test_transforms_v2_refactored.py 81.3 KB
Newer Older
1
import contextlib
2
import decimal
3
import inspect
Philip Meier's avatar
Philip Meier committed
4
import math
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import re
from typing import get_type_hints
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
20
    freeze_rng_state,
21
22
23
24
    ignore_jit_no_profile_information_warning,
    make_bounding_box,
    make_detection_mask,
    make_image,
25
26
    make_image_pil,
    make_image_tensor,
27
28
    make_segmentation_mask,
    make_video,
29
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
30
    set_rng_seed,
31
)
32
33

from torch import nn
34
from torch.testing import assert_close
35
from torch.utils._pytree import tree_map
36
from torch.utils.data import DataLoader, default_collate
37
from torchvision import datapoints
Philip Meier's avatar
Philip Meier committed
38
39

from torchvision.transforms._functional_tensor import _max_value as get_max_value
40
41
42
43
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F


Nicolas Hug's avatar
Nicolas Hug committed
44
45
46
47
48
49
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

67
68
69
70
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
71
72
73
74
75

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
76
def _script(obj):
77
    try:
78
        return torch.jit.script(obj)
79
    except Exception as error:
80
81
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
138
    expect_same_dtype=True,
139
140
141
142
143
144
145
146
147
148
149
150
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

151
152
    if expect_same_dtype:
        assert output.dtype == input.dtype
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


def _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs):
    """Checks if the dispatcher can be scripted and the scripted version can be called without error."""
    if not isinstance(input, datapoints.Image):
        return

    dispatcher_scripted = _script(dispatcher)
    with ignore_jit_no_profile_information_warning():
        dispatcher_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)


def _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs):
    """Checks if the dispatcher correctly dispatches the input to the corresponding kernel and that the input type is
    preserved in doing so. For bounding boxes also checks that the format is preserved.
    """
    if isinstance(input, datapoints._datapoint.Datapoint):
        # Due to our complex dispatch architecture for datapoints, we cannot spy on the kernel directly,
        # but rather have to patch the `Datapoint.__F` attribute to contain the spied on kernel.
Philip Meier's avatar
Philip Meier committed
182
        spy = mock.MagicMock(wraps=kernel, name=kernel.__name__)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        with mock.patch.object(F, kernel.__name__, spy):
            # Due to Python's name mangling, the `Datapoint.__F` attribute is only accessible from inside the class.
            # Since that is not the case here, we need to prefix f"_{cls.__name__}"
            # See https://docs.python.org/3/tutorial/classes.html#private-variables for details
            with mock.patch.object(datapoints._datapoint.Datapoint, "_Datapoint__F", new=F):
                output = dispatcher(input, *args, **kwargs)

        spy.assert_called_once()
    else:
        with mock.patch(f"{dispatcher.__module__}.{kernel.__name__}", wraps=kernel) as spy:
            output = dispatcher(input, *args, **kwargs)

            spy.assert_called_once()

    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBox):
        assert output.format == input.format


def check_dispatcher(
    dispatcher,
    kernel,
    input,
    *args,
    check_scripted_smoke=True,
    check_dispatch=True,
    **kwargs,
):
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
        dispatcher(input, *args, **kwargs)

        spy.assert_any_call(f"{dispatcher.__module__}.{dispatcher.__name__}")

    unknown_input = object()
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
        dispatcher(unknown_input, *args, **kwargs)

    if check_scripted_smoke:
        _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs)

    if check_dispatch:
        _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs)


def _check_dispatcher_kernel_signature_match(dispatcher, *, kernel, input_type):
    """Checks if the signature of the dispatcher matches the kernel signature."""
    dispatcher_signature = inspect.signature(dispatcher)
    dispatcher_params = list(dispatcher_signature.parameters.values())[1:]

    kernel_signature = inspect.signature(kernel)
    kernel_params = list(kernel_signature.parameters.values())[1:]

    if issubclass(input_type, datapoints._datapoint.Datapoint):
        # We filter out metadata that is implicitly passed to the dispatcher through the input datapoint, but has to be
        # explicitly passed to the kernel.
        kernel_params = [param for param in kernel_params if param.name not in input_type.__annotations__.keys()]

    dispatcher_params = iter(dispatcher_params)
    for dispatcher_param, kernel_param in zip(dispatcher_params, kernel_params):
        try:
            # In general, the dispatcher parameters are a superset of the kernel parameters. Thus, we filter out
            # dispatcher parameters that have no kernel equivalent while keeping the order intact.
            while dispatcher_param.name != kernel_param.name:
                dispatcher_param = next(dispatcher_params)
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
                f"has no corresponding parameter on the dispatcher `{dispatcher.__name__}`."
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
            dispatcher_param._annotation = kernel_param._annotation = inspect.Parameter.empty

        assert dispatcher_param == kernel_param


def _check_dispatcher_datapoint_signature_match(dispatcher):
    """Checks if the signature of the dispatcher matches the corresponding method signature on the Datapoint class."""
    dispatcher_signature = inspect.signature(dispatcher)
    dispatcher_params = list(dispatcher_signature.parameters.values())[1:]

    datapoint_method = getattr(datapoints._datapoint.Datapoint, dispatcher.__name__)
    datapoint_signature = inspect.signature(datapoint_method)
    datapoint_params = list(datapoint_signature.parameters.values())[1:]

    # Some annotations in the `datapoints._datapoint` module
    # are stored as strings. The block below makes them concrete again (non-strings), so they can be compared to the
    # natively concrete dispatcher annotations.
    datapoint_annotations = get_type_hints(datapoint_method)
    for param in datapoint_params:
        param._annotation = datapoint_annotations[param.name]

    assert dispatcher_params == datapoint_params


def check_dispatcher_signatures_match(dispatcher, *, kernel, input_type):
    _check_dispatcher_kernel_signature_match(dispatcher, kernel=kernel, input_type=input_type)
    _check_dispatcher_datapoint_signature_match(dispatcher)


def _check_transform_v1_compatibility(transform, input):
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
    ``get_params`` method, is scriptable, and the scripted version can be called without error."""
289
    if transform._v1_transform_cls is None:
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        return

    if type(input) is not torch.Tensor:
        return

    if hasattr(transform._v1_transform_cls, "get_params"):
        assert type(transform).get_params is transform._v1_transform_cls.get_params

    scripted_transform = _script(transform)
    with ignore_jit_no_profile_information_warning():
        scripted_transform(input)


def check_transform(transform_cls, input, *args, **kwargs):
    transform = transform_cls(*args, **kwargs)

    output = transform(input)
    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBox):
        assert output.format == input.format

    _check_transform_v1_compatibility(transform, input)


315
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
316
    def wrapper(input, *args, **kwargs):
317
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
318
319
320
321
322
323
324
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


def reference_affine_bounding_box_helper(bounding_box, *, format, spatial_size, affine_matrix):
396
    def transform(bbox):
397
398
399
400
401
402
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
        bbox_xyxy = F.convert_format_bounding_box(
            bbox.as_subclass(torch.Tensor),
403
            old_format=format,
404
405
406
407
408
409
410
411
412
413
414
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
        )
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
415
        transformed_points = np.matmul(points, affine_matrix.T)
416
417
418
419
420
421
422
423
424
425
        out_bbox = torch.tensor(
            [
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
            ],
            dtype=bbox_xyxy.dtype,
        )
        out_bbox = F.convert_format_bounding_box(
426
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
427
428
        )
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
429
        out_bbox = F.clamp_bounding_box(out_bbox, format=format, spatial_size=spatial_size)
430
431
432
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox

433
    return torch.stack([transform(b) for b in bounding_box.reshape(-1, 4).unbind()]).reshape(bounding_box.shape)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496


class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
            F.resize_image_tensor,
497
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, format, size, use_max_size, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

515
516
517
518
519
        bounding_box = make_bounding_box(
            format=format,
            spatial_size=self.INPUT_SIZE,
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
520
        )
521
522
523
524
525
526
527
528
529
        check_kernel(
            F.resize_bounding_box,
            bounding_box,
            spatial_size=bounding_box.spatial_size,
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

530
531
532
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
533
534

    def test_kernel_video(self):
535
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
536
537
538

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
539
        ("kernel", "make_input"),
540
        [
541
542
543
544
545
546
            (F.resize_image_tensor, make_image_tensor),
            (F.resize_image_pil, make_image_pil),
            (F.resize_image_tensor, make_image),
            (F.resize_bounding_box, make_bounding_box),
            (F.resize_mask, make_segmentation_mask),
            (F.resize_video, make_video),
547
548
        ],
    )
549
    def test_dispatcher(self, size, kernel, make_input):
550
551
552
        check_dispatcher(
            F.resize,
            kernel,
553
            make_input(self.INPUT_SIZE),
554
555
556
557
558
559
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
560
        ("kernel", "input_type"),
561
        [
562
563
564
565
566
567
            (F.resize_image_tensor, torch.Tensor),
            (F.resize_image_pil, PIL.Image.Image),
            (F.resize_image_tensor, datapoints.Image),
            (F.resize_bounding_box, datapoints.BoundingBox),
            (F.resize_mask, datapoints.Mask),
            (F.resize_video, datapoints.Video),
568
569
570
571
572
573
574
575
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.resize, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
576
577
578
579
580
581
582
583
584
585
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
586
    )
587
588
    def test_transform(self, size, device, make_input):
        check_transform(transforms.Resize, make_input(self.INPUT_SIZE, device=device), size=size, antialias=True)
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

    def _check_output_size(self, input, output, *, size, max_size):
        assert tuple(F.get_spatial_size(output)) == self._compute_output_size(
            input_size=F.get_spatial_size(input), size=size, max_size=max_size
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

605
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
        expected = F.to_image_tensor(
            F.resize(F.to_image_pil(image), size=size, interpolation=interpolation, **max_size_kwarg)
        )

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

    def _reference_resize_bounding_box(self, bounding_box, *, size, max_size=None):
        old_height, old_width = bounding_box.spatial_size
        new_height, new_width = self._compute_output_size(
            input_size=bounding_box.spatial_size, size=size, max_size=max_size
        )

        if (old_height, old_width) == (new_height, new_width):
            return bounding_box

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=(new_height, new_width),
            affine_matrix=affine_matrix,
        )
        return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes, spatial_size=(new_height, new_width))

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_bounding_box_correctness(self, format, size, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

648
        bounding_box = make_bounding_box(format=format, spatial_size=self.INPUT_SIZE)
649
650
651
652
653
654
655
656
657

        actual = fn(bounding_box, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_box(bounding_box, size=size, **max_size_kwarg)

        self._check_output_size(bounding_box, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
658
659
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
660
    )
661
662
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

    def test_dispatcher_pil_antialias_warning(self):
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
678
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
679
680
681

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
682
683
684
685
686
687
688
689
690
691
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
692
    )
693
    def test_max_size_error(self, size, make_input):
694
695
696
697
698
699
700
701
702
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
703
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
704
705
706

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
707
708
        "make_input",
        [make_image_tensor, make_image, make_video],
709
    )
710
    def test_antialias_warning(self, interpolation, make_input):
711
712
713
714
715
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
716
            F.resize(
717
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
718
719
720
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
721
722
723

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
724
725
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
726
    )
727
728
729
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

730
731
732
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
733
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
751
752
753
754
755
756
757
758
759
760
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
761
    )
762
763
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
764

765
        output = F.resize(input, size=F.get_spatial_size(input), antialias=True)
766
767
768
769
770
771
772
773
774
775
776
777

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
        if isinstance(input, datapoints._datapoint.Datapoint):
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
            # datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
778
779
780
781
782
783
784
785
786
787
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
788
    )
789
    def test_no_regression_5405(self, make_input):
790
791
792
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

793
        input = make_input(self.INPUT_SIZE)
794
795
796
797
798
799

        size = min(F.get_spatial_size(input))
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

        assert max(F.get_spatial_size(output)) == max_size
800
801
802
803
804
805


class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
806
        check_kernel(F.horizontal_flip_image_tensor, make_image(dtype=dtype, device=device))
807
808
809
810
811

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, format, dtype, device):
812
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
813
814
815
816
817
818
819
        check_kernel(
            F.horizontal_flip_bounding_box,
            bounding_box,
            format=format,
            spatial_size=bounding_box.spatial_size,
        )

820
821
822
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
823
824

    def test_kernel_video(self):
825
        check_kernel(F.horizontal_flip_video, make_video())
826
827

    @pytest.mark.parametrize(
828
        ("kernel", "make_input"),
829
        [
830
831
832
833
834
835
            (F.horizontal_flip_image_tensor, make_image_tensor),
            (F.horizontal_flip_image_pil, make_image_pil),
            (F.horizontal_flip_image_tensor, make_image),
            (F.horizontal_flip_bounding_box, make_bounding_box),
            (F.horizontal_flip_mask, make_segmentation_mask),
            (F.horizontal_flip_video, make_video),
836
837
        ],
    )
838
839
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.horizontal_flip, kernel, make_input())
840
841

    @pytest.mark.parametrize(
842
        ("kernel", "input_type"),
843
        [
844
845
846
847
848
849
            (F.horizontal_flip_image_tensor, torch.Tensor),
            (F.horizontal_flip_image_pil, PIL.Image.Image),
            (F.horizontal_flip_image_tensor, datapoints.Image),
            (F.horizontal_flip_bounding_box, datapoints.BoundingBox),
            (F.horizontal_flip_mask, datapoints.Mask),
            (F.horizontal_flip_video, datapoints.Video),
850
851
852
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
Philip Meier's avatar
Philip Meier committed
853
        check_dispatcher_signatures_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
854
855

    @pytest.mark.parametrize(
856
857
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
858
859
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
860
861
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomHorizontalFlip, make_input(device=device), p=1)
862
863
864
865
866

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
867
        image = make_image(dtype=torch.uint8, device="cpu")
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

        actual = fn(image)
        expected = F.to_image_tensor(F.horizontal_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

    def _reference_horizontal_flip_bounding_box(self, bounding_box):
        affine_matrix = np.array(
            [
                [-1, 0, bounding_box.spatial_size[1]],
                [0, 1, 0],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_bounding_box_correctness(self, format, fn):
897
        bounding_box = make_bounding_box(format=format)
898
899
900
901
902
903
904

        actual = fn(bounding_box)
        expected = self._reference_horizontal_flip_bounding_box(bounding_box)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
905
906
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
907
908
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
909
910
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
911
912
913
914
915
916

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
960
961
962
963
964
965
966
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
967
968
969
970
971
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
972
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
973
974
        self._check_kernel(
            F.affine_image_tensor,
975
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
976
977
978
979
980
981
982
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
983
984
985
986
987
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
988
989
990
991
992
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, param, value, format, dtype, device):
993
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
994
995
        self._check_kernel(
            F.affine_bounding_box,
996
            bounding_box,
Philip Meier's avatar
Philip Meier committed
997
998
999
1000
1001
1002
            format=format,
            spatial_size=bounding_box.spatial_size,
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

1003
1004
1005
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1006
1007

    def test_kernel_video(self):
1008
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
1009
1010

    @pytest.mark.parametrize(
1011
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1012
        [
1013
1014
1015
1016
1017
1018
            (F.affine_image_tensor, make_image_tensor),
            (F.affine_image_pil, make_image_pil),
            (F.affine_image_tensor, make_image),
            (F.affine_bounding_box, make_bounding_box),
            (F.affine_mask, make_segmentation_mask),
            (F.affine_video, make_video),
Philip Meier's avatar
Philip Meier committed
1019
1020
        ],
    )
1021
1022
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.affine, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1023
1024

    @pytest.mark.parametrize(
1025
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1026
        [
1027
1028
1029
1030
1031
1032
            (F.affine_image_tensor, torch.Tensor),
            (F.affine_image_pil, PIL.Image.Image),
            (F.affine_image_tensor, datapoints.Image),
            (F.affine_bounding_box, datapoints.BoundingBox),
            (F.affine_mask, datapoints.Mask),
            (F.affine_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1033
1034
1035
1036
1037
1038
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.affine, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
1039
1040
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1041
1042
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1043
1044
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

        check_transform(transforms.RandomAffine, input, **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES)

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1056
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1057
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1058
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1059

Philip Meier's avatar
Philip Meier committed
1060
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
        expected = F.to_image_tensor(
            F.affine(
                F.to_image_pil(image),
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1092
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1093
1094
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1095
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1096

Philip Meier's avatar
Philip Meier committed
1097
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
        return true_matrix

    def _reference_affine_bounding_box(self, bounding_box, *, angle, translate, scale, shear, center):
        if center is None:
            center = [s * 0.5 for s in bounding_box.spatial_size[::-1]]

        affine_matrix = self._compute_affine_matrix(
            angle=angle, translate=translate, scale=scale, shear=shear, center=center
        )
        affine_matrix = affine_matrix[:2, :]

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    def test_functional_bounding_box_correctness(self, format, angle, translate, scale, shear, center):
1159
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

        actual = F.affine(
            bounding_box,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
        expected = self._reference_affine_bounding_box(
            bounding_box,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_box_correctness(self, format, center, seed):
1184
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
        params = transform._get_params([bounding_box])

        torch.manual_seed(seed)
        actual = transform(bounding_box)

        expected = self._reference_affine_bounding_box(bounding_box, **params, center=center)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1204
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
        height, width = F.get_spatial_size(image)

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1279
1280
1281
1282
1283
1284


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
1285
        check_kernel(F.vertical_flip_image_tensor, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1286
1287
1288
1289
1290

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, format, dtype, device):
1291
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1292
1293
1294
1295
1296
1297
1298
        check_kernel(
            F.vertical_flip_bounding_box,
            bounding_box,
            format=format,
            spatial_size=bounding_box.spatial_size,
        )

1299
1300
1301
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1302
1303

    def test_kernel_video(self):
1304
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1305
1306

    @pytest.mark.parametrize(
1307
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1308
        [
1309
1310
1311
1312
1313
1314
            (F.vertical_flip_image_tensor, make_image_tensor),
            (F.vertical_flip_image_pil, make_image_pil),
            (F.vertical_flip_image_tensor, make_image),
            (F.vertical_flip_bounding_box, make_bounding_box),
            (F.vertical_flip_mask, make_segmentation_mask),
            (F.vertical_flip_video, make_video),
Philip Meier's avatar
Philip Meier committed
1315
1316
        ],
    )
1317
1318
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.vertical_flip, kernel, make_input())
Philip Meier's avatar
Philip Meier committed
1319
1320

    @pytest.mark.parametrize(
1321
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1322
        [
1323
1324
1325
1326
1327
1328
            (F.vertical_flip_image_tensor, torch.Tensor),
            (F.vertical_flip_image_pil, PIL.Image.Image),
            (F.vertical_flip_image_tensor, datapoints.Image),
            (F.vertical_flip_bounding_box, datapoints.BoundingBox),
            (F.vertical_flip_mask, datapoints.Mask),
            (F.vertical_flip_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1329
1330
1331
1332
1333
1334
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.vertical_flip, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
1335
1336
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1337
1338
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1339
1340
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomVerticalFlip, make_input(device=device), p=1)
Philip Meier's avatar
Philip Meier committed
1341
1342
1343

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1344
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

        actual = fn(image)
        expected = F.to_image_tensor(F.vertical_flip(F.to_image_pil(image)))

        torch.testing.assert_close(actual, expected)

    def _reference_vertical_flip_bounding_box(self, bounding_box):
        affine_matrix = np.array(
            [
                [1, 0, 0],
                [0, -1, bounding_box.spatial_size[0]],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_bounding_box_correctness(self, format, fn):
1372
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1373
1374
1375
1376
1377
1378
1379

        actual = fn(bounding_box)
        expected = self._reference_vertical_flip_bounding_box(bounding_box)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1380
1381
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1382
1383
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1384
1385
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1386
1387
1388
1389
1390
1391

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
            F.rotate_image_tensor,
1428
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, param, value, format, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1446
        bounding_box = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1447
1448
1449
1450
1451
1452
1453
1454
1455

        check_kernel(
            F.rotate_bounding_box,
            bounding_box,
            format=format,
            spatial_size=bounding_box.spatial_size,
            **kwargs,
        )

1456
1457
1458
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1459
1460

    def test_kernel_video(self):
1461
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1462
1463

    @pytest.mark.parametrize(
1464
        ("kernel", "make_input"),
Philip Meier's avatar
Philip Meier committed
1465
        [
1466
1467
1468
1469
1470
1471
            (F.rotate_image_tensor, make_image_tensor),
            (F.rotate_image_pil, make_image_pil),
            (F.rotate_image_tensor, make_image),
            (F.rotate_bounding_box, make_bounding_box),
            (F.rotate_mask, make_segmentation_mask),
            (F.rotate_video, make_video),
Philip Meier's avatar
Philip Meier committed
1472
1473
        ],
    )
1474
1475
    def test_dispatcher(self, kernel, make_input):
        check_dispatcher(F.rotate, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1476
1477

    @pytest.mark.parametrize(
1478
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1479
        [
1480
1481
1482
1483
1484
1485
            (F.rotate_image_tensor, torch.Tensor),
            (F.rotate_image_pil, PIL.Image.Image),
            (F.rotate_image_tensor, datapoints.Image),
            (F.rotate_bounding_box, datapoints.BoundingBox),
            (F.rotate_mask, datapoints.Mask),
            (F.rotate_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1486
1487
1488
1489
1490
1491
        ],
    )
    def test_dispatcher_signature(self, kernel, input_type):
        check_dispatcher_signatures_match(F.rotate, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
1492
1493
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1494
1495
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1496
1497
1498
1499
    def test_transform(self, make_input, device):
        check_transform(
            transforms.RandomRotation, make_input(device=device), **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES
        )
Philip Meier's avatar
Philip Meier committed
1500
1501
1502
1503
1504
1505
1506
1507
1508

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1509
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
        expected = F.to_image_tensor(
            F.rotate(
                F.to_image_pil(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1531
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
        expected = F.to_image_tensor(transform(F.to_image_pil(image)))

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    def _reference_rotate_bounding_box(self, bounding_box, *, angle, expand, center):
        # FIXME
        if expand:
            raise ValueError("This reference currently does not support expand=True")

        if center is None:
            center = [s * 0.5 for s in bounding_box.spatial_size[::-1]]

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        cx = center[0]
        cy = center[1]
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
            dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
        )

        expected_bboxes = reference_affine_bounding_box_helper(
            bounding_box,
            format=bounding_box.format,
            spatial_size=bounding_box.spatial_size,
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    def test_functional_bounding_box_correctness(self, format, angle, expand, center):
1587
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599

        actual = F.rotate(bounding_box, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_box(bounding_box, angle=angle, expand=expand, center=center)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_box_correctness(self, format, expand, center, seed):
1600
        bounding_box = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
        params = transform._get_params([bounding_box])

        torch.manual_seed(seed)
        actual = transform(bounding_box)

        expected = self._reference_rotate_bounding_box(bounding_box, **params, expand=expand, center=center)

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.to_dtype_image_tensor, make_image_tensor),
            (F.to_dtype_image_tensor, make_image),
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            expect_same_dtype=input_dtype is output_dtype,
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.to_dtype_image_tensor, make_image_tensor),
            (F.to_dtype_image_tensor, make_image),
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_dispatcher(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_dispatcher(
            F.to_dtype,
            kernel,
            make_input(dtype=input_dtype, device=device),
            # TODO: we could leave check_dispatch to True but it currently fails
            # in _check_dispatcher_dispatch because there is no to_dtype() method on the datapoints.
            # We should be able to put this back if we change the dispatch
            # mechanism e.g. via https://github.com/pytorch/vision/pull/7733
            check_dispatch=False,
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
        check_transform(transforms.ToDtype, input, dtype=output_dtype, scale=scale)

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
            "bbox": make_bounding_box(size=(H, W), dtype=bbox_dtype),
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype={datapoints.Mask: torch.int64, "others": None})(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
            dtype={type(sample["inpt"]): torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
            out = transforms.ToDtype(dtype={datapoints.Mask: torch.float32})(sample)
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, datapoints.Image: torch.float32})
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038


class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

    @pytest.mark.parametrize("T", [transforms.Cutmix, transforms.Mixup])
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
    @pytest.mark.parametrize("T", [transforms.Cutmix, transforms.Mixup])
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

    @pytest.mark.parametrize("T", [transforms.Cutmix, transforms.Mixup])
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
            datapoints.Mask(torch.rand(12, 12)),
            datapoints.BoundingBox(torch.rand(2, 4), format="XYXY", spatial_size=12),
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels