Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
69220e0c
Unverified
Commit
69220e0c
authored
Aug 17, 2023
by
Nicolas Hug
Committed by
GitHub
Aug 17, 2023
Browse files
Add ToPureTensor transform (#7823)
Co-authored-by:
Philip Meier
<
github.pmeier@posteo.de
>
parent
3554d80e
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
53 additions
and
1 deletion
+53
-1
docs/source/transforms.rst
docs/source/transforms.rst
+1
-0
references/classification/presets.py
references/classification/presets.py
+6
-0
references/detection/presets.py
references/detection/presets.py
+5
-0
references/segmentation/presets.py
references/segmentation/presets.py
+5
-0
test/test_transforms_v2_refactored.py
test/test_transforms_v2_refactored.py
+21
-0
torchvision/transforms/v2/__init__.py
torchvision/transforms/v2/__init__.py
+1
-1
torchvision/transforms/v2/_type_conversion.py
torchvision/transforms/v2/_type_conversion.py
+14
-0
No files found.
docs/source/transforms.rst
View file @
69220e0c
...
@@ -237,6 +237,7 @@ Conversion
...
@@ -237,6 +237,7 @@ Conversion
v2.ConvertImageDtype
v2.ConvertImageDtype
v2.ToDtype
v2.ToDtype
v2.ConvertBoundingBoxFormat
v2.ConvertBoundingBoxFormat
v2.ToPureTensor
Auto-Augmentation
Auto-Augmentation
-----------------
-----------------
...
...
references/classification/presets.py
View file @
69220e0c
...
@@ -68,6 +68,9 @@ class ClassificationPresetTrain:
...
@@ -68,6 +68,9 @@ class ClassificationPresetTrain:
if
random_erase_prob
>
0
:
if
random_erase_prob
>
0
:
transforms
.
append
(
T
.
RandomErasing
(
p
=
random_erase_prob
))
transforms
.
append
(
T
.
RandomErasing
(
p
=
random_erase_prob
))
if
use_v2
:
transforms
.
append
(
T
.
ToPureTensor
())
self
.
transforms
=
T
.
Compose
(
transforms
)
self
.
transforms
=
T
.
Compose
(
transforms
)
def
__call__
(
self
,
img
):
def
__call__
(
self
,
img
):
...
@@ -107,6 +110,9 @@ class ClassificationPresetEval:
...
@@ -107,6 +110,9 @@ class ClassificationPresetEval:
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
]
]
if
use_v2
:
transforms
.
append
(
T
.
ToPureTensor
())
self
.
transforms
=
T
.
Compose
(
transforms
)
self
.
transforms
=
T
.
Compose
(
transforms
)
def
__call__
(
self
,
img
):
def
__call__
(
self
,
img
):
...
...
references/detection/presets.py
View file @
69220e0c
...
@@ -79,6 +79,7 @@ class DetectionPresetTrain:
...
@@ -79,6 +79,7 @@ class DetectionPresetTrain:
transforms
+=
[
transforms
+=
[
T
.
ConvertBoundingBoxFormat
(
datapoints
.
BoundingBoxFormat
.
XYXY
),
T
.
ConvertBoundingBoxFormat
(
datapoints
.
BoundingBoxFormat
.
XYXY
),
T
.
SanitizeBoundingBoxes
(),
T
.
SanitizeBoundingBoxes
(),
T
.
ToPureTensor
(),
]
]
self
.
transforms
=
T
.
Compose
(
transforms
)
self
.
transforms
=
T
.
Compose
(
transforms
)
...
@@ -103,6 +104,10 @@ class DetectionPresetEval:
...
@@ -103,6 +104,10 @@ class DetectionPresetEval:
raise
ValueError
(
f
"backend can be 'datapoint', 'tensor' or 'pil', but got
{
backend
}
"
)
raise
ValueError
(
f
"backend can be 'datapoint', 'tensor' or 'pil', but got
{
backend
}
"
)
transforms
+=
[
T
.
ConvertImageDtype
(
torch
.
float
)]
transforms
+=
[
T
.
ConvertImageDtype
(
torch
.
float
)]
if
use_v2
:
transforms
+=
[
T
.
ToPureTensor
()]
self
.
transforms
=
T
.
Compose
(
transforms
)
self
.
transforms
=
T
.
Compose
(
transforms
)
def
__call__
(
self
,
img
,
target
):
def
__call__
(
self
,
img
,
target
):
...
...
references/segmentation/presets.py
View file @
69220e0c
...
@@ -63,6 +63,8 @@ class SegmentationPresetTrain:
...
@@ -63,6 +63,8 @@ class SegmentationPresetTrain:
transforms
+=
[
T
.
ConvertImageDtype
(
torch
.
float
)]
transforms
+=
[
T
.
