bounding_box_format(
                bounding_boxes.to(dtype=torch.float64, device="cpu", copy=True),
                old_format=format,
                new_format=tv_tensors.BoundingBoxFormat.XYXY,
                inplace=True,
            )
            x1, y1, x2, y2 = input_xyxy.squeeze(0).tolist()

            points = np.array(
                [
                    [x1, y1, 1.0],
                    [x2, y1, 1.0],
                    [x1, y2, 1.0],
                    [x2, y2, 1.0],
                ]
            )

            numerator = points @ m1.T
            denominator = points @ m2.T
            transformed_points = numerator / denominator

            output_xyxy = torch.Tensor(
                [
                    float(np.min(transformed_points[:, 0])),
                    float(np.min(transformed_points[:, 1])),
                    float(np.max(transformed_points[:, 0])),
                    float(np.max(transformed_points[:, 1])),
                ]
            )

            output = F.convert_bounding_box_format(
                output_xyxy, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format
            )

            # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
            return F.clamp_bounding_boxes(
                output,
                format=format,
                canvas_size=canvas_size,
            ).to(dtype=dtype, device=device)

        return tv_tensors.BoundingBoxes(
            torch.cat([perspective_bounding_boxes(b) for b in bounding_boxes.reshape(-1, 4).unbind()], dim=0).reshape(
                bounding_boxes.shape
            ),
            format=format,
            canvas_size=canvas_size,
        )

    @pytest.mark.parametrize(("startpoints", "endpoints"), START_END_POINTS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_correctness_perspective_bounding_boxes(self, startpoints, endpoints, format, dtype, device):
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)

        actual = F.perspective(bounding_boxes, startpoints=startpoints, endpoints=endpoints)
        expected = self._reference_perspective_bounding_boxes(
            bounding_boxes, startpoints=startpoints, endpoints=endpoints
        )

        assert_close(actual, expected, rtol=0, atol=1)
4094
4095


4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
class TestEqualize:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.equalize_image, make_image(dtype=dtype, device=device))

    def test_kernel_video(self):
        check_kernel(F.equalize_image, make_video())

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_functional(self, make_input):
        check_functional(F.equalize, make_input())

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.equalize_image, torch.Tensor),
            (F._equalize_image_pil, PIL.Image.Image),
            (F.equalize_image, tv_tensors.Image),
            (F.equalize_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.equalize, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    def test_transform(self, make_input):
        check_transform(transforms.RandomEqualize(p=1), make_input())

    @pytest.mark.parametrize(("low", "high"), [(0, 64), (64, 192), (192, 256), (0, 1), (127, 128), (255, 256)])
    @pytest.mark.parametrize("fn", [F.equalize, transform_cls_to_functional(transforms.RandomEqualize, p=1)])
    def test_image_correctness(self, low, high, fn):
        # We are not using the default `make_image` here since that uniformly samples the values over the whole value
        # range. Since the whole point of F.equalize is to transform an arbitrary distribution of values into a uniform
        # one over the full range, the information gain is low if we already provide something really close to the
        # expected value.
        image = tv_tensors.Image(
            torch.testing.make_tensor((3, 117, 253), dtype=torch.uint8, device="cpu", low=low, high=high)
        )

        actual = fn(image)
        expected = F.to_image(F.equalize(F.to_pil_image(image)))

        assert_equal(actual, expected)


class TestUniformTemporalSubsample:
    def test_kernel_video(self):
        check_kernel(F.uniform_temporal_subsample_video, make_video(), num_samples=2)

    @pytest.mark.parametrize("make_input", [make_video_tensor, make_video])
    def test_functional(self, make_input):
        check_functional(F.uniform_temporal_subsample, make_input(), num_samples=2)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.uniform_temporal_subsample_video, torch.Tensor),
            (F.uniform_temporal_subsample_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.uniform_temporal_subsample, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("make_input", [make_video_tensor, make_video])
    def test_transform(self, make_input):
        check_transform(transforms.UniformTemporalSubsample(num_samples=2), make_input())

    def _reference_uniform_temporal_subsample_video(self, video, *, num_samples):
        # Adapted from
        # https://github.com/facebookresearch/pytorchvideo/blob/c8d23d8b7e597586a9e2d18f6ed31ad8aa379a7a/pytorchvideo/transforms/functional.py#L19
        t = video.shape[-4]
        assert num_samples > 0 and t > 0
        # Sample by nearest neighbor interpolation if num_samples > t.
        indices = torch.linspace(0, t - 1, num_samples, device=video.device)
        indices = torch.clamp(indices, 0, t - 1).long()
        return tv_tensors.Video(torch.index_select(video, -4, indices))

    CORRECTNESS_NUM_FRAMES = 5

    @pytest.mark.parametrize("num_samples", list(range(1, CORRECTNESS_NUM_FRAMES + 1)))
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
        "fn", [F.uniform_temporal_subsample, transform_cls_to_functional(transforms.UniformTemporalSubsample)]
    )
    def test_video_correctness(self, num_samples, dtype, device, fn):
        video = make_video(num_frames=self.CORRECTNESS_NUM_FRAMES, dtype=dtype, device=device)

        actual = fn(video, num_samples=num_samples)
        expected = self._reference_uniform_temporal_subsample_video(video, num_samples=num_samples)

        assert_equal(actual, expected)


class TestNormalize:
    MEANS_STDS = [
        ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ([0.0, 0.0, 0.0], [1.0, 1.0, 1.0]),
    ]
    MEAN, STD = MEANS_STDS[0]

    @pytest.mark.parametrize(("mean", "std"), [*MEANS_STDS, (0.5, 2.0)])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, mean, std, device):
        check_kernel(F.normalize_image, make_image(dtype=torch.float32, device=device), mean=self.MEAN, std=self.STD)

    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_inplace(self, device):
        input = make_image_tensor(dtype=torch.float32, device=device)
        input_version = input._version

        output_out_of_place = F.normalize_image(input, mean=self.MEAN, std=self.STD)
        assert output_out_of_place.data_ptr() != input.data_ptr()
        assert output_out_of_place is not input

        output_inplace = F.normalize_image(input, mean=self.MEAN, std=self.STD, inplace=True)
        assert output_inplace.data_ptr() == input.data_ptr()
        assert output_inplace._version > input_version
        assert output_inplace is input

        assert_equal(output_inplace, output_out_of_place)

    def test_kernel_video(self):
        check_kernel(F.normalize_video, make_video(dtype=torch.float32), mean=self.MEAN, std=self.STD)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
    def test_functional(self, make_input):
        check_functional(F.normalize, make_input(dtype=torch.float32), mean=self.MEAN, std=self.STD)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.normalize_image, torch.Tensor),
            (F.normalize_image, tv_tensors.Image),
            (F.normalize_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.normalize, kernel=kernel, input_type=input_type)

    def test_functional_error(self):
        with pytest.raises(TypeError, match="should be a float tensor"):
            F.normalize_image(make_image(dtype=torch.uint8), mean=self.MEAN, std=self.STD)

        with pytest.raises(ValueError, match="tensor image of size"):
            F.normalize_image(torch.rand(16, 16, dtype=torch.float32), mean=self.MEAN, std=self.STD)

        for std in [0, [0, 0, 0], [0, 1, 1]]:
            with pytest.raises(ValueError, match="std evaluated to zero, leading to division by zero"):
                F.normalize_image(make_image(dtype=torch.float32), mean=self.MEAN, std=std)

4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
    def _sample_input_adapter(self, transform, input, device):
        adapted_input = {}
        for key, value in input.items():
            if isinstance(value, PIL.Image.Image):
                # normalize doesn't support PIL images
                continue
            elif check_type(value, (is_pure_tensor, tv_tensors.Image, tv_tensors.Video)):
                # normalize doesn't support integer images
                value = F.to_dtype(value, torch.float32, scale=True)
            adapted_input[key] = value
        return adapted_input

4263
4264
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
    def test_transform(self, make_input):
4265
4266
4267
4268
4269
        check_transform(
            transforms.Normalize(mean=self.MEAN, std=self.STD),
            make_input(dtype=torch.float32),
            check_sample_input=self._sample_input_adapter,
        )
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795

    def _reference_normalize_image(self, image, *, mean, std):
        image = image.numpy()
        mean, std = [np.array(stat, dtype=image.dtype).reshape((-1, 1, 1)) for stat in [mean, std]]
        return tv_tensors.Image((image - mean) / std)

    @pytest.mark.parametrize(("mean", "std"), MEANS_STDS)
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float32, torch.float64])
    @pytest.mark.parametrize("fn", [F.normalize, transform_cls_to_functional(transforms.Normalize)])
    def test_correctness_image(self, mean, std, dtype, fn):
        image = make_image(dtype=dtype)

        actual = fn(image, mean=mean, std=std)
        expected = self._reference_normalize_image(image, mean=mean, std=std)

        assert_equal(actual, expected)


class TestClampBoundingBoxes:
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, format, dtype, device):
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
        check_kernel(
            F.clamp_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
        )

    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    def test_functional(self, format):
        check_functional(F.clamp_bounding_boxes, make_bounding_boxes(format=format))

    def test_errors(self):
        input_tv_tensor = make_bounding_boxes()
        input_pure_tensor = input_tv_tensor.as_subclass(torch.Tensor)
        format, canvas_size = input_tv_tensor.format, input_tv_tensor.canvas_size

        for format_, canvas_size_ in [(None, None), (format, None), (None, canvas_size)]:
            with pytest.raises(
                ValueError, match="For pure tensor inputs, `format` and `canvas_size` have to be passed."
            ):
                F.clamp_bounding_boxes(input_pure_tensor, format=format_, canvas_size=canvas_size_)

        for format_, canvas_size_ in [(format, canvas_size), (format, None), (None, canvas_size)]:
            with pytest.raises(
                ValueError, match="For bounding box tv_tensor inputs, `format` and `canvas_size` must not be passed."
            ):
                F.clamp_bounding_boxes(input_tv_tensor, format=format_, canvas_size=canvas_size_)

    def test_transform(self):
        check_transform(transforms.ClampBoundingBoxes(), make_bounding_boxes())


class TestInvert:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.int16, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.invert_image, make_image(dtype=dtype, device=device))

    def test_kernel_video(self):
        check_kernel(F.invert_video, make_video())

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.invert, make_input())

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.invert_image, torch.Tensor),
            (F._invert_image_pil, PIL.Image.Image),
            (F.invert_image, tv_tensors.Image),
            (F.invert_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.invert, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_transform(self, make_input):
        check_transform(transforms.RandomInvert(p=1), make_input())

    @pytest.mark.parametrize("fn", [F.invert, transform_cls_to_functional(transforms.RandomInvert, p=1)])
    def test_correctness_image(self, fn):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = fn(image)
        expected = F.to_image(F.invert(F.to_pil_image(image)))

        assert_equal(actual, expected)


class TestPosterize:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.posterize_image, make_image(dtype=dtype, device=device), bits=1)

    def test_kernel_video(self):
        check_kernel(F.posterize_video, make_video(), bits=1)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.posterize, make_input(), bits=1)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.posterize_image, torch.Tensor),
            (F._posterize_image_pil, PIL.Image.Image),
            (F.posterize_image, tv_tensors.Image),
            (F.posterize_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.posterize, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_transform(self, make_input):
        check_transform(transforms.RandomPosterize(bits=1, p=1), make_input())

    @pytest.mark.parametrize("bits", [1, 4, 8])
    @pytest.mark.parametrize("fn", [F.posterize, transform_cls_to_functional(transforms.RandomPosterize, p=1)])
    def test_correctness_image(self, bits, fn):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = fn(image, bits=bits)
        expected = F.to_image(F.posterize(F.to_pil_image(image), bits=bits))

        assert_equal(actual, expected)


class TestSolarize:
    def _make_threshold(self, input, *, factor=0.5):
        dtype = input.dtype if isinstance(input, torch.Tensor) else torch.uint8
        return (float if dtype.is_floating_point else int)(get_max_value(dtype) * factor)

    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        image = make_image(dtype=dtype, device=device)
        check_kernel(F.solarize_image, image, threshold=self._make_threshold(image))

    def test_kernel_video(self):
        video = make_video()
        check_kernel(F.solarize_video, video, threshold=self._make_threshold(video))

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        input = make_input()
        check_functional(F.solarize, input, threshold=self._make_threshold(input))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.solarize_image, torch.Tensor),
            (F._solarize_image_pil, PIL.Image.Image),
            (F.solarize_image, tv_tensors.Image),
            (F.solarize_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.solarize, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(("dtype", "threshold"), [(torch.uint8, 256), (torch.float, 1.5)])
    def test_functional_error(self, dtype, threshold):
        with pytest.raises(TypeError, match="Threshold should be less or equal the maximum value of the dtype"):
            F.solarize(make_image(dtype=dtype), threshold=threshold)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_transform(self, make_input):
        input = make_input()
        check_transform(transforms.RandomSolarize(threshold=self._make_threshold(input), p=1), input)

    @pytest.mark.parametrize("threshold_factor", [0.0, 0.1, 0.5, 0.9, 1.0])
    @pytest.mark.parametrize("fn", [F.solarize, transform_cls_to_functional(transforms.RandomSolarize, p=1)])
    def test_correctness_image(self, threshold_factor, fn):
        image = make_image(dtype=torch.uint8, device="cpu")
        threshold = self._make_threshold(image, factor=threshold_factor)

        actual = fn(image, threshold=threshold)
        expected = F.to_image(F.solarize(F.to_pil_image(image), threshold=threshold))

        assert_equal(actual, expected)


class TestAutocontrast:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.int16, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.autocontrast_image, make_image(dtype=dtype, device=device))

    def test_kernel_video(self):
        check_kernel(F.autocontrast_video, make_video())

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.autocontrast, make_input())

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.autocontrast_image, torch.Tensor),
            (F._autocontrast_image_pil, PIL.Image.Image),
            (F.autocontrast_image, tv_tensors.Image),
            (F.autocontrast_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.autocontrast, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_transform(self, make_input):
        check_transform(transforms.RandomAutocontrast(p=1), make_input(), check_v1_compatibility=dict(rtol=0, atol=1))

    @pytest.mark.parametrize("fn", [F.autocontrast, transform_cls_to_functional(transforms.RandomAutocontrast, p=1)])
    def test_correctness_image(self, fn):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = fn(image)
        expected = F.to_image(F.autocontrast(F.to_pil_image(image)))

        assert_close(actual, expected, rtol=0, atol=1)


class TestAdjustSharpness:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.adjust_sharpness_image, make_image(dtype=dtype, device=device), sharpness_factor=0.5)

    def test_kernel_video(self):
        check_kernel(F.adjust_sharpness_video, make_video(), sharpness_factor=0.5)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.adjust_sharpness, make_input(), sharpness_factor=0.5)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_sharpness_image, torch.Tensor),
            (F._adjust_sharpness_image_pil, PIL.Image.Image),
            (F.adjust_sharpness_image, tv_tensors.Image),
            (F.adjust_sharpness_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_sharpness, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_transform(self, make_input):
        check_transform(transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1), make_input())

    def test_functional_error(self):
        with pytest.raises(TypeError, match="can have 1 or 3 channels"):
            F.adjust_sharpness(make_image(color_space="RGBA"), sharpness_factor=0.5)

        with pytest.raises(ValueError, match="is not non-negative"):
            F.adjust_sharpness(make_image(), sharpness_factor=-1)

    @pytest.mark.parametrize("sharpness_factor", [0.1, 0.5, 1.0])
    @pytest.mark.parametrize(
        "fn", [F.adjust_sharpness, transform_cls_to_functional(transforms.RandomAdjustSharpness, p=1)]
    )
    def test_correctness_image(self, sharpness_factor, fn):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = fn(image, sharpness_factor=sharpness_factor)
        expected = F.to_image(F.adjust_sharpness(F.to_pil_image(image), sharpness_factor=sharpness_factor))

        assert_equal(actual, expected)


class TestAdjustContrast:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.adjust_contrast_image, make_image(dtype=dtype, device=device), contrast_factor=0.5)

    def test_kernel_video(self):
        check_kernel(F.adjust_contrast_video, make_video(), contrast_factor=0.5)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.adjust_contrast, make_input(), contrast_factor=0.5)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_contrast_image, torch.Tensor),
            (F._adjust_contrast_image_pil, PIL.Image.Image),
            (F.adjust_contrast_image, tv_tensors.Image),
            (F.adjust_contrast_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_contrast, kernel=kernel, input_type=input_type)

    def test_functional_error(self):
        with pytest.raises(TypeError, match="permitted channel values are 1 or 3"):
            F.adjust_contrast(make_image(color_space="RGBA"), contrast_factor=0.5)

        with pytest.raises(ValueError, match="is not non-negative"):
            F.adjust_contrast(make_image(), contrast_factor=-1)

    @pytest.mark.parametrize("contrast_factor", [0.1, 0.5, 1.0])
    def test_correctness_image(self, contrast_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_contrast(image, contrast_factor=contrast_factor)
        expected = F.to_image(F.adjust_contrast(F.to_pil_image(image), contrast_factor=contrast_factor))

        assert_close(actual, expected, rtol=0, atol=1)


class TestAdjustGamma:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.adjust_gamma_image, make_image(dtype=dtype, device=device), gamma=0.5)

    def test_kernel_video(self):
        check_kernel(F.adjust_gamma_video, make_video(), gamma=0.5)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.adjust_gamma, make_input(), gamma=0.5)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_gamma_image, torch.Tensor),
            (F._adjust_gamma_image_pil, PIL.Image.Image),
            (F.adjust_gamma_image, tv_tensors.Image),
            (F.adjust_gamma_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_gamma, kernel=kernel, input_type=input_type)

    def test_functional_error(self):
        with pytest.raises(ValueError, match="Gamma should be a non-negative real number"):
            F.adjust_gamma(make_image(), gamma=-1)

    @pytest.mark.parametrize("gamma", [0.1, 0.5, 1.0])
    @pytest.mark.parametrize("gain", [0.1, 1.0, 2.0])
    def test_correctness_image(self, gamma, gain):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_gamma(image, gamma=gamma, gain=gain)
        expected = F.to_image(F.adjust_gamma(F.to_pil_image(image), gamma=gamma, gain=gain))

        assert_equal(actual, expected)


class TestAdjustHue:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.adjust_hue_image, make_image(dtype=dtype, device=device), hue_factor=0.25)

    def test_kernel_video(self):
        check_kernel(F.adjust_hue_video, make_video(), hue_factor=0.25)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.adjust_hue, make_input(), hue_factor=0.25)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_hue_image, torch.Tensor),
            (F._adjust_hue_image_pil, PIL.Image.Image),
            (F.adjust_hue_image, tv_tensors.Image),
            (F.adjust_hue_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_hue, kernel=kernel, input_type=input_type)

    def test_functional_error(self):
        with pytest.raises(TypeError, match="permitted channel values are 1 or 3"):
            F.adjust_hue(make_image(color_space="RGBA"), hue_factor=0.25)

        for hue_factor in [-1, 1]:
            with pytest.raises(ValueError, match=re.escape("is not in [-0.5, 0.5]")):
                F.adjust_hue(make_image(), hue_factor=hue_factor)

