test_transforms_v2_refactored.py 98.5 KB
Newer Older
1
import contextlib
2
import decimal
3
import inspect
Philip Meier's avatar
Philip Meier committed
4
import math
5
import pickle
6
import re
7
from pathlib import Path
8
9
10
11
12
13
14
15
16
17
18
19
20
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
21
    freeze_rng_state,
22
    ignore_jit_no_profile_information_warning,
23
    make_bounding_boxes,
24
25
    make_detection_mask,
    make_image,
26
27
    make_image_pil,
    make_image_tensor,
28
29
    make_segmentation_mask,
    make_video,
30
    make_video_tensor,
31
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
32
    set_rng_seed,
33
)
34
35

from torch import nn
36
from torch.testing import assert_close
37
from torch.utils._pytree import tree_map
38
from torch.utils.data import DataLoader, default_collate
39
from torchvision import tv_tensors
Philip Meier's avatar
Philip Meier committed
40
41

from torchvision.transforms._functional_tensor import _max_value as get_max_value
42
43
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
44
from torchvision.transforms.v2.functional._utils import _get_kernel, _register_kernel_internal
45
46


Nicolas Hug's avatar
Nicolas Hug committed
47
48
49
50
51
52
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

70
71
72
73
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
74
75
76
77
78

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
79
def _script(obj):
80
    try:
81
        return torch.jit.script(obj)
82
    except Exception as error:
83
84
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
141
    expect_same_dtype=True,
142
143
144
145
146
147
148
149
150
151
152
153
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

154
155
    if expect_same_dtype:
        assert output.dtype == input.dtype
156
157
158
159
160
161
162
163
164
165
166
167
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


Nicolas Hug's avatar
Nicolas Hug committed
168
169
def _check_functional_scripted_smoke(functional, input, *args, **kwargs):
    """Checks if the functional can be scripted and the scripted version can be called without error."""
170
    if not isinstance(input, tv_tensors.Image):
171
172
        return

Nicolas Hug's avatar
Nicolas Hug committed
173
    functional_scripted = _script(functional)
174
    with ignore_jit_no_profile_information_warning():
Nicolas Hug's avatar
Nicolas Hug committed
175
        functional_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)
176
177


Nicolas Hug's avatar
Nicolas Hug committed
178
def check_functional(functional, input, *args, check_scripted_smoke=True, **kwargs):
179
    unknown_input = object()
180
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
Nicolas Hug's avatar
Nicolas Hug committed
181
        functional(unknown_input, *args, **kwargs)
182

183
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
Nicolas Hug's avatar
Nicolas Hug committed
184
        output = functional(input, *args, **kwargs)
185

Nicolas Hug's avatar
Nicolas Hug committed
186
        spy.assert_any_call(f"{functional.__module__}.{functional.__name__}")
187

188
189
    assert isinstance(output, type(input))

190
    if isinstance(input, tv_tensors.BoundingBoxes):
191
192
        assert output.format == input.format

193
    if check_scripted_smoke:
Nicolas Hug's avatar
Nicolas Hug committed
194
        _check_functional_scripted_smoke(functional, input, *args, **kwargs)
195
196


Nicolas Hug's avatar
Nicolas Hug committed
197
198
199
def check_functional_kernel_signature_match(functional, *, kernel, input_type):
    """Checks if the signature of the functional matches the kernel signature."""
    functional_params = list(inspect.signature(functional).parameters.values())[1:]
200
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
201

202
203
    if issubclass(input_type, tv_tensors.TVTensor):
        # We filter out metadata that is implicitly passed to the functional through the input tv_tensor, but has to be
204
        # explicitly passed to the kernel.
205
        explicit_metadata = {
206
            tv_tensors.BoundingBoxes: {"format", "canvas_size"},
207
208
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
209

Nicolas Hug's avatar
Nicolas Hug committed
210
211
    functional_params = iter(functional_params)
    for functional_param, kernel_param in zip(functional_params, kernel_params):
212
        try:
Nicolas Hug's avatar
Nicolas Hug committed
213
214
215
216
            # In general, the functional parameters are a superset of the kernel parameters. Thus, we filter out
            # functional parameters that have no kernel equivalent while keeping the order intact.
            while functional_param.name != kernel_param.name:
                functional_param = next(functional_params)
217
218
219
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
Nicolas Hug's avatar
Nicolas Hug committed
220
                f"has no corresponding parameter on the functional `{functional.__name__}`."
221
222
223
224
225
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
Nicolas Hug's avatar
Nicolas Hug committed
226
            functional_param._annotation = kernel_param._annotation = inspect.Parameter.empty
227

Nicolas Hug's avatar
Nicolas Hug committed
228
        assert functional_param == kernel_param
229
230


231
def _check_transform_v1_compatibility(transform, input, rtol, atol):
232
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
233
234
235
    ``get_params`` method that is the v1 equivalent, the output is close to v1, is scriptable, and the scripted version
    can be called without error."""
    if type(input) is not torch.Tensor or isinstance(input, PIL.Image.Image):
236
237
        return

238
239
    v1_transform_cls = transform._v1_transform_cls
    if v1_transform_cls is None:
240
241
        return

242
243
    if hasattr(v1_transform_cls, "get_params"):
        assert type(transform).get_params is v1_transform_cls.get_params
244

245
246
247
248
249
250
251
252
253
    v1_transform = v1_transform_cls(**transform._extract_params_for_v1_transform())

    with freeze_rng_state():
        output_v2 = transform(input)

    with freeze_rng_state():
        output_v1 = v1_transform(input)

    assert_close(output_v2, output_v1, rtol=rtol, atol=atol)
254

255
256
257
258
    if isinstance(input, PIL.Image.Image):
        return

    _script(v1_transform)(input)
259
260


261
def check_transform(transform, input, check_v1_compatibility=True):
262
263
    pickle.loads(pickle.dumps(transform))

264
265
266
    output = transform(input)
    assert isinstance(output, type(input))

267
    if isinstance(input, tv_tensors.BoundingBoxes):
268
269
        assert output.format == input.format

270
271
    if check_v1_compatibility:
        _check_transform_v1_compatibility(transform, input, **_to_tolerances(check_v1_compatibility))
272
273


274
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
275
    def wrapper(input, *args, **kwargs):
276
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
277
278
279
280
281
282
283
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


354
355
356
357
358
359
360
def reference_affine_bounding_boxes_helper(bounding_boxes, *, affine_matrix, new_canvas_size=None, clamp=True):
    format = bounding_boxes.format
    canvas_size = new_canvas_size or bounding_boxes.canvas_size

    def affine_bounding_boxes(bounding_boxes):
        dtype = bounding_boxes.dtype

361
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
362
363
        input_xyxy = F.convert_bounding_box_format(
            bounding_boxes.to(torch.float64, copy=True),
364
            old_format=format,
365
            new_format=tv_tensors.BoundingBoxFormat.XYXY,
366
367
            inplace=True,
        )
368
369
        x1, y1, x2, y2 = input_xyxy.squeeze(0).tolist()

370
371
        points = np.array(
            [
372
373
374
375
                [x1, y1, 1.0],
                [x2, y1, 1.0],
                [x1, y2, 1.0],
                [x2, y2, 1.0],
376
377
            ]
        )
378
379
380
        transformed_points = np.matmul(points, affine_matrix.astype(points.dtype).T)

        output_xyxy = torch.Tensor(
381
            [
382
383
384
385
386
                float(np.min(transformed_points[:, 0])),
                float(np.min(transformed_points[:, 1])),
                float(np.max(transformed_points[:, 0])),
                float(np.max(transformed_points[:, 1])),
            ]
387
        )
388
389

        output = F.convert_bounding_box_format(
390
            output_xyxy, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format
391
392
        )

393
394
395
396
397
398
399
400
401
402
        if clamp:
            # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
            output = F.clamp_bounding_boxes(
                output,
                format=format,
                canvas_size=canvas_size,
            ).to(dtype)

        return output

403
    return tv_tensors.BoundingBoxes(
404
405
406
407
408
409
        torch.cat([affine_bounding_boxes(b) for b in bounding_boxes.reshape(-1, 4).unbind()], dim=0).reshape(
            bounding_boxes.shape
        ),
        format=format,
        canvas_size=canvas_size,
    )
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471


class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
472
            F.resize_image,
473
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
474
475
476
477
478
479
480
481
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

482
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
483
484
485
486
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
487
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
488
489
490
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

491
        bounding_boxes = make_bounding_boxes(
492
            format=format,
Philip Meier's avatar
Philip Meier committed
493
            canvas_size=self.INPUT_SIZE,
494
495
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
496
        )
497
        check_kernel(
498
499
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
500
            canvas_size=bounding_boxes.canvas_size,
501
502
503
504
505
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

506
507
508
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
509
510

    def test_kernel_video(self):
511
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
512
513
514

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
515
        "make_input",
516
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
517
    )
Nicolas Hug's avatar
Nicolas Hug committed
518
519
    def test_functional(self, size, make_input):
        check_functional(
520
            F.resize,
521
            make_input(self.INPUT_SIZE),
522
523
524
525
526
527
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
528
        ("kernel", "input_type"),
529
        [
530
531
            (F.resize_image, torch.Tensor),
            (F._resize_image_pil, PIL.Image.Image),
532
533
534
535
            (F.resize_image, tv_tensors.Image),
            (F.resize_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.resize_mask, tv_tensors.Mask),
            (F.resize_video, tv_tensors.Video),
536
537
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
538
539
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
540
541
542
543

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
544
545
546
547
548
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
549
            make_bounding_boxes,
550
551
552
553
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
554
    )
555
    def test_transform(self, size, device, make_input):
556
557
558
559
560
561
        check_transform(
            transforms.Resize(size=size, antialias=True),
            make_input(self.INPUT_SIZE, device=device),
            # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
562
563

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
564
565
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
566
567
568
569
570
571
572
573
574
575
576
577
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

578
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
579
580

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
581
        expected = F.to_image(F.resize(F.to_pil_image(image), size=size, interpolation=interpolation, **max_size_kwarg))
582
583
584
585

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

586
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
587
        old_height, old_width = bounding_boxes.canvas_size
588
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
589
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
590
591
592
        )

        if (old_height, old_width) == (new_height, new_width):
593
            return bounding_boxes
594
595
596
597
598
599
600
601

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
        )

602
        return reference_affine_bounding_boxes_helper(
603
            bounding_boxes,
604
            affine_matrix=affine_matrix,
605
            new_canvas_size=(new_height, new_width),
606
607
        )

608
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
609
610
611
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
612
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
613
614
615
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

616
        bounding_boxes = make_bounding_boxes(format=format, canvas_size=self.INPUT_SIZE)
617

618
619
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
620

621
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
622
623
624
625
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
626
627
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
628
    )
629
630
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
631
632
633
634
635
636
637
638
639
640
641
642
643

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

Nicolas Hug's avatar
Nicolas Hug committed
644
    def test_functional_pil_antialias_warning(self):
645
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
646
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
647
648
649

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
650
651
652
653
654
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
655
            make_bounding_boxes,
656
657
658
659
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
660
    )
661
    def test_max_size_error(self, size, make_input):
662
663
664
665
666
667
668
669
670
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
671
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
672
673
674

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
675
676
        "make_input",
        [make_image_tensor, make_image, make_video],
677
    )
678
    def test_antialias_warning(self, interpolation, make_input):
679
680
681
682
683
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
684
            F.resize(
685
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
686
687
688
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
689
690
691

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
692
693
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
694
    )
695
696
697
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

698
699
700
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
701
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
719
720
721
722
723
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
724
            make_bounding_boxes,
725
726
727
728
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
729
    )
730
731
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
732

Philip Meier's avatar
Philip Meier committed
733
        output = F.resize(input, size=F.get_size(input), antialias=True)
734
735
736

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
737
        if isinstance(input, tv_tensors.TVTensor):
738
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
739
            # tv_tensors unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
740
741
742
743
744
745
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
746
747
748
749
750
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
751
            make_bounding_boxes,
752
753
754
755
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
756
    )
757
    def test_no_regression_5405(self, make_input):
758
759
760
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

761
        input = make_input(self.INPUT_SIZE)
762

Philip Meier's avatar
Philip Meier committed
763
        size = min(F.get_size(input))
764
765
766
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
767
        assert max(F.get_size(output)) == max_size
768

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    def _make_image(self, *args, batch_dims=(), memory_format=torch.contiguous_format, **kwargs):
        # torch.channels_last memory_format is only available for 4D tensors, i.e. (B, C, H, W). However, images coming
        # from PIL or our own I/O functions do not have a batch dimensions and are thus 3D, i.e. (C, H, W). Still, the
        # layout of the data in memory is channels last. To emulate this when a 3D input is requested here, we create
        # the image as 4D and create a view with the right shape afterwards. With this the layout in memory is channels
        # last although PyTorch doesn't recognizes it as such.
        emulate_channels_last = memory_format is torch.channels_last and len(batch_dims) != 1

        image = make_image(
            *args,
            batch_dims=(math.prod(batch_dims),) if emulate_channels_last else batch_dims,
            memory_format=memory_format,
            **kwargs,
        )

        if emulate_channels_last:
785
            image = tv_tensors.wrap(image.view(*batch_dims, *image.shape[-3:]), like=image)
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

        return image

    def _check_stride(self, image, *, memory_format):
        C, H, W = F.get_dimensions(image)
        if memory_format is torch.contiguous_format:
            expected_stride = (H * W, W, 1)
        elif memory_format is torch.channels_last:
            expected_stride = (1, W * C, C)
        else:
            raise ValueError(f"Unknown memory_format: {memory_format}")

        assert image.stride() == expected_stride

    # TODO: We can remove this test and related torchvision workaround
    #  once we fixed related pytorch issue: https://github.com/pytorch/pytorch/issues/68430
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("memory_format", [torch.contiguous_format, torch.channels_last])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_memory_format_consistency(self, interpolation, antialias, memory_format, dtype, device):
        size = self.OUTPUT_SIZES[0]

        input = self._make_image(self.INPUT_SIZE, dtype=dtype, device=device, memory_format=memory_format)

        # Smoke test to make sure we aren't starting with wrong assumptions
        self._check_stride(input, memory_format=memory_format)

        output = F.resize_image(input, size=size, interpolation=interpolation, antialias=antialias)

        self._check_stride(output, memory_format=memory_format)

    def test_float16_no_rounding(self):
        # Make sure Resize() doesn't round float16 images
        # Non-regression test for https://github.com/pytorch/vision/issues/7667

        input = make_image_tensor(self.INPUT_SIZE, dtype=torch.float16)
824
        output = F.resize_image(input, size=self.OUTPUT_SIZES[0], antialias=True)
825
826
827
828

        assert output.dtype is torch.float16
        assert (output.round() - output).abs().sum() > 0

829
830
831
832
833

class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
834
        check_kernel(F.horizontal_flip_image, make_image(dtype=dtype, device=device))
835

836
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
837
838
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
839
    def test_kernel_bounding_boxes(self, format, dtype, device):
840
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
841
        check_kernel(
842
843
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
844
            format=format,
Philip Meier's avatar
Philip Meier committed
845
            canvas_size=bounding_boxes.canvas_size,
846
847
        )

848
849
850
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
851
852

    def test_kernel_video(self):
853
        check_kernel(F.horizontal_flip_video, make_video())
854
855

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
856
        "make_input",
857
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
858
    )
Nicolas Hug's avatar
Nicolas Hug committed
859
860
    def test_functional(self, make_input):
        check_functional(F.horizontal_flip, make_input())
861
862

    @pytest.mark.parametrize(
863
        ("kernel", "input_type"),
864
        [
865
866
            (F.horizontal_flip_image, torch.Tensor),
            (F._horizontal_flip_image_pil, PIL.Image.Image),
867
868
869
870
            (F.horizontal_flip_image, tv_tensors.Image),
            (F.horizontal_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.horizontal_flip_mask, tv_tensors.Mask),
            (F.horizontal_flip_video, tv_tensors.Video),
871
872
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
873
874
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
875
876

    @pytest.mark.parametrize(
877
        "make_input",
878
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
879
880
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
881
    def test_transform(self, make_input, device):
882
        check_transform(transforms.RandomHorizontalFlip(p=1), make_input(device=device))
883
884
885
886
887

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
888
        image = make_image(dtype=torch.uint8, device="cpu")
889
890

        actual = fn(image)
891
        expected = F.to_image(F.horizontal_flip(F.to_pil_image(image)))
892
893
894

        torch.testing.assert_close(actual, expected)

895
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
896
897
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
898
                [-1, 0, bounding_boxes.canvas_size[1]],
899
900
901
902
                [0, 1, 0],
            ],
        )

903
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
904

905
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
906
907
908
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
909
    def test_bounding_boxes_correctness(self, format, fn):
910
        bounding_boxes = make_bounding_boxes(format=format)
911

912
913
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
914
915
916
917

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
918
        "make_input",
919
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
920
921
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
922
923
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
924
925
926
927
928
929

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
973
974
975
976
977
978
979
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
980
981
982
983
984
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
985
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
986
        self._check_kernel(
987
            F.affine_image,
988
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
989
990
991
992
993
994
995
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
996
997
998
999
1000
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
1001
    )
1002
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1003
1004
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1005
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
1006
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1007
        self._check_kernel(
1008
1009
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1010
            format=format,
Philip Meier's avatar
Philip Meier committed
1011
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1012
1013
1014
1015
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

1016
1017
1018
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1019
1020

    def test_kernel_video(self):
1021
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
1022
1023

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1024
        "make_input",
1025
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1026
    )
Nicolas Hug's avatar
Nicolas Hug committed
1027
1028
    def test_functional(self, make_input):
        check_functional(F.affine, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1029
1030

    @pytest.mark.parametrize(
1031
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1032
        [
1033
1034
            (F.affine_image, torch.Tensor),
            (F._affine_image_pil, PIL.Image.Image),
1035
1036
1037
1038
            (F.affine_image, tv_tensors.Image),
            (F.affine_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.affine_mask, tv_tensors.Mask),
            (F.affine_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1039
1040
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1041
1042
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1043
1044

    @pytest.mark.parametrize(
1045
        "make_input",
1046
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1047
1048
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1049
1050
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1051

1052
        check_transform(transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), input)
Philip Meier's avatar
Philip Meier committed
1053
1054
1055
1056
1057
1058
1059
1060
1061

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1062
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1063
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1064
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1065

Philip Meier's avatar
Philip Meier committed
1066
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
1078
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1079
            F.affine(
1080
                F.to_pil_image(image),
Philip Meier's avatar
Philip Meier committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1098
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1099
1100
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1101
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1102

Philip Meier's avatar
Philip Meier committed
1103
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1104
1105
1106
1107
1108
1109
1110
1111
1112

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1113
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
1138
        return true_matrix[:2, :]
Philip Meier's avatar
Philip Meier committed
1139

1140
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1141
        if center is None:
Philip Meier's avatar
Philip Meier committed
1142
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1143

1144
        return reference_affine_bounding_boxes_helper(
1145
            bounding_boxes,
1146
1147
1148
            affine_matrix=self._compute_affine_matrix(
                angle=angle, translate=translate, scale=scale, shear=shear, center=center
            ),
Philip Meier's avatar
Philip Meier committed
1149
1150
        )

1151
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1152
1153
1154
1155
1156
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1157
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
1158
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1159
1160

        actual = F.affine(
1161
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1162
1163
1164
1165
1166
1167
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1168
1169
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

1179
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1180
1181
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1182
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
1183
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1184
1185
1186
1187

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1188
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1189
1190

        torch.manual_seed(seed)
1191
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1192

1193
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1194
1195
1196
1197
1198
1199
1200
1201
1202

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1203
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1204
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1278
1279
1280
1281
1282
1283


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
1284
        check_kernel(F.vertical_flip_image, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1285

1286
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1287
1288
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1289
    def test_kernel_bounding_boxes(self, format, dtype, device):
1290
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1291
        check_kernel(
1292
1293
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1294
            format=format,
Philip Meier's avatar
Philip Meier committed
1295
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1296
1297
        )

1298
1299
1300
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1301
1302

    def test_kernel_video(self):
1303
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1304
1305

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1306
        "make_input",
1307
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1308
    )
Nicolas Hug's avatar
Nicolas Hug committed
1309
1310
    def test_functional(self, make_input):
        check_functional(F.vertical_flip, make_input())
Philip Meier's avatar
Philip Meier committed
1311
1312

    @pytest.mark.parametrize(
1313
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1314
        [
1315
1316
            (F.vertical_flip_image, torch.Tensor),
            (F._vertical_flip_image_pil, PIL.Image.Image),
1317
1318
1319
1320
            (F.vertical_flip_image, tv_tensors.Image),
            (F.vertical_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.vertical_flip_mask, tv_tensors.Mask),
            (F.vertical_flip_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1321
1322
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1323
1324
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1325
1326

    @pytest.mark.parametrize(
1327
        "make_input",
1328
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1329
1330
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1331
    def test_transform(self, make_input, device):
1332
        check_transform(transforms.RandomVerticalFlip(p=1), make_input(device=device))
Philip Meier's avatar
Philip Meier committed
1333
1334
1335

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1336
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1337
1338

        actual = fn(image)
1339
        expected = F.to_image(F.vertical_flip(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1340
1341
1342

        torch.testing.assert_close(actual, expected)

1343
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1344
1345
1346
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1347
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1348
1349
1350
            ],
        )

1351
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
Philip Meier's avatar
Philip Meier committed
1352

1353
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1354
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1355
    def test_bounding_boxes_correctness(self, format, fn):
1356
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1357

1358
1359
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1360
1361
1362
1363

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1364
        "make_input",
1365
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1366
1367
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1368
1369
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1370
1371
1372
1373
1374
1375

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1376
1377


1378
@pytest.mark.filterwarnings("ignore:The provided center argument has no effect")
Philip Meier's avatar
Philip Meier committed
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
1412
            F.rotate_image,
1413
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
1423
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1424
1425
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1426
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1427
1428
1429
1430
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1431
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1432
1433

        check_kernel(
1434
1435
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1436
            format=format,
Philip Meier's avatar
Philip Meier committed
1437
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1438
1439
1440
            **kwargs,
        )

1441
1442
1443
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1444
1445

    def test_kernel_video(self):
1446
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1447
1448

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1449
        "make_input",
1450
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1451
    )
Nicolas Hug's avatar
Nicolas Hug committed
1452
1453
    def test_functional(self, make_input):
        check_functional(F.rotate, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1454
1455

    @pytest.mark.parametrize(
1456
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1457
        [
1458
1459
            (F.rotate_image, torch.Tensor),
            (F._rotate_image_pil, PIL.Image.Image),
1460
1461
1462
1463
            (F.rotate_image, tv_tensors.Image),
            (F.rotate_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.rotate_mask, tv_tensors.Mask),
            (F.rotate_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1464
1465
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1466
1467
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1468
1469

    @pytest.mark.parametrize(
1470
        "make_input",
1471
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1472
1473
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1474
1475
    def test_transform(self, make_input, device):
        check_transform(
1476
            transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), make_input(device=device)
1477
        )
Philip Meier's avatar
Philip Meier committed
1478
1479
1480
1481
1482
1483
1484
1485
1486

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1487
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1488
1489
1490
1491

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
1492
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1493
            F.rotate(
1494
                F.to_pil_image(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
Philip Meier's avatar
Philip Meier committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1509
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1525
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1526
1527
1528
1529

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1530
1531
1532
1533
1534
    def _compute_output_canvas_size(self, *, expand, canvas_size, affine_matrix):
        if not expand:
            return canvas_size, (0.0, 0.0)

        input_height, input_width = canvas_size
Philip Meier's avatar
Philip Meier committed
1535

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
        input_image_frame = np.array(
            [
                [0.0, 0.0, 1.0],
                [0.0, input_height, 1.0],
                [input_width, input_height, 1.0],
                [input_width, 0.0, 1.0],
            ],
            dtype=np.float64,
        )
        output_image_frame = np.matmul(input_image_frame, affine_matrix.astype(input_image_frame.dtype).T)

        recenter_x = float(np.min(output_image_frame[:, 0]))
        recenter_y = float(np.min(output_image_frame[:, 1]))

        output_width = int(np.max(output_image_frame[:, 0]) - recenter_x)
        output_height = int(np.max(output_image_frame[:, 1]) - recenter_y)

        return (output_height, output_width), (recenter_x, recenter_y)

    def _recenter_bounding_boxes_after_expand(self, bounding_boxes, *, recenter_xy):
        x, y = recenter_xy
1557
        if bounding_boxes.format is tv_tensors.BoundingBoxFormat.XYXY:
1558
1559
1560
            translate = [x, y, x, y]
        else:
            translate = [x, y, 0.0, 0.0]
1561
        return tv_tensors.wrap(
1562
1563
1564
1565
            (bounding_boxes.to(torch.float64) - torch.tensor(translate)).to(bounding_boxes.dtype), like=bounding_boxes
        )

    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1566
        if center is None:
Philip Meier's avatar
Philip Meier committed
1567
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
1568
        cx, cy = center
Philip Meier's avatar
Philip Meier committed
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
        )

1579
1580
1581
1582
1583
        new_canvas_size, recenter_xy = self._compute_output_canvas_size(
            expand=expand, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix
        )

        output = reference_affine_bounding_boxes_helper(
1584
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1585
            affine_matrix=affine_matrix,
1586
1587
            new_canvas_size=new_canvas_size,
            clamp=False,
Philip Meier's avatar
Philip Meier committed
1588
1589
        )

1590
1591
1592
        return F.clamp_bounding_boxes(self._recenter_bounding_boxes_after_expand(output, recenter_xy=recenter_xy)).to(
            bounding_boxes
        )
Philip Meier's avatar
Philip Meier committed
1593

1594
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1595
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
1596
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1597
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1598
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
1599
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1600

1601
1602
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1603
1604

        torch.testing.assert_close(actual, expected)
1605
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1606

1607
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
1608
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1609
1610
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1611
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
1612
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1613
1614
1615
1616

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1617
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1618
1619

        torch.manual_seed(seed)
1620
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1621

1622
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1623
1624

        torch.testing.assert_close(actual, expected)
1625
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1723
1724
1725
1726
1727
1728


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1729
1730
            (F.to_dtype_image, make_image_tensor),
            (F.to_dtype_image, make_image),
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            expect_same_dtype=input_dtype is output_dtype,
            dtype=output_dtype,
            scale=scale,
        )

Philip Meier's avatar
Philip Meier committed
1747
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
1748
1749
1750
1751
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
Nicolas Hug's avatar
Nicolas Hug committed
1752
1753
    def test_functional(self, make_input, input_dtype, output_dtype, device, scale):
        check_functional(
1754
1755
1756
1757
1758
1759
1760
1761
            F.to_dtype,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
1762
        [make_image_tensor, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
1773
        check_transform(transforms.ToDtype(dtype=output_dtype, scale=scale), input)
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
1837
            "bbox": make_bounding_boxes(canvas_size=(H, W), dtype=bbox_dtype),
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
1865
        out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.int64, "others": None})(sample)
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
1878
            dtype={type(sample["inpt"]): torch.float32, tv_tensors.Mask: torch.int64, "others": None}, scale=True
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
1892
            out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.float32})(sample)
1893
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
1894
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, tv_tensors.Image: torch.float32})
1895
1896
1897
1898
1899
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1900
1901


1902
1903
1904
1905
1906
1907
1908
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1909
            (F.adjust_brightness_image, make_image),
1910
1911
1912
1913
1914
1915
1916
1917
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

Philip Meier's avatar
Philip Meier committed
1918
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
1919
1920
    def test_functional(self, make_input):
        check_functional(F.adjust_brightness, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)
1921
1922
1923
1924

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
1925
1926
            (F.adjust_brightness_image, torch.Tensor),
            (F._adjust_brightness_image_pil, PIL.Image.Image),
1927
1928
            (F.adjust_brightness_image, tv_tensors.Image),
            (F.adjust_brightness_video, tv_tensors.Video),
1929
1930
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1931
1932
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)
1933
1934
1935
1936
1937
1938

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
1939
        expected = F.to_image(F.adjust_brightness(F.to_pil_image(image), brightness_factor=brightness_factor))
1940
1941
1942
1943

        torch.testing.assert_close(actual, expected)


1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
1959
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1960
1961
1962
1963
1964
1965
1966
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

1967
        cutmix_mixup = T(num_classes=num_classes)
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
2009
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
2021
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
2032
2033
            tv_tensors.Mask(torch.rand(12, 12)),
            tv_tensors.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
2081
2082
2083
2084
2085
2086


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2087
2088
2089
            (F.get_dimensions_image, make_image_tensor),
            (F._get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image, make_image),
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2104
2105
2106
            (F.get_num_channels_image, make_image_tensor),
            (F._get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image, make_image),
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2120
2121
2122
            (F.get_size_image, make_image_tensor),
            (F._get_size_image_pil, make_image_pil),
            (F.get_size_image, make_image),
2123
            (F.get_size_bounding_boxes, make_bounding_boxes),
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
Nicolas Hug's avatar
Nicolas Hug committed
2151
        ("functional", "make_input"),
2152
        [
2153
            (F.get_dimensions, make_bounding_boxes),
2154
2155
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
2156
            (F.get_num_channels, make_bounding_boxes),
2157
2158
2159
2160
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
2161
            (F.get_num_frames, make_bounding_boxes),
2162
2163
2164
2165
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2166
    def test_unsupported_types(self, functional, make_input):
2167
2168
2169
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
Nicolas Hug's avatar
Nicolas Hug committed
2170
            functional(input)
2171
2172
2173


class TestRegisterKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2174
2175
    @pytest.mark.parametrize("functional", (F.resize, "resize"))
    def test_register_kernel(self, functional):
2176
        class CustomTVTensor(tv_tensors.TVTensor):
2177
2178
2179
2180
            pass

        kernel_was_called = False

2181
        @F.register_kernel(functional, CustomTVTensor)
2182
2183
2184
2185
2186
2187
2188
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

2189
        my_dp = CustomTVTensor(torch.rand(3, 10, 10))
2190
2191
2192
2193
2194
2195
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
2196
        t(tv_tensors.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)
2197

2198
    def test_errors(self):
Nicolas Hug's avatar
Nicolas Hug committed
2199
        with pytest.raises(ValueError, match="Could not find functional with name"):
2200
            F.register_kernel("bad_name", tv_tensors.Image)
2201

Nicolas Hug's avatar
Nicolas Hug committed
2202
        with pytest.raises(ValueError, match="Kernels can only be registered on functionals"):
2203
            F.register_kernel(tv_tensors.Image, F.resize)
2204
2205
2206
2207

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

2208
2209
        with pytest.raises(ValueError, match="cannot be registered for the builtin tv_tensor classes"):
            F.register_kernel(F.resize, tv_tensors.Image)(F.resize_image)
2210

2211
        class CustomTVTensor(tv_tensors.TVTensor):
2212
2213
            pass

2214
        def resize_custom_tv_tensor():
2215
2216
            pass

2217
        F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2218
2219

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
2220
            F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2221

2222
2223

class TestGetKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2224
    # We are using F.resize as functional and the kernels below as proxy. Any other functional / kernels combination
2225
2226
    # would also be fine
    KERNELS = {
2227
2228
        torch.Tensor: F.resize_image,
        PIL.Image.Image: F._resize_image_pil,
2229
2230
2231
2232
        tv_tensors.Image: F.resize_image,
        tv_tensors.BoundingBoxes: F.resize_bounding_boxes,
        tv_tensors.Mask: F.resize_mask,
        tv_tensors.Video: F.resize_video,
2233
2234
    }

2235
2236
2237
2238
    @pytest.mark.parametrize("input_type", [str, int, object])
    def test_unsupported_types(self, input_type):
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, input_type)
2239
2240
2241

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2242
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2243
2244
2245
2246
2247
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
2248
            _register_kernel_internal(resize_with_pure_kernels, input_type, tv_tensor_wrapper=False)(kernel)
2249
2250
2251

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

2252
    def test_builtin_tv_tensor_subclass(self):
2253
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2254
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2255
        # here, register the kernels without wrapper, and check if subclasses of our builtin tv_tensors get dispatched
2256
2257
2258
2259
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

2260
        class MyImage(tv_tensors.Image):
2261
2262
            pass

2263
        class MyBoundingBoxes(tv_tensors.BoundingBoxes):
2264
2265
            pass

2266
        class MyMask(tv_tensors.Mask):
2267
2268
            pass

2269
        class MyVideo(tv_tensors.Video):
2270
2271
            pass

2272
        for custom_tv_tensor_subclass in [
2273
2274
2275
2276
2277
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
2278
2279
2280
2281
            builtin_tv_tensor_class = custom_tv_tensor_subclass.__mro__[1]
            builtin_tv_tensor_kernel = self.KERNELS[builtin_tv_tensor_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_tv_tensor_class, tv_tensor_wrapper=False)(
                builtin_tv_tensor_kernel
2282
2283
            )

2284
            assert _get_kernel(resize_with_pure_kernels, custom_tv_tensor_subclass) is builtin_tv_tensor_kernel
2285

2286
2287
    def test_tv_tensor_subclass(self):
        class MyTVTensor(tv_tensors.TVTensor):
2288
2289
            pass

2290
        with pytest.raises(TypeError, match="supports inputs of type"):
2291
            _get_kernel(F.resize, MyTVTensor)
2292

2293
        def resize_my_tv_tensor():
2294
2295
            pass

2296
        _register_kernel_internal(F.resize, MyTVTensor, tv_tensor_wrapper=False)(resize_my_tv_tensor)
2297

2298
        assert _get_kernel(F.resize, MyTVTensor) is resize_my_tv_tensor
2299

2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
    def test_pil_image_subclass(self):
        opened_image = PIL.Image.open(Path(__file__).parent / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")
        loaded_image = opened_image.convert("RGB")

        # check the assumptions
        assert isinstance(opened_image, PIL.Image.Image)
        assert type(opened_image) is not PIL.Image.Image

        assert type(loaded_image) is PIL.Image.Image

        size = [17, 11]
        for image in [opened_image, loaded_image]:
            kernel = _get_kernel(F.resize, type(image))

            output = kernel(image, size=size)

            assert F.get_size(output) == size

2318
2319
2320
2321
2322
2323
2324

class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2325
            (F.permute_channels_image, make_image_tensor),
2326
2327
            # FIXME
            # check_kernel does not support PIL kernel, but it should
2328
            (F.permute_channels_image, make_image),
2329
2330
2331
2332
2333
2334
2335
2336
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

Nicolas Hug's avatar
Nicolas Hug committed
2337
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
2338
2339
    def test_functional(self, make_input):
        check_functional(F.permute_channels, make_input(), permutation=self._DEFAULT_PERMUTATION)
2340
2341
2342
2343

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
2344
2345
            (F.permute_channels_image, torch.Tensor),
            (F._permute_channels_image_pil, PIL.Image.Image),
2346
2347
            (F.permute_channels_image, tv_tensors.Image),
            (F.permute_channels_video, tv_tensors.Video),
2348
2349
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2350
2351
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)
2352
2353
2354
2355

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
2356
        return tv_tensors.Image(torch.concat(permuted_channel_images, dim=-3))
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)
Philip Meier's avatar
Philip Meier committed
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388


class TestElastic:
    def _make_displacement(self, inpt):
        return torch.rand(
            1,
            *F.get_size(inpt),
            2,
            dtype=torch.float32,
            device=inpt.device if isinstance(inpt, torch.Tensor) else "cpu",
        )

    @param_value_parametrization(
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        image = make_image_tensor(dtype=dtype, device=device)

        check_kernel(
Philip Meier's avatar
Philip Meier committed
2389
            F.elastic_image,
Philip Meier's avatar
Philip Meier committed
2390
2391
2392
2393
2394
2395
            image,
            displacement=self._make_displacement(image),
            **{param: value},
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

2396
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
2397
2398
2399
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_boxes(self, format, dtype, device):
2400
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420

        check_kernel(
            F.elastic_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            displacement=self._make_displacement(bounding_boxes),
        )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        mask = make_mask()
        check_kernel(F.elastic_mask, mask, displacement=self._make_displacement(mask))

    def test_kernel_video(self):
        video = make_video()
        check_kernel(F.elastic_video, video, displacement=self._make_displacement(video))

    @pytest.mark.parametrize(
        "make_input",
2421
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2422
2423
2424
2425
2426
2427
2428
2429
    )
    def test_functional(self, make_input):
        input = make_input()
        check_functional(F.elastic, input, displacement=self._make_displacement(input))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
Philip Meier's avatar
Philip Meier committed
2430
2431
            (F.elastic_image, torch.Tensor),
            (F._elastic_image_pil, PIL.Image.Image),
2432
2433
2434
2435
            (F.elastic_image, tv_tensors.Image),
            (F.elastic_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.elastic_mask, tv_tensors.Mask),
            (F.elastic_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
2436
2437
2438
2439
2440
2441
2442
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.elastic, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
2443
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
    )
    def test_displacement_error(self, make_input):
        input = make_input()

        with pytest.raises(TypeError, match="displacement should be a Tensor"):
            F.elastic(input, displacement=None)

        with pytest.raises(ValueError, match="displacement shape should be"):
            F.elastic(input, displacement=torch.rand(F.get_size(input)))

    @pytest.mark.parametrize(
        "make_input",
2456
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2457
2458
2459
2460
2461
    )
    # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
    @pytest.mark.parametrize("size", [(163, 163), (72, 333), (313, 95)])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, size, device):
2462
2463
2464
2465
2466
2467
        check_transform(
            transforms.ElasticTransform(),
            make_input(size, device=device),
            # We updated gaussian blur kernel generation with a faster and numerically more stable version
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477


class TestToPureTensor:
    def test_correctness(self):
        input = {
            "img": make_image(),
            "img_tensor": make_image_tensor(),
            "img_pil": make_image_pil(),
            "mask": make_detection_mask(),
            "video": make_video(),
2478
            "bbox": make_bounding_boxes(),
2479
2480
2481
2482
2483
2484
            "str": "str",
        }

        out = transforms.ToPureTensor()(input)

        for input_value, out_value in zip(input.values(), out.values()):
2485
2486
            if isinstance(input_value, tv_tensors.TVTensor):
                assert isinstance(out_value, torch.Tensor) and not isinstance(out_value, tv_tensors.TVTensor)
2487
2488
            else:
                assert isinstance(out_value, type(input_value))