ConvertImageDtype
(
torch
.
float
)]
transforms
+=
[
T
.
Normalize
(
mean
=
mean
,
std
=
std
)]
transforms
+=
[
T
.
Normalize
(
mean
=
mean
,
std
=
std
)]
if
use_v2
:
transforms
+=
[
T
.
ToPureTensor
()]
self
.
transforms
=
T
.
Compose
(
transforms
)
self
.
transforms
=
T
.
Compose
(
transforms
)
...
@@ -98,6 +100,9 @@ class SegmentationPresetEval:
...
@@ -98,6 +100,9 @@ class SegmentationPresetEval:
T
.
ConvertImageDtype
(
torch
.
float
),
T
.
ConvertImageDtype
(
torch
.
float
),
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
]
]
if
use_v2
:
transforms
+=
[
T
.
ToPureTensor
()]
self
.
transforms
=
T
.
Compose
(
transforms
)
self
.
transforms
=
T
.
Compose
(
transforms
)
def
__call__
(
self
,
img
,
target
):
def
__call__
(
self
,
img
,
target
):
...
...
test/test_transforms_v2_refactored.py
View file @
69220e0c
...
@@ -2353,3 +2353,24 @@ class TestElastic:
...
@@ -2353,3 +2353,24 @@ class TestElastic:
@
pytest
.
mark
.
parametrize
(
"device"
,
cpu_and_cuda
())
@
pytest
.
mark
.
parametrize
(
"device"
,
cpu_and_cuda
())
def
test_transform
(
self
,
make_input
,
size
,
device
):
def
test_transform
(
self
,
make_input
,
size
,
device
):
check_transform
(
transforms
.
ElasticTransform
,
make_input
(
size
,
device
=
device
))
check_transform
(
transforms
.
ElasticTransform
,
make_input
(
size
,
device
=
device
))
class
TestToPureTensor
:
def
test_correctness
(
self
):
input
=
{
"img"
:
make_image
(),
"img_tensor"
:
make_image_tensor
(),
"img_pil"
:
make_image_pil
(),
"mask"
:
make_detection_mask
(),
"video"
:
make_video
(),
"bbox"
:
make_bounding_box
(),
"str"
:
"str"
,
}
out
=
transforms
.
ToPureTensor
()(
input
)
for
input_value
,
out_value
in
zip
(
input
.
values
(),
out
.
values
()):
if
isinstance
(
input_value
,
datapoints
.
Datapoint
):
assert
isinstance
(
out_value
,
torch
.
Tensor
)
and
not
isinstance
(
out_value
,
datapoints
.
Datapoint
)
else
:
assert
isinstance
(
out_value
,
type
(
input_value
))
torchvision/transforms/v2/__init__.py
View file @
69220e0c
...
@@ -52,7 +52,7 @@ from ._misc import (
...
@@ -52,7 +52,7 @@ from ._misc import (
ToDtype
,
ToDtype
,
)
)
from
._temporal
import
UniformTemporalSubsample
from
._temporal
import
UniformTemporalSubsample
from
._type_conversion
import
PILToTensor
,
ToImage
,
ToPILImage
from
._type_conversion
import
PILToTensor
,
ToImage
,
ToPILImage
,
ToPureTensor
from
._deprecated
import
ToTensor
# usort: skip
from
._deprecated
import
ToTensor
# usort: skip
...
...
torchvision/transforms/v2/_type_conversion.py
View file @
69220e0c
...
@@ -75,3 +75,17 @@ class ToPILImage(Transform):
...
@@ -75,3 +75,17 @@ class ToPILImage(Transform):
self
,
inpt
:
Union
[
torch
.
Tensor
,
PIL
.
Image
.
Image
,
np
.
ndarray
],
params
:
Dict
[
str
,
Any
]
self
,
inpt
:
Union
[
torch
.
Tensor
,
PIL
.
Image
.
Image
,
np
.
ndarray
],
params
:
Dict
[
str
,
Any
]
)
->
PIL
.
Image
.
Image
:
)
->
PIL
.
Image
.
Image
:
return
F
.
to_pil_image
(
inpt
,
mode
=
self
.
mode
)
return
F
.
to_pil_image
(
inpt
,
mode
=
self
.
mode
)
class
ToPureTensor
(
Transform
):
"""[BETA] Convert all datapoints to pure tensors, removing associated metadata (if any).
.. v2betastatus:: ToPureTensor transform
This doesn't scale or change the values, only the type.
"""
_transformed_types
=
(
datapoints
.
Datapoint
,)
def
_transform
(
self
,
inpt
:
Any
,
params
:
Dict
[
str
,
Any
])
->
torch
.
Tensor
:
return
inpt
.
as_subclass
(
torch
.
Tensor
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment