test_transforms_v2_refactored.py 92.1 KB
Newer Older
1
import contextlib
2
import decimal
3
import inspect
Philip Meier's avatar
Philip Meier committed
4
import math
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import re
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
19
    freeze_rng_state,
20
21
22
23
    ignore_jit_no_profile_information_warning,
    make_bounding_box,
    make_detection_mask,
    make_image,
24
25
    make_image_pil,
    make_image_tensor,
26
27
    make_segmentation_mask,
    make_video,
28
    make_video_tensor,
29
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
30
    set_rng_seed,
31
)
32
33

from torch import nn
34
from torch.testing import assert_close
35
from torch.utils._pytree import tree_map
36
from torch.utils.data import DataLoader, default_collate
37
from torchvision import datapoints
Philip Meier's avatar
Philip Meier committed
38
39

from torchvision.transforms._functional_tensor import _max_value as get_max_value
40
41
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
42
from torchvision.transforms.v2.functional._utils import _get_kernel, _KERNEL_REGISTRY, _noop, _register_kernel_internal
43
44


Nicolas Hug's avatar
Nicolas Hug committed
45
46
47
48
49
50
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

68
69
70
71
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
72
73
74
75
76

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
77
def _script(obj):
78
    try:
79
        return torch.jit.script(obj)
80
    except Exception as error:
81
82
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
139
    expect_same_dtype=True,
140
141
142
143
144
145
146
147
148
149
150
151
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

152
153
    if expect_same_dtype:
        assert output.dtype == input.dtype
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


def _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs):
    """Checks if the dispatcher can be scripted and the scripted version can be called without error."""
    if not isinstance(input, datapoints.Image):
        return

    dispatcher_scripted = _script(dispatcher)
    with ignore_jit_no_profile_information_warning():
        dispatcher_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)


def check_dispatcher(
    dispatcher,
178
    # TODO: remove this parameter
179
180
181
182
183
184
    kernel,
    input,
    *args,
    check_scripted_smoke=True,
    **kwargs,
):
185
    unknown_input = object()
186
187
188
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
        dispatcher(unknown_input, *args, **kwargs)

189
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
190
        output = dispatcher(input, *args, **kwargs)
191
192
193

        spy.assert_any_call(f"{dispatcher.__module__}.{dispatcher.__name__}")

194
195
196
197
198
    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBoxes):
        assert output.format == input.format

199
200
201
202
    if check_scripted_smoke:
        _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs)


203
def check_dispatcher_kernel_signature_match(dispatcher, *, kernel, input_type):
204
    """Checks if the signature of the dispatcher matches the kernel signature."""
205
206
    dispatcher_params = list(inspect.signature(dispatcher).parameters.values())[1:]
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
207

208
    if issubclass(input_type, datapoints.Datapoint):
209
210
        # We filter out metadata that is implicitly passed to the dispatcher through the input datapoint, but has to be
        # explicitly passed to the kernel.
211
212
213
214
        explicit_metadata = {
            datapoints.BoundingBoxes: {"format", "canvas_size"},
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

    dispatcher_params = iter(dispatcher_params)
    for dispatcher_param, kernel_param in zip(dispatcher_params, kernel_params):
        try:
            # In general, the dispatcher parameters are a superset of the kernel parameters. Thus, we filter out
            # dispatcher parameters that have no kernel equivalent while keeping the order intact.
            while dispatcher_param.name != kernel_param.name:
                dispatcher_param = next(dispatcher_params)
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
                f"has no corresponding parameter on the dispatcher `{dispatcher.__name__}`."
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
            dispatcher_param._annotation = kernel_param._annotation = inspect.Parameter.empty

        assert dispatcher_param == kernel_param


def _check_transform_v1_compatibility(transform, input):
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
    ``get_params`` method, is scriptable, and the scripted version can be called without error."""
240
    if transform._v1_transform_cls is None:
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        return

    if type(input) is not torch.Tensor:
        return

    if hasattr(transform._v1_transform_cls, "get_params"):
        assert type(transform).get_params is transform._v1_transform_cls.get_params

    scripted_transform = _script(transform)
    with ignore_jit_no_profile_information_warning():
        scripted_transform(input)


def check_transform(transform_cls, input, *args, **kwargs):
    transform = transform_cls(*args, **kwargs)

    output = transform(input)
    assert isinstance(output, type(input))

260
    if isinstance(input, datapoints.BoundingBoxes):
261
262
263
264
265
        assert output.format == input.format

    _check_transform_v1_compatibility(transform, input)


266
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
267
    def wrapper(input, *args, **kwargs):
268
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
269
270
271
272
273
274
275
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


Philip Meier's avatar
Philip Meier committed
346
def reference_affine_bounding_boxes_helper(bounding_boxes, *, format, canvas_size, affine_matrix):
347
    def transform(bbox):
348
349
350
351
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
352
        bbox_xyxy = F.convert_format_bounding_boxes(
353
            bbox.as_subclass(torch.Tensor),
354
            old_format=format,
355
356
357
358
359
360
361
362
363
364
365
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
        )
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
366
        transformed_points = np.matmul(points, affine_matrix.T)
367
368
369
370
371
372
373
374
375
        out_bbox = torch.tensor(
            [
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
            ],
            dtype=bbox_xyxy.dtype,
        )
376
        out_bbox = F.convert_format_bounding_boxes(
377
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
378
379
        )
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
Philip Meier's avatar
Philip Meier committed
380
        out_bbox = F.clamp_bounding_boxes(out_bbox, format=format, canvas_size=canvas_size)
381
382
383
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox

384
    return torch.stack([transform(b) for b in bounding_boxes.reshape(-1, 4).unbind()]).reshape(bounding_boxes.shape)
385
386


387
@pytest.mark.parametrize(
388
    ("dispatcher", "registered_input_types"),
389
390
    [(dispatcher, set(registry.keys())) for dispatcher, registry in _KERNEL_REGISTRY.items()],
)
391
def test_exhaustive_kernel_registration(dispatcher, registered_input_types):
392
    missing = {
393
394
        torch.Tensor,
        PIL.Image.Image,
395
396
397
398
        datapoints.Image,
        datapoints.BoundingBoxes,
        datapoints.Mask,
        datapoints.Video,
399
    } - registered_input_types
400
    if missing:
401
        names = sorted(str(t) for t in missing)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        raise AssertionError(
            "\n".join(
                [
                    f"The dispatcher '{dispatcher.__name__}' has no kernel registered for",
                    "",
                    *[f"- {name}" for name in names],
                    "",
                    f"If available, register the kernels with @_register_kernel_internal({dispatcher.__name__}, ...).",
                    f"If not, register explicit no-ops with @_register_explicit_noop({', '.join(names)})",
                ]
            )
        )


416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
            F.resize_image_tensor,
477
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
478
479
480
481
482
483
484
485
486
487
488
489
490
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
491
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
492
493
494
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

495
        bounding_boxes = make_bounding_box(
496
            format=format,
Philip Meier's avatar
Philip Meier committed
497
            canvas_size=self.INPUT_SIZE,
498
499
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
500
        )
501
        check_kernel(
502
503
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
504
            canvas_size=bounding_boxes.canvas_size,
505
506
507
508
509
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

510
511
512
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
513
514

    def test_kernel_video(self):
515
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
516
517
518

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
519
        ("kernel", "make_input"),
520
        [
521
522
523
            (F.resize_image_tensor, make_image_tensor),
            (F.resize_image_pil, make_image_pil),
            (F.resize_image_tensor, make_image),
524
            (F.resize_bounding_boxes, make_bounding_box),
525
526
            (F.resize_mask, make_segmentation_mask),
            (F.resize_video, make_video),
527
528
        ],
    )
529
    def test_dispatcher(self, size, kernel, make_input):
530
531
532
        check_dispatcher(
            F.resize,
            kernel,
533
            make_input(self.INPUT_SIZE),
534
535
536
537
538
539
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
540
        ("kernel", "input_type"),
541
        [
542
543
544
            (F.resize_image_tensor, torch.Tensor),
            (F.resize_image_pil, PIL.Image.Image),
            (F.resize_image_tensor, datapoints.Image),
545
            (F.resize_bounding_boxes, datapoints.BoundingBoxes),
546
547
            (F.resize_mask, datapoints.Mask),
            (F.resize_video, datapoints.Video),
548
549
550
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
551
        check_dispatcher_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
552
553
554
555

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
556
557
558
559
560
561
562
563
564
565
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
566
    )
567
568
    def test_transform(self, size, device, make_input):
        check_transform(transforms.Resize, make_input(self.INPUT_SIZE, device=device), size=size, antialias=True)
569
570

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
571
572
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
573
574
575
576
577
578
579
580
581
582
583
584
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

585
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
586
587
588
589
590
591
592
593
594

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
        expected = F.to_image_tensor(
            F.resize(F.to_image_pil(image), size=size, interpolation=interpolation, **max_size_kwarg)
        )

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

595
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
596
        old_height, old_width = bounding_boxes.canvas_size
597
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
598
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
599
600
601
        )

        if (old_height, old_width) == (new_height, new_width):
602
            return bounding_boxes
603
604
605
606
607
608

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
609
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
610
611
        )

612
613
614
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
615
            canvas_size=(new_height, new_width),
616
617
            affine_matrix=affine_matrix,
        )
Philip Meier's avatar
Philip Meier committed
618
        return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes, canvas_size=(new_height, new_width))
619
620
621
622
623

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
624
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
625
626
627
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

Philip Meier's avatar
Philip Meier committed
628
        bounding_boxes = make_bounding_box(format=format, canvas_size=self.INPUT_SIZE)
629

630
631
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
632

633
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
634
635
636
637
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
638
639
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
640
    )
641
642
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

    def test_dispatcher_pil_antialias_warning(self):
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
658
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
659
660
661

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
662
663
664
665
666
667
668
669
670
671
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
672
    )
673
    def test_max_size_error(self, size, make_input):
674
675
676
677
678
679
680
681
682
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
683
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
684
685
686

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
687
688
        "make_input",
        [make_image_tensor, make_image, make_video],
689
    )
690
    def test_antialias_warning(self, interpolation, make_input):
691
692
693
694
695
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
696
            F.resize(
697
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
698
699
700
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
701
702
703

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
704
705
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
706
    )
707
708
709
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

710
711
712
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
713
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
731
732
733
734
735
736
737
738
739
740
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
741
    )
742
743
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
744

Philip Meier's avatar
Philip Meier committed
745
        output = F.resize(input, size=F.get_size(input), antialias=True)
746
747
748

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
749
        if isinstance(input, datapoints.Datapoint):
750
751
752
753
754
755
756
757
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
            # datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
758
759
760
761
762
763
764
765
766
767
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
768
    )
769
    def test_no_regression_5405(self, make_input):
770
771
772
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

773
        input = make_input(self.INPUT_SIZE)
774

Philip Meier's avatar
Philip Meier committed
775
        size = min(F.get_size(input))
776
777
778
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
779
        assert max(F.get_size(output)) == max_size
780
781
782
783
784
785


class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
786
        check_kernel(F.horizontal_flip_image_tensor, make_image(dtype=dtype, device=device))
787
788
789
790

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
791
792
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
793
        check_kernel(
794
795
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
796
            format=format,
Philip Meier's avatar
Philip Meier committed
797
            canvas_size=bounding_boxes.canvas_size,
798
799
        )

800
801
802
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
803
804

    def test_kernel_video(self):
805
        check_kernel(F.horizontal_flip_video, make_video())
806
807

    @pytest.mark.parametrize(
808
        ("kernel", "make_input"),
809
        [
810
811
812
            (F.horizontal_flip_image_tensor, make_image_tensor),
            (F.horizontal_flip_image_pil, make_image_pil),
            (F.horizontal_flip_image_tensor, make_image),
813
            (F.horizontal_flip_bounding_boxes, make_bounding_box),
814
815
            (F.horizontal_flip_mask, make_segmentation_mask),
            (F.horizontal_flip_video, make_video),
816
817
        ],
    )
818
819
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.horizontal_flip, kernel, make_input())
820
821

    @pytest.mark.parametrize(
822
        ("kernel", "input_type"),
823
        [
824
825
826
            (F.horizontal_flip_image_tensor, torch.Tensor),
            (F.horizontal_flip_image_pil, PIL.Image.Image),
            (F.horizontal_flip_image_tensor, datapoints.Image),
827
            (F.horizontal_flip_bounding_boxes, datapoints.BoundingBoxes),
828
829
            (F.horizontal_flip_mask, datapoints.Mask),
            (F.horizontal_flip_video, datapoints.Video),
830
831
832
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
833
        check_dispatcher_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
834
835

    @pytest.mark.parametrize(
836
837
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
838
839
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
840
841
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomHorizontalFlip, make_input(device=device), p=1)
842
843
844
845
846

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
847
        image = make_image(dtype=torch.uint8, device="cpu")
848
849
850
851
852
853

        actual = fn(image)
        expected = F.to_image_tensor(F.horizontal_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

854
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
855
856
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
857
                [-1, 0, bounding_boxes.canvas_size[1]],
858
859
                [0, 1, 0],
            ],
860
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
861
862
        )

863
864
865
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
866
            canvas_size=bounding_boxes.canvas_size,
867
868
869
            affine_matrix=affine_matrix,
        )

870
        return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes)
871
872
873
874
875

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
876
877
    def test_bounding_boxes_correctness(self, format, fn):
        bounding_boxes = make_bounding_box(format=format)
878

879
880
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
881
882
883
884

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
885
886
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
887
888
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
889
890
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
891
892
893
894
895
896

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
940
941
942
943
944
945
946
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
947
948
949
950
951
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
952
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
953
954
        self._check_kernel(
            F.affine_image_tensor,
955
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
956
957
958
959
960
961
962
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
963
964
965
966
967
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
968
969
970
971
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
972
973
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
974
        self._check_kernel(
975
976
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
977
            format=format,
Philip Meier's avatar
Philip Meier committed
978
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
979
980
981
982
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

983
984
985
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
986
987

    def test_kernel_video(self):
988
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
989
990

    @pytest.mark.parametrize(
991
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
992
        [
993
994
995
            (F.affine_image_tensor, make_image_tensor),
            (F.affine_image_pil, make_image_pil),
            (F.affine_image_tensor, make_image),
996
            (F.affine_bounding_boxes, make_bounding_box),
997
998
            (F.affine_mask, make_segmentation_mask),
            (F.affine_video, make_video),
Philip Meier's avatar
Philip Meier committed
999
1000
        ],
    )
1001
1002
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.affine, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1003
1004

    @pytest.mark.parametrize(
1005
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1006
        [
1007
1008
1009
            (F.affine_image_tensor, torch.Tensor),
            (F.affine_image_pil, PIL.Image.Image),
            (F.affine_image_tensor, datapoints.Image),
1010
            (F.affine_bounding_boxes, datapoints.BoundingBoxes),
1011
1012
            (F.affine_mask, datapoints.Mask),
            (F.affine_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1013
1014
1015
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
1016
        check_dispatcher_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1017
1018

    @pytest.mark.parametrize(
1019
1020
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1021
1022
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1023
1024
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

        check_transform(transforms.RandomAffine, input, **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES)

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1036
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1037
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1038
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1039

Philip Meier's avatar
Philip Meier committed
1040
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
        expected = F.to_image_tensor(
            F.affine(
                F.to_image_pil(image),
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1072
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1073
1074
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1075
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1076

Philip Meier's avatar
Philip Meier committed
1077
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
        return true_matrix

1114
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1115
        if center is None:
Philip Meier's avatar
Philip Meier committed
1116
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1117
1118
1119
1120
1121
1122

        affine_matrix = self._compute_affine_matrix(
            angle=angle, translate=translate, scale=scale, shear=shear, center=center
        )
        affine_matrix = affine_matrix[:2, :]

1123
1124
1125
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1126
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1138
1139
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1140
1141

        actual = F.affine(
1142
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1143
1144
1145
1146
1147
1148
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1149
1150
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1163
1164
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1165
1166
1167
1168

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1169
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1170
1171

        torch.manual_seed(seed)
1172
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1173

1174
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1175
1176
1177
1178
1179
1180
1181
1182
1183

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1184
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1185
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1259
1260
1261
1262
1263
1264


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
1265
        check_kernel(F.vertical_flip_image_tensor, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1266
1267
1268
1269

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1270
1271
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1272
        check_kernel(
1273
1274
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1275
            format=format,
Philip Meier's avatar
Philip Meier committed
1276
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1277
1278
        )

1279
1280
1281
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1282
1283

    def test_kernel_video(self):
1284
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1285
1286

    @pytest.mark.parametrize(
1287
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1288
        [
1289
1290
1291
            (F.vertical_flip_image_tensor, make_image_tensor),
            (F.vertical_flip_image_pil, make_image_pil),
            (F.vertical_flip_image_tensor, make_image),
1292
            (F.vertical_flip_bounding_boxes, make_bounding_box),
1293
1294
            (F.vertical_flip_mask, make_segmentation_mask),
            (F.vertical_flip_video, make_video),
Philip Meier's avatar
Philip Meier committed
1295
1296
        ],
    )
1297
1298
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.vertical_flip, kernel, make_input())
Philip Meier's avatar
Philip Meier committed
1299
1300

    @pytest.mark.parametrize(
1301
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1302
        [
1303
1304
1305
            (F.vertical_flip_image_tensor, torch.Tensor),
            (F.vertical_flip_image_pil, PIL.Image.Image),
            (F.vertical_flip_image_tensor, datapoints.Image),
1306
            (F.vertical_flip_bounding_boxes, datapoints.BoundingBoxes),
1307
1308
            (F.vertical_flip_mask, datapoints.Mask),
            (F.vertical_flip_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1309
1310
1311
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
1312
        check_dispatcher_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1313
1314

    @pytest.mark.parametrize(
1315
1316
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1317
1318
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1319
1320
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomVerticalFlip, make_input(device=device), p=1)
Philip Meier's avatar
Philip Meier committed
1321
1322
1323

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1324
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1325
1326
1327
1328
1329
1330

        actual = fn(image)
        expected = F.to_image_tensor(F.vertical_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

1331
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1332
1333
1334
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1335
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1336
            ],
1337
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
Philip Meier's avatar
Philip Meier committed
1338
1339
        )

1340
1341
1342
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1343
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1344
1345
1346
            affine_matrix=affine_matrix,
        )

1347
        return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes)
Philip Meier's avatar
Philip Meier committed
1348
1349
1350

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1351
1352
    def test_bounding_boxes_correctness(self, format, fn):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1353

1354
1355
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1356
1357
1358
1359

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1360
1361
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1362
1363
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1364
1365
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1366
1367
1368
1369
1370
1371

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
            F.rotate_image_tensor,
1408
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1421
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1422
1423
1424
1425
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1426
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1427
1428

        check_kernel(
1429
1430
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1431
            format=format,
Philip Meier's avatar
Philip Meier committed
1432
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1433
1434
1435
            **kwargs,
        )

1436
1437
1438
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1439
1440

    def test_kernel_video(self):
1441
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1442
1443

    @pytest.mark.parametrize(
1444
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1445
        [
1446
1447
1448
            (F.rotate_image_tensor, make_image_tensor),
            (F.rotate_image_pil, make_image_pil),
            (F.rotate_image_tensor, make_image),
1449
            (F.rotate_bounding_boxes, make_bounding_box),
1450
1451
            (F.rotate_mask, make_segmentation_mask),
            (F.rotate_video, make_video),
Philip Meier's avatar
Philip Meier committed
1452
1453
        ],
    )
1454
1455
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.rotate, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1456
1457

    @pytest.mark.parametrize(
1458
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1459
        [
1460
1461
1462
            (F.rotate_image_tensor, torch.Tensor),
            (F.rotate_image_pil, PIL.Image.Image),
            (F.rotate_image_tensor, datapoints.Image),
1463
            (F.rotate_bounding_boxes, datapoints.BoundingBoxes),
1464
1465
            (F.rotate_mask, datapoints.Mask),
            (F.rotate_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1466
1467
1468
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
1469
        check_dispatcher_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1470
1471

    @pytest.mark.parametrize(
1472
1473
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1474
1475
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1476
1477
1478
1479
    def test_transform(self, make_input, device):
        check_transform(
            transforms.RandomRotation, make_input(device=device), **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES
        )
Philip Meier's avatar
Philip Meier committed
1480
1481
1482
1483
1484
1485
1486
1487
1488

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1489
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
        expected = F.to_image_tensor(
            F.rotate(
                F.to_image_pil(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1511
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1532
    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1533
1534
1535
1536
1537
        # FIXME
        if expand:
            raise ValueError("This reference currently does not support expand=True")

        if center is None:
Philip Meier's avatar
Philip Meier committed
1538
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        cx = center[0]
        cy = center[1]
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
1549
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
Philip Meier's avatar
Philip Meier committed
1550
1551
        )

1552
1553
1554
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1555
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1566
1567
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1568

1569
1570
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1571
1572
1573
1574
1575
1576
1577
1578

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1579
1580
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1581
1582
1583
1584

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1585
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1586
1587

        torch.manual_seed(seed)
1588
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1589

1590
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.to_dtype_image_tensor, make_image_tensor),
            (F.to_dtype_image_tensor, make_image),
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            expect_same_dtype=input_dtype is output_dtype,
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.to_dtype_image_tensor, make_image_tensor),
            (F.to_dtype_image_tensor, make_image),
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_dispatcher(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_dispatcher(
            F.to_dtype,
            kernel,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
        check_transform(transforms.ToDtype, input, dtype=output_dtype, scale=scale)

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
Philip Meier's avatar
Philip Meier committed
1812
            "bbox": make_bounding_box(canvas_size=(H, W), dtype=bbox_dtype),
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype={datapoints.Mask: torch.int64, "others": None})(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
            dtype={type(sample["inpt"]): torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
            out = transforms.ToDtype(dtype={datapoints.Mask: torch.float32})(sample)
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, datapoints.Image: torch.float32})
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1875
1876


1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.adjust_brightness_image_tensor, make_image),
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.adjust_brightness_image_tensor, make_image_tensor),
            (F.adjust_brightness_image_pil, make_image_pil),
            (F.adjust_brightness_image_tensor, make_image),
            (F.adjust_brightness_video, make_video),
        ],
    )
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.adjust_brightness, kernel, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_brightness_image_tensor, torch.Tensor),
            (F.adjust_brightness_image_pil, PIL.Image.Image),
            (F.adjust_brightness_image_tensor, datapoints.Image),
            (F.adjust_brightness_video, datapoints.Video),
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
        expected = F.to_image_tensor(F.adjust_brightness(F.to_image_pil(image), brightness_factor=brightness_factor))

        torch.testing.assert_close(actual, expected)


1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
1942
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1943
1944
1945
1946
1947
1948
1949
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

1950
        cutmix_mixup = T(num_classes=num_classes)
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
1992
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
2004
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
            datapoints.Mask(torch.rand(12, 12)),
Philip Meier's avatar
Philip Meier committed
2016
            datapoints.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_dimensions_image_tensor, make_image_tensor),
            (F.get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image_tensor, make_image),
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_channels_image_tensor, make_image_tensor),
            (F.get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image_tensor, make_image),
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_size_image_tensor, make_image_tensor),
            (F.get_size_image_pil, make_image_pil),
            (F.get_size_image_tensor, make_image),
            (F.get_size_bounding_boxes, make_bounding_box),
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
        ("dispatcher", "make_input"),
        [
            (F.get_dimensions, make_bounding_box),
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
            (F.get_num_channels, make_bounding_box),
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
            (F.get_num_frames, make_bounding_box),
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
    def test_unsupported_types(self, dispatcher, make_input):
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
            dispatcher(input)
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180


class TestRegisterKernel:
    @pytest.mark.parametrize("dispatcher", (F.resize, "resize"))
    def test_register_kernel(self, dispatcher):
        class CustomDatapoint(datapoints.Datapoint):
            pass

        kernel_was_called = False

        @F.register_kernel(dispatcher, CustomDatapoint)
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

        my_dp = CustomDatapoint(torch.rand(3, 10, 10))
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
        t(datapoints.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)

2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
    def test_errors(self):
        with pytest.raises(ValueError, match="Could not find dispatcher with name"):
            F.register_kernel("bad_name", datapoints.Image)

        with pytest.raises(ValueError, match="Kernels can only be registered on dispatchers"):
            F.register_kernel(datapoints.Image, F.resize)

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
            F.register_kernel(F.resize, datapoints.Image)(F.resize_image_tensor)


class TestGetKernel:
    # We are using F.resize as dispatcher and the kernels below as proxy. Any other dispatcher / kernels combination
    # would also be fine
    KERNELS = {
        torch.Tensor: F.resize_image_tensor,
        PIL.Image.Image: F.resize_image_pil,
        datapoints.Image: F.resize_image_tensor,
        datapoints.BoundingBoxes: F.resize_bounding_boxes,
        datapoints.Mask: F.resize_mask,
        datapoints.Video: F.resize_video,
    }

    def test_unsupported_types(self):
        class MyTensor(torch.Tensor):
2209
2210
            pass

2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
        class MyPILImage(PIL.Image.Image):
            pass

        for input_type in [str, int, object, MyTensor, MyPILImage]:
            with pytest.raises(
                TypeError,
                match=(
                    "supports inputs of type torch.Tensor, PIL.Image.Image, "
                    "and subclasses of torchvision.datapoints.Datapoint"
                ),
            ):
                _get_kernel(F.resize, input_type)

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize dispatcher
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
            _register_kernel_internal(resize_with_pure_kernels, input_type, datapoint_wrapper=False)(kernel)

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

    def test_builtin_datapoint_subclass(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize dispatcher
        # here, register the kernels without wrapper, and check if subclasses of our builtin datapoints get dispatched
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

        class MyImage(datapoints.Image):
            pass

        class MyBoundingBoxes(datapoints.BoundingBoxes):
            pass

        class MyMask(datapoints.Mask):
            pass

        class MyVideo(datapoints.Video):
            pass

        for custom_datapoint_subclass in [
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
            builtin_datapoint_class = custom_datapoint_subclass.__mro__[1]
            builtin_datapoint_kernel = self.KERNELS[builtin_datapoint_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_datapoint_class, datapoint_wrapper=False)(
                builtin_datapoint_kernel
            )

            assert _get_kernel(resize_with_pure_kernels, custom_datapoint_subclass) is builtin_datapoint_kernel

    def test_datapoint_subclass(self):
        class MyDatapoint(datapoints.Datapoint):
            pass

        # Note that this will be an error in the future
        assert _get_kernel(F.resize, MyDatapoint) is _noop

        def resize_my_datapoint():
            pass

        _register_kernel_internal(F.resize, MyDatapoint, datapoint_wrapper=False)(resize_my_datapoint)

        assert _get_kernel(F.resize, MyDatapoint) is resize_my_datapoint
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340


class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.permute_channels_image_tensor, make_image_tensor),
            # FIXME
            # check_kernel does not support PIL kernel, but it should
            (F.permute_channels_image_tensor, make_image),
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.permute_channels_image_tensor, make_image_tensor),
            (F.permute_channels_image_pil, make_image_pil),
            (F.permute_channels_image_tensor, make_image),
            (F.permute_channels_video, make_video),
        ],
    )
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.permute_channels, kernel, make_input(), permutation=self._DEFAULT_PERMUTATION)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.permute_channels_image_tensor, torch.Tensor),
            (F.permute_channels_image_pil, PIL.Image.Image),
            (F.permute_channels_image_tensor, datapoints.Image),
            (F.permute_channels_video, datapoints.Video),
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
        return datapoints.Image(torch.concat(permuted_channel_images, dim=-3))

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)