test_transforms_v2_refactored.py 89.2 KB
Newer Older
1
import contextlib
2
import decimal
3
import inspect
Philip Meier's avatar
Philip Meier committed
4
import math
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import re
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
19
    freeze_rng_state,
20
21
22
23
    ignore_jit_no_profile_information_warning,
    make_bounding_box,
    make_detection_mask,
    make_image,
24
25
    make_image_pil,
    make_image_tensor,
26
27
    make_segmentation_mask,
    make_video,
28
    make_video_tensor,
29
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
30
    set_rng_seed,
31
)
32
33

from torch import nn
34
from torch.testing import assert_close
35
from torch.utils._pytree import tree_map
36
from torch.utils.data import DataLoader, default_collate
37
from torchvision import datapoints
Philip Meier's avatar
Philip Meier committed
38
39

from torchvision.transforms._functional_tensor import _max_value as get_max_value
40
41
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
42
from torchvision.transforms.v2.functional._utils import _get_kernel, _register_kernel_internal
43
44


Nicolas Hug's avatar
Nicolas Hug committed
45
46
47
48
49
50
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

68
69
70
71
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
72
73
74
75
76

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
77
def _script(obj):
78
    try:
79
        return torch.jit.script(obj)
80
    except Exception as error:
81
82
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
139
    expect_same_dtype=True,
140
141
142
143
144
145
146
147
148
149
150
151
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

152
153
    if expect_same_dtype:
        assert output.dtype == input.dtype
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


def _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs):
    """Checks if the dispatcher can be scripted and the scripted version can be called without error."""
    if not isinstance(input, datapoints.Image):
        return

    dispatcher_scripted = _script(dispatcher)
    with ignore_jit_no_profile_information_warning():
        dispatcher_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)


Philip Meier's avatar
Philip Meier committed
176
def check_dispatcher(dispatcher, input, *args, check_scripted_smoke=True, **kwargs):
177
    unknown_input = object()
178
179
180
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
        dispatcher(unknown_input, *args, **kwargs)

181
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
182
        output = dispatcher(input, *args, **kwargs)
183
184
185

        spy.assert_any_call(f"{dispatcher.__module__}.{dispatcher.__name__}")

186
187
188
189
190
    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBoxes):
        assert output.format == input.format

191
192
193
194
    if check_scripted_smoke:
        _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs)


195
def check_dispatcher_kernel_signature_match(dispatcher, *, kernel, input_type):
196
    """Checks if the signature of the dispatcher matches the kernel signature."""
197
198
    dispatcher_params = list(inspect.signature(dispatcher).parameters.values())[1:]
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
199

200
    if issubclass(input_type, datapoints.Datapoint):
201
202
        # We filter out metadata that is implicitly passed to the dispatcher through the input datapoint, but has to be
        # explicitly passed to the kernel.
203
204
205
206
        explicit_metadata = {
            datapoints.BoundingBoxes: {"format", "canvas_size"},
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    dispatcher_params = iter(dispatcher_params)
    for dispatcher_param, kernel_param in zip(dispatcher_params, kernel_params):
        try:
            # In general, the dispatcher parameters are a superset of the kernel parameters. Thus, we filter out
            # dispatcher parameters that have no kernel equivalent while keeping the order intact.
            while dispatcher_param.name != kernel_param.name:
                dispatcher_param = next(dispatcher_params)
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
                f"has no corresponding parameter on the dispatcher `{dispatcher.__name__}`."
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
            dispatcher_param._annotation = kernel_param._annotation = inspect.Parameter.empty

        assert dispatcher_param == kernel_param


def _check_transform_v1_compatibility(transform, input):
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
    ``get_params`` method, is scriptable, and the scripted version can be called without error."""
232
    if transform._v1_transform_cls is None:
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        return

    if type(input) is not torch.Tensor:
        return

    if hasattr(transform._v1_transform_cls, "get_params"):
        assert type(transform).get_params is transform._v1_transform_cls.get_params

    scripted_transform = _script(transform)
    with ignore_jit_no_profile_information_warning():
        scripted_transform(input)


def check_transform(transform_cls, input, *args, **kwargs):
    transform = transform_cls(*args, **kwargs)

    output = transform(input)
    assert isinstance(output, type(input))

252
    if isinstance(input, datapoints.BoundingBoxes):
253
254
255
256
257
        assert output.format == input.format

    _check_transform_v1_compatibility(transform, input)


258
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
259
    def wrapper(input, *args, **kwargs):
260
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
261
262
263
264
265
266
267
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


Philip Meier's avatar
Philip Meier committed
338
def reference_affine_bounding_boxes_helper(bounding_boxes, *, format, canvas_size, affine_matrix):
339
    def transform(bbox):
340
341
342
343
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
344
        bbox_xyxy = F.convert_format_bounding_boxes(
345
            bbox.as_subclass(torch.Tensor),
346
            old_format=format,
347
348
349
350
351
352
353
354
355
356
357
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
        )
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
358
        transformed_points = np.matmul(points, affine_matrix.T)
359
360
361
362
363
364
365
366
367
        out_bbox = torch.tensor(
            [
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
            ],
            dtype=bbox_xyxy.dtype,
        )
368
        out_bbox = F.convert_format_bounding_boxes(
369
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
370
371
        )
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
Philip Meier's avatar
Philip Meier committed
372
        out_bbox = F.clamp_bounding_boxes(out_bbox, format=format, canvas_size=canvas_size)
373
374
375
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox

376
    return torch.stack([transform(b) for b in bounding_boxes.reshape(-1, 4).unbind()]).reshape(bounding_boxes.shape)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439


class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
            F.resize_image_tensor,
440
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
441
442
443
444
445
446
447
448
449
450
451
452
453
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
454
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
455
456
457
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

458
        bounding_boxes = make_bounding_box(
459
            format=format,
Philip Meier's avatar
Philip Meier committed
460
            canvas_size=self.INPUT_SIZE,
461
462
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
463
        )
464
        check_kernel(
465
466
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
467
            canvas_size=bounding_boxes.canvas_size,
468
469
470
471
472
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

473
474
475
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
476
477

    def test_kernel_video(self):
478
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
479
480
481

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
482
483
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
484
    )
Philip Meier's avatar
Philip Meier committed
485
    def test_dispatcher(self, size, make_input):
486
487
        check_dispatcher(
            F.resize,
488
            make_input(self.INPUT_SIZE),
489
490
491
492
493
494
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
495
        ("kernel", "input_type"),
496
        [
497
498
499
            (F.resize_image_tensor, torch.Tensor),
            (F.resize_image_pil, PIL.Image.Image),
            (F.resize_image_tensor, datapoints.Image),
500
            (F.resize_bounding_boxes, datapoints.BoundingBoxes),
501
502
            (F.resize_mask, datapoints.Mask),
            (F.resize_video, datapoints.Video),
503
504
505
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
506
        check_dispatcher_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
507
508
509
510

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
511
512
513
514
515
516
517
518
519
520
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
521
    )
522
523
    def test_transform(self, size, device, make_input):
        check_transform(transforms.Resize, make_input(self.INPUT_SIZE, device=device), size=size, antialias=True)
524
525

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
526
527
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
528
529
530
531
532
533
534
535
536
537
538
539
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

540
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
541
542
543
544
545
546
547
548
549

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
        expected = F.to_image_tensor(
            F.resize(F.to_image_pil(image), size=size, interpolation=interpolation, **max_size_kwarg)
        )

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

550
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
551
        old_height, old_width = bounding_boxes.canvas_size
552
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
553
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
554
555
556
        )

        if (old_height, old_width) == (new_height, new_width):
557
            return bounding_boxes
558
559
560
561
562
563

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
564
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
565
566
        )

567
568
569
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
570
            canvas_size=(new_height, new_width),
571
572
            affine_matrix=affine_matrix,
        )
Philip Meier's avatar
Philip Meier committed
573
        return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes, canvas_size=(new_height, new_width))
574
575
576
577
578

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
579
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
580
581
582
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

Philip Meier's avatar
Philip Meier committed
583
        bounding_boxes = make_bounding_box(format=format, canvas_size=self.INPUT_SIZE)
584

585
586
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
587

588
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
589
590
591
592
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
593
594
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
595
    )
596
597
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

    def test_dispatcher_pil_antialias_warning(self):
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
613
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
614
615
616

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
617
618
619
620
621
622
623
624
625
626
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
627
    )
628
    def test_max_size_error(self, size, make_input):
629
630
631
632
633
634
635
636
637
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
638
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
639
640
641

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
642
643
        "make_input",
        [make_image_tensor, make_image, make_video],
644
    )
645
    def test_antialias_warning(self, interpolation, make_input):
646
647
648
649
650
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
651
            F.resize(
652
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
653
654
655
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
656
657
658

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
659
660
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
661
    )
662
663
664
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

665
666
667
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
668
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
686
687
688
689
690
691
692
693
694
695
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
696
    )
697
698
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
699

Philip Meier's avatar
Philip Meier committed
700
        output = F.resize(input, size=F.get_size(input), antialias=True)
701
702
703

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
704
        if isinstance(input, datapoints.Datapoint):
705
706
707
708
709
710
711
712
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
            # datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
713
714
715
716
717
718
719
720
721
722
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
723
    )
724
    def test_no_regression_5405(self, make_input):
725
726
727
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

728
        input = make_input(self.INPUT_SIZE)
729

Philip Meier's avatar
Philip Meier committed
730
        size = min(F.get_size(input))
731
732
733
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
734
        assert max(F.get_size(output)) == max_size
735
736
737
738
739
740


class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
741
        check_kernel(F.horizontal_flip_image_tensor, make_image(dtype=dtype, device=device))
742
743
744
745

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
746
747
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
748
        check_kernel(
749
750
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
751
            format=format,
Philip Meier's avatar
Philip Meier committed
752
            canvas_size=bounding_boxes.canvas_size,
753
754
        )

755
756
757
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
758
759

    def test_kernel_video(self):
760
        check_kernel(F.horizontal_flip_video, make_video())
761
762

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
763
764
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
765
    )
Philip Meier's avatar
Philip Meier committed
766
767
    def test_dispatcher(self, make_input):
        check_dispatcher(F.horizontal_flip, make_input())
768
769

    @pytest.mark.parametrize(
770
        ("kernel", "input_type"),
771
        [
772
773
774
            (F.horizontal_flip_image_tensor, torch.Tensor),
            (F.horizontal_flip_image_pil, PIL.Image.Image),
            (F.horizontal_flip_image_tensor, datapoints.Image),
775
            (F.horizontal_flip_bounding_boxes, datapoints.BoundingBoxes),
776
777
            (F.horizontal_flip_mask, datapoints.Mask),
            (F.horizontal_flip_video, datapoints.Video),
778
779
780
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
781
        check_dispatcher_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
782
783

    @pytest.mark.parametrize(
784
785
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
786
787
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
788
789
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomHorizontalFlip, make_input(device=device), p=1)
790
791
792
793
794

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
795
        image = make_image(dtype=torch.uint8, device="cpu")
796
797
798
799
800
801

        actual = fn(image)
        expected = F.to_image_tensor(F.horizontal_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

802
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
803
804
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
805
                [-1, 0, bounding_boxes.canvas_size[1]],
806
807
                [0, 1, 0],
            ],
808
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
809
810
        )

811
812
813
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
814
            canvas_size=bounding_boxes.canvas_size,
815
816
817
            affine_matrix=affine_matrix,
        )

818
        return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes)
819
820
821
822
823

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
824
825
    def test_bounding_boxes_correctness(self, format, fn):
        bounding_boxes = make_bounding_box(format=format)
826

827
828
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
829
830
831
832

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
833
834
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
835
836
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
837
838
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
839
840
841
842
843
844

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
888
889
890
891
892
893
894
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
895
896
897
898
899
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
900
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
901
902
        self._check_kernel(
            F.affine_image_tensor,
903
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
904
905
906
907
908
909
910
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
911
912
913
914
915
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
916
917
918
919
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
920
921
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
922
        self._check_kernel(
923
924
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
925
            format=format,
Philip Meier's avatar
Philip Meier committed
926
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
927
928
929
930
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

931
932
933
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
934
935

    def test_kernel_video(self):
936
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
937
938

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
939
940
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
941
    )
Philip Meier's avatar
Philip Meier committed
942
943
    def test_dispatcher(self, make_input):
        check_dispatcher(F.affine, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
944
945

    @pytest.mark.parametrize(
946
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
947
        [
948
949
950
            (F.affine_image_tensor, torch.Tensor),
            (F.affine_image_pil, PIL.Image.Image),
            (F.affine_image_tensor, datapoints.Image),
951
            (F.affine_bounding_boxes, datapoints.BoundingBoxes),
952
953
            (F.affine_mask, datapoints.Mask),
            (F.affine_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
954
955
956
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
957
        check_dispatcher_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
958
959

    @pytest.mark.parametrize(
960
961
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
962
963
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
964
965
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
966
967
968
969
970
971
972
973
974
975
976

        check_transform(transforms.RandomAffine, input, **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES)

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
977
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
978
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
979
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
980

Philip Meier's avatar
Philip Meier committed
981
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
        expected = F.to_image_tensor(
            F.affine(
                F.to_image_pil(image),
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1013
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1014
1015
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1016
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1017

Philip Meier's avatar
Philip Meier committed
1018
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
        return true_matrix

1055
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1056
        if center is None:
Philip Meier's avatar
Philip Meier committed
1057
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1058
1059
1060
1061
1062
1063

        affine_matrix = self._compute_affine_matrix(
            angle=angle, translate=translate, scale=scale, shear=shear, center=center
        )
        affine_matrix = affine_matrix[:2, :]

1064
1065
1066
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1067
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1079
1080
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1081
1082

        actual = F.affine(
1083
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1084
1085
1086
1087
1088
1089
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1090
1091
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1104
1105
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1106
1107
1108
1109

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1110
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1111
1112

        torch.manual_seed(seed)
1113
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1114

1115
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1116
1117
1118
1119
1120
1121
1122
1123
1124

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1125
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1126
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1200
1201
1202
1203
1204
1205


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
1206
        check_kernel(F.vertical_flip_image_tensor, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1207
1208
1209
1210

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1211
1212
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1213
        check_kernel(
1214
1215
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1216
            format=format,
Philip Meier's avatar
Philip Meier committed
1217
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1218
1219
        )

1220
1221
1222
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1223
1224

    def test_kernel_video(self):
1225
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1226
1227

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1228
1229
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1230
    )
Philip Meier's avatar
Philip Meier committed
1231
1232
    def test_dispatcher(self, make_input):
        check_dispatcher(F.vertical_flip, make_input())
Philip Meier's avatar
Philip Meier committed
1233
1234

    @pytest.mark.parametrize(
1235
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1236
        [
1237
1238
1239
            (F.vertical_flip_image_tensor, torch.Tensor),
            (F.vertical_flip_image_pil, PIL.Image.Image),
            (F.vertical_flip_image_tensor, datapoints.Image),
1240
            (F.vertical_flip_bounding_boxes, datapoints.BoundingBoxes),
1241
1242
            (F.vertical_flip_mask, datapoints.Mask),
            (F.vertical_flip_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1243
1244
1245
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
1246
        check_dispatcher_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1247
1248

    @pytest.mark.parametrize(
1249
1250
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1251
1252
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1253
1254
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomVerticalFlip, make_input(device=device), p=1)
Philip Meier's avatar
Philip Meier committed
1255
1256
1257

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1258
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1259
1260
1261
1262
1263
1264

        actual = fn(image)
        expected = F.to_image_tensor(F.vertical_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

1265
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1266
1267
1268
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1269
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1270
            ],
1271
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
Philip Meier's avatar
Philip Meier committed
1272
1273
        )

1274
1275
1276
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1277
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1278
1279
1280
            affine_matrix=affine_matrix,
        )

1281
        return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes)
Philip Meier's avatar
Philip Meier committed
1282
1283
1284

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1285
1286
    def test_bounding_boxes_correctness(self, format, fn):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1287

1288
1289
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1290
1291
1292
1293

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1294
1295
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1296
1297
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1298
1299
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1300
1301
1302
1303
1304
1305

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
            F.rotate_image_tensor,
1342
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1355
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1356
1357
1358
1359
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1360
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1361
1362

        check_kernel(
1363
1364
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1365
            format=format,
Philip Meier's avatar
Philip Meier committed
1366
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1367
1368
1369
            **kwargs,
        )

1370
1371
1372
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1373
1374

    def test_kernel_video(self):
1375
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1376
1377

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1378
1379
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1380
    )
Philip Meier's avatar
Philip Meier committed
1381
1382
    def test_dispatcher(self, make_input):
        check_dispatcher(F.rotate, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1383
1384

    @pytest.mark.parametrize(
1385
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1386
        [
1387
1388
1389
            (F.rotate_image_tensor, torch.Tensor),
            (F.rotate_image_pil, PIL.Image.Image),
            (F.rotate_image_tensor, datapoints.Image),
1390
            (F.rotate_bounding_boxes, datapoints.BoundingBoxes),
1391
1392
            (F.rotate_mask, datapoints.Mask),
            (F.rotate_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1393
1394
1395
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
1396
        check_dispatcher_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1397
1398

    @pytest.mark.parametrize(
1399
1400
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1401
1402
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1403
1404
1405
1406
    def test_transform(self, make_input, device):
        check_transform(
            transforms.RandomRotation, make_input(device=device), **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES
        )
Philip Meier's avatar
Philip Meier committed
1407
1408
1409
1410
1411
1412
1413
1414
1415

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1416
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
        expected = F.to_image_tensor(
            F.rotate(
                F.to_image_pil(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1438
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1459
    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1460
1461
1462
1463
1464
        # FIXME
        if expand:
            raise ValueError("This reference currently does not support expand=True")

        if center is None:
Philip Meier's avatar
Philip Meier committed
1465
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        cx = center[0]
        cy = center[1]
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
1476
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
Philip Meier's avatar
Philip Meier committed
1477
1478
        )

1479
1480
1481
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1482
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1493
1494
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1495

1496
1497
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1498
1499
1500
1501
1502
1503
1504
1505

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1506
1507
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1508
1509
1510
1511

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1512
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1513
1514

        torch.manual_seed(seed)
1515
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1516

1517
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.to_dtype_image_tensor, make_image_tensor),
            (F.to_dtype_image_tensor, make_image),
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            expect_same_dtype=input_dtype is output_dtype,
            dtype=output_dtype,
            scale=scale,
        )

Philip Meier's avatar
Philip Meier committed
1641
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
1642
1643
1644
1645
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
Philip Meier's avatar
Philip Meier committed
1646
    def test_dispatcher(self, make_input, input_dtype, output_dtype, device, scale):
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
        check_dispatcher(
            F.to_dtype,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
        check_transform(transforms.ToDtype, input, dtype=output_dtype, scale=scale)

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
Philip Meier's avatar
Philip Meier committed
1731
            "bbox": make_bounding_box(canvas_size=(H, W), dtype=bbox_dtype),
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype={datapoints.Mask: torch.int64, "others": None})(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
            dtype={type(sample["inpt"]): torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
            out = transforms.ToDtype(dtype={datapoints.Mask: torch.float32})(sample)
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, datapoints.Image: torch.float32})
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1794
1795


1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.adjust_brightness_image_tensor, make_image),
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

Philip Meier's avatar
Philip Meier committed
1812
1813
1814
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_dispatcher(self, make_input):
        check_dispatcher(F.adjust_brightness, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.adjust_brightness_image_tensor, torch.Tensor),
            (F.adjust_brightness_image_pil, PIL.Image.Image),
            (F.adjust_brightness_image_tensor, datapoints.Image),
            (F.adjust_brightness_video, datapoints.Video),
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
        expected = F.to_image_tensor(F.adjust_brightness(F.to_image_pil(image), brightness_factor=brightness_factor))

        torch.testing.assert_close(actual, expected)


1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
1853
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1854
1855
1856
1857
1858
1859
1860
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

1861
        cutmix_mixup = T(num_classes=num_classes)
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
1903
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
1915
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
            datapoints.Mask(torch.rand(12, 12)),
Philip Meier's avatar
Philip Meier committed
1927
            datapoints.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_dimensions_image_tensor, make_image_tensor),
            (F.get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image_tensor, make_image),
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_channels_image_tensor, make_image_tensor),
            (F.get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image_tensor, make_image),
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_size_image_tensor, make_image_tensor),
            (F.get_size_image_pil, make_image_pil),
            (F.get_size_image_tensor, make_image),
            (F.get_size_bounding_boxes, make_bounding_box),
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
        ("dispatcher", "make_input"),
        [
            (F.get_dimensions, make_bounding_box),
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
            (F.get_num_channels, make_bounding_box),
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
            (F.get_num_frames, make_bounding_box),
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
    def test_unsupported_types(self, dispatcher, make_input):
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
            dispatcher(input)
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091


class TestRegisterKernel:
    @pytest.mark.parametrize("dispatcher", (F.resize, "resize"))
    def test_register_kernel(self, dispatcher):
        class CustomDatapoint(datapoints.Datapoint):
            pass

        kernel_was_called = False

        @F.register_kernel(dispatcher, CustomDatapoint)
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

        my_dp = CustomDatapoint(torch.rand(3, 10, 10))
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
        t(datapoints.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
    def test_errors(self):
        with pytest.raises(ValueError, match="Could not find dispatcher with name"):
            F.register_kernel("bad_name", datapoints.Image)

        with pytest.raises(ValueError, match="Kernels can only be registered on dispatchers"):
            F.register_kernel(datapoints.Image, F.resize)

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

2102
        with pytest.raises(ValueError, match="cannot be registered for the builtin datapoint classes"):
2103
2104
            F.register_kernel(F.resize, datapoints.Image)(F.resize_image_tensor)

2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
        class CustomDatapoint(datapoints.Datapoint):
            pass

        def resize_custom_datapoint():
            pass

        F.register_kernel(F.resize, CustomDatapoint)(resize_custom_datapoint)

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
            F.register_kernel(F.resize, CustomDatapoint)(resize_custom_datapoint)

2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130

class TestGetKernel:
    # We are using F.resize as dispatcher and the kernels below as proxy. Any other dispatcher / kernels combination
    # would also be fine
    KERNELS = {
        torch.Tensor: F.resize_image_tensor,
        PIL.Image.Image: F.resize_image_pil,
        datapoints.Image: F.resize_image_tensor,
        datapoints.BoundingBoxes: F.resize_bounding_boxes,
        datapoints.Mask: F.resize_mask,
        datapoints.Video: F.resize_video,
    }

    def test_unsupported_types(self):
        class MyTensor(torch.Tensor):
2131
2132
            pass

2133
2134
2135
2136
        class MyPILImage(PIL.Image.Image):
            pass

        for input_type in [str, int, object, MyTensor, MyPILImage]:
2137
            with pytest.raises(TypeError, match="supports inputs of type"):
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
                _get_kernel(F.resize, input_type)

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize dispatcher
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
            _register_kernel_internal(resize_with_pure_kernels, input_type, datapoint_wrapper=False)(kernel)

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

    def test_builtin_datapoint_subclass(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize dispatcher
        # here, register the kernels without wrapper, and check if subclasses of our builtin datapoints get dispatched
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

        class MyImage(datapoints.Image):
            pass

        class MyBoundingBoxes(datapoints.BoundingBoxes):
            pass

        class MyMask(datapoints.Mask):
            pass

        class MyVideo(datapoints.Video):
            pass

        for custom_datapoint_subclass in [
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
            builtin_datapoint_class = custom_datapoint_subclass.__mro__[1]
            builtin_datapoint_kernel = self.KERNELS[builtin_datapoint_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_datapoint_class, datapoint_wrapper=False)(
                builtin_datapoint_kernel
            )

            assert _get_kernel(resize_with_pure_kernels, custom_datapoint_subclass) is builtin_datapoint_kernel

    def test_datapoint_subclass(self):
        class MyDatapoint(datapoints.Datapoint):
            pass

2190
2191
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, MyDatapoint)
2192
2193
2194
2195
2196
2197
2198

        def resize_my_datapoint():
            pass

        _register_kernel_internal(F.resize, MyDatapoint, datapoint_wrapper=False)(resize_my_datapoint)

        assert _get_kernel(F.resize, MyDatapoint) is resize_my_datapoint
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218


class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.permute_channels_image_tensor, make_image_tensor),
            # FIXME
            # check_kernel does not support PIL kernel, but it should
            (F.permute_channels_image_tensor, make_image),
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

Nicolas Hug's avatar
Nicolas Hug committed
2219
2220
2221
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    def test_dispatcher(self, make_input):
        check_dispatcher(F.permute_channels, make_input(), permutation=self._DEFAULT_PERMUTATION)
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.permute_channels_image_tensor, torch.Tensor),
            (F.permute_channels_image_pil, PIL.Image.Image),
            (F.permute_channels_image_tensor, datapoints.Image),
            (F.permute_channels_video, datapoints.Video),
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
        return datapoints.Image(torch.concat(permuted_channel_images, dim=-3))

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)