test_transforms_v2_refactored.py 66.7 KB
Newer Older
1
2
import contextlib
import inspect
Philip Meier's avatar
Philip Meier committed
3
import math
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import re
from typing import get_type_hints
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
    ignore_jit_no_profile_information_warning,
    make_bounding_box,
    make_detection_mask,
    make_image,
23
24
    make_image_pil,
    make_image_tensor,
25
26
    make_segmentation_mask,
    make_video,
Nicolas Hug's avatar
Nicolas Hug committed
27
    set_rng_seed,
28
)
29
30

from torch import nn
31
32
from torch.testing import assert_close
from torchvision import datapoints
Philip Meier's avatar
Philip Meier committed
33
34

from torchvision.transforms._functional_tensor import _max_value as get_max_value
35
36
37
38
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F


Nicolas Hug's avatar
Nicolas Hug committed
39
40
41
42
43
44
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

    actual = kernel(input_cuda, *args, **kwargs)
    expected = kernel(input_cpu, *args, **kwargs)

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
def _script(fn):
    try:
        return torch.jit.script(fn)
    except Exception as error:
        raise AssertionError(f"Trying to `torch.jit.script` '{fn.__name__}' raised the error above.") from error


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

    assert output.dtype == input.dtype
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


def _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs):
    """Checks if the dispatcher can be scripted and the scripted version can be called without error."""
    if not isinstance(input, datapoints.Image):
        return

    dispatcher_scripted = _script(dispatcher)
    with ignore_jit_no_profile_information_warning():
        dispatcher_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)


def _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs):
    """Checks if the dispatcher correctly dispatches the input to the corresponding kernel and that the input type is
    preserved in doing so. For bounding boxes also checks that the format is preserved.
    """
    if isinstance(input, datapoints._datapoint.Datapoint):
        # Due to our complex dispatch architecture for datapoints, we cannot spy on the kernel directly,
        # but rather have to patch the `Datapoint.__F` attribute to contain the spied on kernel.
Philip Meier's avatar
Philip Meier committed
172
        spy = mock.MagicMock(wraps=kernel, name=kernel.__name__)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        with mock.patch.object(F, kernel.__name__, spy):
            # Due to Python's name mangling, the `Datapoint.__F` attribute is only accessible from inside the class.
            # Since that is not the case here, we need to prefix f"_{cls.__name__}"
            # See https://docs.python.org/3/tutorial/classes.html#private-variables for details
            with mock.patch.object(datapoints._datapoint.Datapoint, "_Datapoint__F", new=F):
                output = dispatcher(input, *args, **kwargs)

        spy.assert_called_once()
    else:
        with mock.patch(f"{dispatcher.__module__}.{kernel.__name__}", wraps=kernel) as spy:
            output = dispatcher(input, *args, **kwargs)

            spy.assert_called_once()

    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBox):
        assert output.format == input.format


def check_dispatcher(
    dispatcher,
    kernel,
    input,
    *args,
    check_scripted_smoke=True,
    check_dispatch=True,
    **kwargs,
):
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
        dispatcher(input, *args, **kwargs)

        spy.assert_any_call(f"{dispatcher.__module__}.{dispatcher.__name__}")

    unknown_input = object()
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
        dispatcher(unknown_input, *args, **kwargs)

    if check_scripted_smoke:
        _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs)

    if check_dispatch:
        _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs)


def _check_dispatcher_kernel_signature_match(dispatcher, *, kernel, input_type):
    """Checks if the signature of the dispatcher matches the kernel signature."""
    dispatcher_signature = inspect.signature(dispatcher)
    dispatcher_params = list(dispatcher_signature.parameters.values())[1:]

    kernel_signature = inspect.signature(kernel)
    kernel_params = list(kernel_signature.parameters.values())[1:]

    if issubclass(input_type, datapoints._datapoint.Datapoint):
        # We filter out metadata that is implicitly passed to the dispatcher through the input datapoint, but has to be
        # explicitly passed to the kernel.
        kernel_params = [param for param in kernel_params if param.name not in input_type.__annotations__.keys()]

    dispatcher_params = iter(dispatcher_params)
    for dispatcher_param, kernel_param in zip(dispatcher_params, kernel_params):
        try:
            # In general, the dispatcher parameters are a superset of the kernel parameters. Thus, we filter out
            # dispatcher parameters that have no kernel equivalent while keeping the order intact.
            while dispatcher_param.name != kernel_param.name:
                dispatcher_param = next(dispatcher_params)
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
                f"has no corresponding parameter on the dispatcher `{dispatcher.__name__}`."
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
            dispatcher_param._annotation = kernel_param._annotation = inspect.Parameter.empty

        assert dispatcher_param == kernel_param


def _check_dispatcher_datapoint_signature_match(dispatcher):
    """Checks if the signature of the dispatcher matches the corresponding method signature on the Datapoint class."""
    dispatcher_signature = inspect.signature(dispatcher)
    dispatcher_params = list(dispatcher_signature.parameters.values())[1:]

    datapoint_method = getattr(datapoints._datapoint.Datapoint, dispatcher.__name__)
    datapoint_signature = inspect.signature(datapoint_method)
    datapoint_params = list(datapoint_signature.parameters.values())[1:]

    # Some annotations in the `datapoints._datapoint` module
    # are stored as strings. The block below makes them concrete again (non-strings), so they can be compared to the
    # natively concrete dispatcher annotations.
    datapoint_annotations = get_type_hints(datapoint_method)
    for param in datapoint_params:
        param._annotation = datapoint_annotations[param.name]

    assert dispatcher_params == datapoint_params


def check_dispatcher_signatures_match(dispatcher, *, kernel, input_type):
    _check_dispatcher_kernel_signature_match(dispatcher, kernel=kernel, input_type=input_type)
    _check_dispatcher_datapoint_signature_match(dispatcher)


def _check_transform_v1_compatibility(transform, input):
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
    ``get_params`` method, is scriptable, and the scripted version can be called without error."""
    if not hasattr(transform, "_v1_transform_cls"):
        return

    if type(input) is not torch.Tensor:
        return

    if hasattr(transform._v1_transform_cls, "get_params"):
        assert type(transform).get_params is transform._v1_transform_cls.get_params

    scripted_transform = _script(transform)
    with ignore_jit_no_profile_information_warning():
        scripted_transform(input)


def check_transform(transform_cls, input, *args, **kwargs):
    transform = transform_cls(*args, **kwargs)

    output = transform(input)
    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBox):
        assert output.format == input.format

    _check_transform_v1_compatibility(transform, input)


305
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
306
    def wrapper(input, *args, **kwargs):
307
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
308
309
310
311
312
313
314
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


def reference_affine_bounding_box_helper(bounding_box, *, format, spatial_size, affine_matrix):
386
    def transform(bbox):
387
388
389
390
391
392
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
        bbox_xyxy = F.convert_format_bounding_box(
            bbox.as_subclass(torch.Tensor),
393
            old_format=format,
394
395
396
397
398
399
400
401
402
403
404
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
        )
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
405
        transformed_points = np.matmul(points, affine_matrix.T)
406
407
408
409
410
411
412
413
414
415
        out_bbox = torch.tensor(
            [
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
            ],
            dtype=bbox_xyxy.dtype,
        )
        out_bbox = F.convert_format_bounding_box(
416
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
417
418
        )
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
419
        out_bbox = F.clamp_bounding_box(out_bbox, format=format, spatial_size=spatial_size)
420
421
422
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox

423
    return torch.stack([transform(b) for b in bounding_box.reshape(-1, 4).unbind()]).reshape(bounding_box.shape)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486


class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
            F.resize_image_tensor,
487
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, format, size, use_max_size, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

505
506
507
508
509
        bounding_box = make_bounding_box(
            format=format,
            spatial_size=self.INPUT_SIZE,
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
510
        )
511
512
513
514
515
516
517
518
519
        check_kernel(
            F.resize_bounding_box,
            bounding_box,
            spatial_size=bounding_box.spatial_size,
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

520
521
522
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
523
524

    def test_kernel_video(self):
525
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
526
527
528

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
529
        ("kernel", "make_input"),
530
        [
531
532
533
534
535
536
            (F.resize_image_tensor, make_image_tensor),
            (F.resize_image_pil, make_image_pil),
            (F.resize_image_tensor, make_image),
            (F.resize_bounding_box, make_bounding_box),
            (F.resize_mask, make_segmentation_mask),
            (F.resize_video, make_video),
537
538
        ],
    )
539
    def test_dispatcher(self, size, kernel, make_input):
540
541
542
        check_dispatcher(
            F.resize,
            kernel,
543
            make_input(self.INPUT_SIZE),
544
545
546
547
548
549
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
550
        ("kernel", "input_type"),
551
        [
552
553
554
555
556
557
            (F.resize_image_tensor, torch.Tensor),
            (F.resize_image_pil, PIL.Image.Image),
            (F.resize_image_tensor, datapoints.Image),
            (F.resize_bounding_box, datapoints.BoundingBox),
            (F.resize_mask, datapoints.Mask),
            (F.resize_video, datapoints.Video),
558
559
560
561
562
563
564
565
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.resize, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
566
567
568
569
570
571
572
573
574
575
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
576
    )
577
578
    def test_transform(self, size, device, make_input):
        check_transform(transforms.Resize, make_input(self.INPUT_SIZE, device=device), size=size, antialias=True)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

    def _check_output_size(self, input, output, *, size, max_size):
        assert tuple(F.get_spatial_size(output)) == self._compute_output_size(
            input_size=F.get_spatial_size(input), size=size, max_size=max_size
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

595
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
        expected = F.to_image_tensor(
            F.resize(F.to_image_pil(image), size=size, interpolation=interpolation, **max_size_kwarg)
        )

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

    def _reference_resize_bounding_box(self, bounding_box, *, size, max_size=None):
        old_height, old_width = bounding_box.spatial_size
        new_height, new_width = self._compute_output_size(
            input_size=bounding_box.spatial_size, size=size, max_size=max_size
        )

        if (old_height, old_width) == (new_height, new_width):
            return bounding_box

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=(new_height, new_width),
            affine_matrix=affine_matrix,
        )
        return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes, spatial_size=(new_height, new_width))

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_bounding_box_correctness(self, format, size, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

638
        bounding_box = make_bounding_box(format=format, spatial_size=self.INPUT_SIZE)
639
640
641
642
643
644
645
646
647

        actual = fn(bounding_box, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_box(bounding_box, size=size, **max_size_kwarg)

        self._check_output_size(bounding_box, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
648
649
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
650
    )
651
652
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

    def test_dispatcher_pil_antialias_warning(self):
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
668
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
669
670
671

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
672
673
674
675
676
677
678
679
680
681
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
682
    )
683
    def test_max_size_error(self, size, make_input):
684
685
686
687
688
689
690
691
692
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
693
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
694
695
696

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
697
698
        "make_input",
        [make_image_tensor, make_image, make_video],
699
    )
700
    def test_antialias_warning(self, interpolation, make_input):
701
702
703
704
705
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
706
            F.resize(
707
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
708
709
710
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
711
712
713

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
714
715
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
716
    )
717
718
719
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

720
721
722
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
723
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
741
742
743
744
745
746
747
748
749
750
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
751
    )
752
753
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
754

755
        output = F.resize(input, size=F.get_spatial_size(input), antialias=True)
756
757
758
759
760
761
762
763
764
765
766
767

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
        if isinstance(input, datapoints._datapoint.Datapoint):
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
            # datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
768
769
770
771
772
773
774
775
776
777
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
778
    )
779
    def test_no_regression_5405(self, make_input):
780
781
782
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

783
        input = make_input(self.INPUT_SIZE)
784
785
786
787
788
789

        size = min(F.get_spatial_size(input))
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

        assert max(F.get_spatial_size(output)) == max_size
790
791
792
793
794
795


class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
796
        check_kernel(F.horizontal_flip_image_tensor, make_image(dtype=dtype, device=device))
797
798
799
800
801

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, format, dtype, device):
802
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
803
804
805
806
807
808
809
        check_kernel(
            F.horizontal_flip_bounding_box,
            bounding_box,
            format=format,
            spatial_size=bounding_box.spatial_size,
        )

810
811
812
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
813
814

    def test_kernel_video(self):
815
        check_kernel(F.horizontal_flip_video, make_video())
816
817

    @pytest.mark.parametrize(
818
        ("kernel", "make_input"),
819
        [
820
821
822
823
824
825
            (F.horizontal_flip_image_tensor, make_image_tensor),
            (F.horizontal_flip_image_pil, make_image_pil),
            (F.horizontal_flip_image_tensor, make_image),
            (F.horizontal_flip_bounding_box, make_bounding_box),
            (F.horizontal_flip_mask, make_segmentation_mask),
            (F.horizontal_flip_video, make_video),
826
827
        ],
    )
828
829
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.horizontal_flip, kernel, make_input())
830
831

    @pytest.mark.parametrize(
832
        ("kernel", "input_type"),
833
        [
834
835
836
837
838
839
            (F.horizontal_flip_image_tensor, torch.Tensor),
            (F.horizontal_flip_image_pil, PIL.Image.Image),
            (F.horizontal_flip_image_tensor, datapoints.Image),
            (F.horizontal_flip_bounding_box, datapoints.BoundingBox),
            (F.horizontal_flip_mask, datapoints.Mask),
            (F.horizontal_flip_video, datapoints.Video),
840
841
842
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
Philip Meier's avatar
Philip Meier committed
843
        check_dispatcher_signatures_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
844
845

    @pytest.mark.parametrize(
846
847
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
848
849
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
850
851
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomHorizontalFlip, make_input(device=device), p=1)
852
853
854
855
856

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
857
        image = make_image(dtype=torch.uint8, device="cpu")
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

        actual = fn(image)
        expected = F.to_image_tensor(F.horizontal_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

    def _reference_horizontal_flip_bounding_box(self, bounding_box):
        affine_matrix = np.array(
            [
                [-1, 0, bounding_box.spatial_size[1]],
                [0, 1, 0],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_bounding_box_correctness(self, format, fn):
887
        bounding_box = make_bounding_box(format=format)
888
889
890
891
892
893
894

        actual = fn(bounding_box)
        expected = self._reference_horizontal_flip_bounding_box(bounding_box)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
895
896
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
897
898
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
899
900
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
901
902
903
904
905
906

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
950
951
952
953
954
955
956
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
957
958
959
960
961
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
962
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
963
964
        self._check_kernel(
            F.affine_image_tensor,
965
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
966
967
968
969
970
971
972
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
973
974
975
976
977
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
978
979
980
981
982
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, param, value, format, dtype, device):
983
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
984
985
        self._check_kernel(
            F.affine_bounding_box,
986
            bounding_box,
Philip Meier's avatar
Philip Meier committed
987
988
989
990
991
992
            format=format,
            spatial_size=bounding_box.spatial_size,
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

993
994
995
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
996
997

    def test_kernel_video(self):
998
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
999
1000

    @pytest.mark.parametrize(
1001
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1002
        [
1003
1004
1005
1006
1007
1008
            (F.affine_image_tensor, make_image_tensor),
            (F.affine_image_pil, make_image_pil),
            (F.affine_image_tensor, make_image),
            (F.affine_bounding_box, make_bounding_box),
            (F.affine_mask, make_segmentation_mask),
            (F.affine_video, make_video),
Philip Meier's avatar
Philip Meier committed
1009
1010
        ],
    )
1011
1012
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.affine, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1013
1014

    @pytest.mark.parametrize(
1015
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1016
        [
1017
1018
1019
1020
1021
1022
            (F.affine_image_tensor, torch.Tensor),
            (F.affine_image_pil, PIL.Image.Image),
            (F.affine_image_tensor, datapoints.Image),
            (F.affine_bounding_box, datapoints.BoundingBox),
            (F.affine_mask, datapoints.Mask),
            (F.affine_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1023
1024
1025
1026
1027
1028
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.affine, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
1029
1030
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1031
1032
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1033
1034
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

        check_transform(transforms.RandomAffine, input, **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES)

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1046
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1047
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1048
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1049

Philip Meier's avatar
Philip Meier committed
1050
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
        expected = F.to_image_tensor(
            F.affine(
                F.to_image_pil(image),
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1082
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1083
1084
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1085
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1086

Philip Meier's avatar
Philip Meier committed
1087
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
        return true_matrix

    def _reference_affine_bounding_box(self, bounding_box, *, angle, translate, scale, shear, center):
        if center is None:
            center = [s * 0.5 for s in bounding_box.spatial_size[::-1]]

        affine_matrix = self._compute_affine_matrix(
            angle=angle, translate=translate, scale=scale, shear=shear, center=center
        )
        affine_matrix = affine_matrix[:2, :]

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    def test_functional_bounding_box_correctness(self, format, angle, translate, scale, shear, center):
1149
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

        actual = F.affine(
            bounding_box,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
        expected = self._reference_affine_bounding_box(
            bounding_box,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_box_correctness(self, format, center, seed):
1174
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
        params = transform._get_params([bounding_box])

        torch.manual_seed(seed)
        actual = transform(bounding_box)

        expected = self._reference_affine_bounding_box(bounding_box, **params, center=center)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1194
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        height, width = F.get_spatial_size(image)

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1269
1270
1271
1272
1273
1274


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
1275
        check_kernel(F.vertical_flip_image_tensor, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1276
1277
1278
1279
1280

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, format, dtype, device):
1281
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1282
1283
1284
1285
1286
1287
1288
        check_kernel(
            F.vertical_flip_bounding_box,
            bounding_box,
            format=format,
            spatial_size=bounding_box.spatial_size,
        )

1289
1290
1291
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1292
1293

    def test_kernel_video(self):
1294
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1295
1296

    @pytest.mark.parametrize(
1297
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1298
        [
1299
1300
1301
1302
1303
1304
            (F.vertical_flip_image_tensor, make_image_tensor),
            (F.vertical_flip_image_pil, make_image_pil),
            (F.vertical_flip_image_tensor, make_image),
            (F.vertical_flip_bounding_box, make_bounding_box),
            (F.vertical_flip_mask, make_segmentation_mask),
            (F.vertical_flip_video, make_video),
Philip Meier's avatar
Philip Meier committed
1305
1306
        ],
    )
1307
1308
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.vertical_flip, kernel, make_input())
Philip Meier's avatar
Philip Meier committed
1309
1310

    @pytest.mark.parametrize(
1311
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1312
        [
1313
1314
1315
1316
1317
1318
            (F.vertical_flip_image_tensor, torch.Tensor),
            (F.vertical_flip_image_pil, PIL.Image.Image),
            (F.vertical_flip_image_tensor, datapoints.Image),
            (F.vertical_flip_bounding_box, datapoints.BoundingBox),
            (F.vertical_flip_mask, datapoints.Mask),
            (F.vertical_flip_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1319
1320
1321
1322
1323
1324
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.vertical_flip, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
1325
1326
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1327
1328
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1329
1330
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomVerticalFlip, make_input(device=device), p=1)
Philip Meier's avatar
Philip Meier committed
1331
1332
1333

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1334
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

        actual = fn(image)
        expected = F.to_image_tensor(F.vertical_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

    def _reference_vertical_flip_bounding_box(self, bounding_box):
        affine_matrix = np.array(
            [
                [1, 0, 0],
                [0, -1, bounding_box.spatial_size[0]],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_bounding_box_correctness(self, format, fn):
1362
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1363
1364
1365
1366
1367
1368
1369

        actual = fn(bounding_box)
        expected = self._reference_vertical_flip_bounding_box(bounding_box)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1370
1371
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1372
1373
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1374
1375
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1376
1377
1378
1379
1380
1381

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
            F.rotate_image_tensor,
1418
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, param, value, format, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1436
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1437
1438
1439
1440
1441
1442
1443
1444
1445

        check_kernel(
            F.rotate_bounding_box,
            bounding_box,
            format=format,
            spatial_size=bounding_box.spatial_size,
            **kwargs,
        )

1446
1447
1448
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1449
1450

    def test_kernel_video(self):
1451
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1452
1453

    @pytest.mark.parametrize(
1454
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1455
        [
1456
1457
1458
1459
1460
1461
            (F.rotate_image_tensor, make_image_tensor),
            (F.rotate_image_pil, make_image_pil),
            (F.rotate_image_tensor, make_image),
            (F.rotate_bounding_box, make_bounding_box),
            (F.rotate_mask, make_segmentation_mask),
            (F.rotate_video, make_video),
Philip Meier's avatar
Philip Meier committed
1462
1463
        ],
    )
1464
1465
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.rotate, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1466
1467

    @pytest.mark.parametrize(
1468
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1469
        [
1470
1471
1472
1473
1474
1475
            (F.rotate_image_tensor, torch.Tensor),
            (F.rotate_image_pil, PIL.Image.Image),
            (F.rotate_image_tensor, datapoints.Image),
            (F.rotate_bounding_box, datapoints.BoundingBox),
            (F.rotate_mask, datapoints.Mask),
            (F.rotate_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1476
1477
1478
1479
1480
1481
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.rotate, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
1482
1483
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1484
1485
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1486
1487
1488
1489
    def test_transform(self, make_input, device):
        check_transform(
            transforms.RandomRotation, make_input(device=device), **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES
        )
Philip Meier's avatar
Philip Meier committed
1490
1491
1492
1493
1494
1495
1496
1497
1498

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1499
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
        expected = F.to_image_tensor(
            F.rotate(
                F.to_image_pil(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1521
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    def _reference_rotate_bounding_box(self, bounding_box, *, angle, expand, center):
        # FIXME
        if expand:
            raise ValueError("This reference currently does not support expand=True")

        if center is None:
            center = [s * 0.5 for s in bounding_box.spatial_size[::-1]]

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        cx = center[0]
        cy = center[1]
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    def test_functional_bounding_box_correctness(self, format, angle, expand, center):
1577
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

        actual = F.rotate(bounding_box, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_box(bounding_box, angle=angle, expand=expand, center=center)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_box_correctness(self, format, expand, center, seed):
1590
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
        params = transform._get_params([bounding_box])

        torch.manual_seed(seed)
        actual = transform(bounding_box)

        expected = self._reference_rotate_bounding_box(bounding_box, **params, expand=expand, center=center)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label