    @pytest.mark.parametrize("hue_factor", [-0.5, -0.3, 0.0, 0.2, 0.5])
    def test_correctness_image(self, hue_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_hue(image, hue_factor=hue_factor)
        expected = F.to_image(F.adjust_hue(F.to_pil_image(image), hue_factor=hue_factor))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2


class TestAdjustSaturation:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.adjust_saturation_image, make_image(dtype=dtype, device=device), saturation_factor=0.5)

    def test_kernel_video(self):
        check_kernel(F.adjust_saturation_video, make_video(), saturation_factor=0.5)

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_pil, make_video])
    def test_functional(self, make_input):
        check_functional(F.adjust_saturation, make_input(), saturation_factor=0.5)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_saturation_image, torch.Tensor),
            (F._adjust_saturation_image_pil, PIL.Image.Image),
            (F.adjust_saturation_image, tv_tensors.Image),
            (F.adjust_saturation_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_saturation, kernel=kernel, input_type=input_type)

    def test_functional_error(self):
        with pytest.raises(TypeError, match="permitted channel values are 1 or 3"):
            F.adjust_saturation(make_image(color_space="RGBA"), saturation_factor=0.5)

        with pytest.raises(ValueError, match="is not non-negative"):
            F.adjust_saturation(make_image(), saturation_factor=-1)

    @pytest.mark.parametrize("saturation_factor", [0.1, 0.5, 1.0])
    def test_correctness_image(self, saturation_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_saturation(image, saturation_factor=saturation_factor)
        expected = F.to_image(F.adjust_saturation(F.to_pil_image(image), saturation_factor=saturation_factor))

        assert_close(actual, expected, rtol=0, atol=1)


class TestFiveTenCrop:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZE = (3, 5)

    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("kernel", [F.five_crop_image, F.ten_crop_image])
    def test_kernel_image(self, dtype, device, kernel):
        check_kernel(
            kernel,
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
            size=self.OUTPUT_SIZE,
            check_batched_vs_unbatched=False,
        )

    @pytest.mark.parametrize("kernel", [F.five_crop_video, F.ten_crop_video])
    def test_kernel_video(self, kernel):
        check_kernel(kernel, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZE, check_batched_vs_unbatched=False)

    def _functional_wrapper(self, fn):
        # This wrapper is needed to make five_crop / ten_crop compatible with check_functional, since that requires a
        # single output rather than a sequence.
        @functools.wraps(fn)
        def wrapper(*args, **kwargs):
            outputs = fn(*args, **kwargs)
            return outputs[0]

        return wrapper

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("functional", [F.five_crop, F.ten_crop])
    def test_functional(self, make_input, functional):
        check_functional(
            self._functional_wrapper(functional),
            make_input(self.INPUT_SIZE),
            size=self.OUTPUT_SIZE,
            check_scripted_smoke=False,
        )

    @pytest.mark.parametrize(
        ("functional", "kernel", "input_type"),
        [
            (F.five_crop, F.five_crop_image, torch.Tensor),
            (F.five_crop, F._five_crop_image_pil, PIL.Image.Image),
            (F.five_crop, F.five_crop_image, tv_tensors.Image),
            (F.five_crop, F.five_crop_video, tv_tensors.Video),
            (F.ten_crop, F.ten_crop_image, torch.Tensor),
            (F.ten_crop, F._ten_crop_image_pil, PIL.Image.Image),
            (F.ten_crop, F.ten_crop_image, tv_tensors.Image),
            (F.ten_crop, F.ten_crop_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, functional, kernel, input_type):
        check_functional_kernel_signature_match(functional, kernel=kernel, input_type=input_type)

    class _TransformWrapper(nn.Module):
        # This wrapper is needed to make FiveCrop / TenCrop compatible with check_transform, since that requires a
        # single output rather than a sequence.
        _v1_transform_cls = None

        def _extract_params_for_v1_transform(self):
            return dict(five_ten_crop_transform=self.five_ten_crop_transform)

        def __init__(self, five_ten_crop_transform):
            super().__init__()
            type(self)._v1_transform_cls = type(self)
            self.five_ten_crop_transform = five_ten_crop_transform

        def forward(self, input: torch.Tensor) -> torch.Tensor:
            outputs = self.five_ten_crop_transform(input)
            return outputs[0]

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("transform_cls", [transforms.FiveCrop, transforms.TenCrop])
    def test_transform(self, make_input, transform_cls):
4796
4797
4798
4799
4800
        check_transform(
            self._TransformWrapper(transform_cls(size=self.OUTPUT_SIZE)),
            make_input(self.INPUT_SIZE),
            check_sample_input=False,
        )
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838

    @pytest.mark.parametrize("make_input", [make_bounding_boxes, make_detection_mask])
    @pytest.mark.parametrize("transform_cls", [transforms.FiveCrop, transforms.TenCrop])
    def test_transform_error(self, make_input, transform_cls):
        transform = transform_cls(size=self.OUTPUT_SIZE)

        with pytest.raises(TypeError, match="not supported"):
            transform(make_input(self.INPUT_SIZE))

    @pytest.mark.parametrize("fn", [F.five_crop, transform_cls_to_functional(transforms.FiveCrop)])
    def test_correctness_image_five_crop(self, fn):
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8, device="cpu")

        actual = fn(image, size=self.OUTPUT_SIZE)
        expected = F.five_crop(F.to_pil_image(image), size=self.OUTPUT_SIZE)

        assert isinstance(actual, tuple)
        assert_equal(actual, [F.to_image(e) for e in expected])

    @pytest.mark.parametrize("fn_or_class", [F.ten_crop, transforms.TenCrop])
    @pytest.mark.parametrize("vertical_flip", [False, True])
    def test_correctness_image_ten_crop(self, fn_or_class, vertical_flip):
        if fn_or_class is transforms.TenCrop:
            fn = transform_cls_to_functional(fn_or_class, size=self.OUTPUT_SIZE, vertical_flip=vertical_flip)
            kwargs = dict()
        else:
            fn = fn_or_class
            kwargs = dict(size=self.OUTPUT_SIZE, vertical_flip=vertical_flip)

        image = make_image(self.INPUT_SIZE, dtype=torch.uint8, device="cpu")

        actual = fn(image, **kwargs)
        expected = F.ten_crop(F.to_pil_image(image), size=self.OUTPUT_SIZE, vertical_flip=vertical_flip)

        assert isinstance(actual, tuple)
        assert_equal(actual, [F.to_image(e) for e in expected])


4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
class TestColorJitter:
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, dtype, device):
        if make_input is make_image_pil and not (dtype is torch.uint8 and device == "cpu"):
            pytest.skip(
                "PIL image tests with parametrization other than dtype=torch.uint8 and device='cpu' "
                "will degenerate to that anyway."
            )

        check_transform(
            transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.25),
            make_input(dtype=dtype, device=device),
        )

    def test_transform_noop(self):
        input = make_image()
        input_version = input._version

        transform = transforms.ColorJitter()
        output = transform(input)

        assert output is input
        assert output.data_ptr() == input.data_ptr()
        assert output._version == input_version

    def test_transform_error(self):
        with pytest.raises(ValueError, match="must be non negative"):
            transforms.ColorJitter(brightness=-1)

        for brightness in [object(), [1, 2, 3]]:
            with pytest.raises(TypeError, match="single number or a sequence with length 2"):
                transforms.ColorJitter(brightness=brightness)

        with pytest.raises(ValueError, match="values should be between"):
            transforms.ColorJitter(brightness=(-1, 0.5))

        with pytest.raises(ValueError, match="values should be between"):
            transforms.ColorJitter(hue=1)

    @pytest.mark.parametrize("brightness", [None, 0.1, (0.2, 0.3)])
    @pytest.mark.parametrize("contrast", [None, 0.4, (0.5, 0.6)])
    @pytest.mark.parametrize("saturation", [None, 0.7, (0.8, 0.9)])
    @pytest.mark.parametrize("hue", [None, 0.3, (-0.1, 0.2)])
    def test_transform_correctness(self, brightness, contrast, saturation, hue):
        image = make_image(dtype=torch.uint8, device="cpu")

        transform = transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)

        with freeze_rng_state():
            torch.manual_seed(0)
            actual = transform(image)

            torch.manual_seed(0)
            expected = F.to_image(transform(F.to_pil_image(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955


class TestRgbToGrayscale:
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.rgb_to_grayscale_image, make_image(dtype=dtype, device=device))

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image])
    def test_functional(self, make_input):
        check_functional(F.rgb_to_grayscale, make_input())

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.rgb_to_grayscale_image, torch.Tensor),
            (F._rgb_to_grayscale_image_pil, PIL.Image.Image),
            (F.rgb_to_grayscale_image, tv_tensors.Image),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.rgb_to_grayscale, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("transform", [transforms.Grayscale(), transforms.RandomGrayscale(p=1)])
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image])
    def test_transform(self, transform, make_input):
        check_transform(transform, make_input())

    @pytest.mark.parametrize("num_output_channels", [1, 3])
    @pytest.mark.parametrize("fn", [F.rgb_to_grayscale, transform_cls_to_functional(transforms.Grayscale)])
    def test_image_correctness(self, num_output_channels, fn):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = fn(image, num_output_channels=num_output_channels)
        expected = F.to_image(F.rgb_to_grayscale(F.to_pil_image(image), num_output_channels=num_output_channels))

        assert_equal(actual, expected, rtol=0, atol=1)

    @pytest.mark.parametrize("num_input_channels", [1, 3])
    def test_random_transform_correctness(self, num_input_channels):
        image = make_image(
            color_space={
                1: "GRAY",
                3: "RGB",
            }[num_input_channels],
            dtype=torch.uint8,
            device="cpu",
        )

        transform = transforms.RandomGrayscale(p=1)

        actual = transform(image)
        expected = F.to_image(F.rgb_to_grayscale(F.to_pil_image(image), num_output_channels=num_input_channels))

        assert_equal(actual, expected, rtol=0, atol=1)
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019


class TestRandomZoomOut:
    # Tests are light because this largely relies on the already tested `pad` kernels.

    @pytest.mark.parametrize(
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_boxes,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
    )
    def test_transform(self, make_input):
        check_transform(transforms.RandomZoomOut(p=1), make_input())

    def test_transform_error(self):
        for side_range in [None, 1, [1, 2, 3]]:
            with pytest.raises(
                ValueError if isinstance(side_range, list) else TypeError, match="should be a sequence of length 2"
            ):
                transforms.RandomZoomOut(side_range=side_range)

        for side_range in [[0.5, 1.5], [2.0, 1.0]]:
            with pytest.raises(ValueError, match="Invalid side range"):
                transforms.RandomZoomOut(side_range=side_range)

    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
    @pytest.mark.parametrize(
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_boxes,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform_params_correctness(self, side_range, make_input, device):
        if make_input is make_image_pil and device != "cpu":
            pytest.skip("PIL image tests with parametrization device!='cpu' will degenerate to that anyway.")

        transform = transforms.RandomZoomOut(side_range=side_range)

        input = make_input()
        height, width = F.get_size(input)

        params = transform._get_params([input])
        assert "padding" in params

        padding = params["padding"]
        assert len(padding) == 4

        assert 0 <= padding[0] <= (side_range[1] - 1) * width
        assert 0 <= padding[1] <= (side_range[1] - 1) * height
        assert 0 <= padding[2] <= (side_range[1] - 1) * width
        assert 0 <= padding[3] <= (side_range[1] - 1) * height
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044


class TestRandomPhotometricDistort:
    # Tests are light because this largely relies on the already tested
    # `adjust_{brightness,contrast,saturation,hue}` and `permute_channels` kernels.

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, dtype, device):
        if make_input is make_image_pil and not (dtype is torch.uint8 and device == "cpu"):
            pytest.skip(
                "PIL image tests with parametrization other than dtype=torch.uint8 and device='cpu' "
                "will degenerate to that anyway."
            )

        check_transform(
            transforms.RandomPhotometricDistort(
                brightness=(0.3, 0.4), contrast=(0.5, 0.6), saturation=(0.7, 0.8), hue=(-0.1, 0.2), p=1
            ),
            make_input(dtype=dtype, device=device),
        )
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082


class TestScaleJitter:
    # Tests are light because this largely relies on the already tested `resize` kernels.

    INPUT_SIZE = (17, 11)
    TARGET_SIZE = (12, 13)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, device):
        if make_input is make_image_pil and device != "cpu":
            pytest.skip("PIL image tests with parametrization device!='cpu' will degenerate to that anyway.")

        check_transform(transforms.ScaleJitter(self.TARGET_SIZE), make_input(self.INPUT_SIZE, device=device))

    def test__get_params(self):
        input_size = self.INPUT_SIZE
        target_size = self.TARGET_SIZE
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
        params = transform._get_params([make_image(input_size)])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2
        height, width = size

        r_min = min(target_size[1] / input_size[0], target_size[0] / input_size[1]) * scale_range[0]
        r_max = min(target_size[1] / input_size[0], target_size[0] / input_size[1]) * scale_range[1]

        assert int(input_size[0] * r_min) <= height <= int(input_size[0] * r_max)
        assert int(input_size[1] * r_min) <= width <= int(input_size[1] * r_max)
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145


class TestLinearTransform:
    def _make_matrix_and_vector(self, input, *, device=None):
        device = device or input.device
        numel = math.prod(F.get_dimensions(input))
        transformation_matrix = torch.randn((numel, numel), device=device)
        mean_vector = torch.randn((numel,), device=device)
        return transformation_matrix, mean_vector

    def _sample_input_adapter(self, transform, input, device):
        return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}

    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, dtype, device):
        input = make_input(dtype=dtype, device=device)
        check_transform(
            transforms.LinearTransformation(*self._make_matrix_and_vector(input)),
            input,
            check_sample_input=self._sample_input_adapter,
        )

    def test_transform_error(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(transformation_matrix=torch.rand(2, 3), mean_vector=torch.rand(2))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(transformation_matrix=torch.rand(2, 2), mean_vector=torch.rand(1))

        for matrix_dtype, vector_dtype in [(torch.float32, torch.float64), (torch.float64, torch.float32)]:
            with pytest.raises(ValueError, match="Input tensors should have the same dtype"):
                transforms.LinearTransformation(
                    transformation_matrix=torch.rand(2, 2, dtype=matrix_dtype),
                    mean_vector=torch.rand(2, dtype=vector_dtype),
                )

        image = make_image()
        transform = transforms.LinearTransformation(transformation_matrix=torch.rand(2, 2), mean_vector=torch.rand(2))
        with pytest.raises(ValueError, match="Input tensor and transformation matrix have incompatible shape"):
            transform(image)

        transform = transforms.LinearTransformation(*self._make_matrix_and_vector(image))
        with pytest.raises(TypeError, match="does not support PIL images"):
            transform(F.to_pil_image(image))

    @needs_cuda
    def test_transform_error_cuda(self):
        for matrix_device, vector_device in [("cuda", "cpu"), ("cpu", "cuda")]:
            with pytest.raises(ValueError, match="Input tensors should be on the same device"):
                transforms.LinearTransformation(
                    transformation_matrix=torch.rand(2, 2, device=matrix_device),
                    mean_vector=torch.rand(2, device=vector_device),
                )

        for input_device, param_device in [("cuda", "cpu"), ("cpu", "cuda")]:
            input = make_image(device=input_device)
            transform = transforms.LinearTransformation(*self._make_matrix_and_vector(input, device=param_device))
            with pytest.raises(
                ValueError, match="Input tensor should be on the same device as transformation matrix and mean vector"
            ):
                transform(input)
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224


def make_image_numpy(*args, **kwargs):
    image = make_image_tensor(*args, **kwargs)
    return image.permute((1, 2, 0)).numpy()


class TestToImage:
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_image_numpy])
    @pytest.mark.parametrize("fn", [F.to_image, transform_cls_to_functional(transforms.ToImage)])
    def test_functional_and_transform(self, make_input, fn):
        input = make_input()
        output = fn(input)

        assert isinstance(output, tv_tensors.Image)

        input_size = list(input.shape[:2]) if isinstance(input, np.ndarray) else F.get_size(input)
        assert F.get_size(output) == input_size

        if isinstance(input, torch.Tensor):
            assert output.data_ptr() == input.data_ptr()

    def test_functional_error(self):
        with pytest.raises(TypeError, match="Input can either be a pure Tensor, a numpy array, or a PIL image"):
            F.to_image(object())


class TestToPILImage:
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_image_numpy])
    @pytest.mark.parametrize("color_space", ["RGB", "GRAY"])
    @pytest.mark.parametrize("fn", [F.to_pil_image, transform_cls_to_functional(transforms.ToPILImage)])
    def test_functional_and_transform(self, make_input, color_space, fn):
        input = make_input(color_space=color_space)
        output = fn(input)

        assert isinstance(output, PIL.Image.Image)

        input_size = list(input.shape[:2]) if isinstance(input, np.ndarray) else F.get_size(input)
        assert F.get_size(output) == input_size

    def test_functional_error(self):
        with pytest.raises(TypeError, match="pic should be Tensor or ndarray"):
            F.to_pil_image(object())

        for ndim in [1, 4]:
            with pytest.raises(ValueError, match="pic should be 2/3 dimensional"):
                F.to_pil_image(torch.empty(*[1] * ndim))

        with pytest.raises(ValueError, match="pic should not have > 4 channels"):
            num_channels = 5
            F.to_pil_image(torch.empty(num_channels, 1, 1))


class TestToTensor:
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_image_numpy])
    def test_smoke(self, make_input):
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()

        input = make_input()
        output = transform(input)

        input_size = list(input.shape[:2]) if isinstance(input, np.ndarray) else F.get_size(input)
        assert F.get_size(output) == input_size


class TestPILToTensor:
    @pytest.mark.parametrize("color_space", ["RGB", "GRAY"])
    @pytest.mark.parametrize("fn", [F.pil_to_tensor, transform_cls_to_functional(transforms.PILToTensor)])
    def test_functional_and_transform(self, color_space, fn):
        input = make_image_pil(color_space=color_space)
        output = fn(input)

        assert isinstance(output, torch.Tensor) and not isinstance(output, tv_tensors.TVTensor)
        assert F.get_size(output) == F.get_size(input)

    def test_functional_error(self):
        with pytest.raises(TypeError, match="pic should be PIL Image"):
            F.pil_to_tensor(object())
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242


class TestLambda:
    @pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])
    @pytest.mark.parametrize("types", [(), (torch.Tensor, np.ndarray)])
    def test_transform(self, input, types):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn, *types)
        output = transform(input)

        assert output is input
        assert was_applied is (not types or isinstance(input, types))