test_transforms_v2_refactored.py 93.3 KB
Newer Older
1
import contextlib
2
import decimal
3
import inspect
Philip Meier's avatar
Philip Meier committed
4
import math
5
import re
6
from pathlib import Path
7
8
9
10
11
12
13
14
15
16
17
18
19
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
20
    freeze_rng_state,
21
22
23
24
    ignore_jit_no_profile_information_warning,
    make_bounding_box,
    make_detection_mask,
    make_image,
25
26
    make_image_pil,
    make_image_tensor,
27
28
    make_segmentation_mask,
    make_video,
29
    make_video_tensor,
30
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
31
    set_rng_seed,
32
)
33
34

from torch import nn
35
from torch.testing import assert_close
36
from torch.utils._pytree import tree_map
37
from torch.utils.data import DataLoader, default_collate
38
from torchvision import datapoints
Philip Meier's avatar
Philip Meier committed
39
40

from torchvision.transforms._functional_tensor import _max_value as get_max_value
41
42
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
43
from torchvision.transforms.v2.functional._utils import _get_kernel, _register_kernel_internal
44
45


Nicolas Hug's avatar
Nicolas Hug committed
46
47
48
49
50
51
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

69
70
71
72
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
73
74
75
76
77

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
78
def _script(obj):
79
    try:
80
        return torch.jit.script(obj)
81
    except Exception as error:
82
83
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
140
    expect_same_dtype=True,
141
142
143
144
145
146
147
148
149
150
151
152
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

153
154
    if expect_same_dtype:
        assert output.dtype == input.dtype
155
156
157
158
159
160
161
162
163
164
165
166
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


Nicolas Hug's avatar
Nicolas Hug committed
167
168
def _check_functional_scripted_smoke(functional, input, *args, **kwargs):
    """Checks if the functional can be scripted and the scripted version can be called without error."""
169
170
171
    if not isinstance(input, datapoints.Image):
        return

Nicolas Hug's avatar
Nicolas Hug committed
172
    functional_scripted = _script(functional)
173
    with ignore_jit_no_profile_information_warning():
Nicolas Hug's avatar
Nicolas Hug committed
174
        functional_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)
175
176


Nicolas Hug's avatar
Nicolas Hug committed
177
def check_functional(functional, input, *args, check_scripted_smoke=True, **kwargs):
178
    unknown_input = object()
179
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
Nicolas Hug's avatar
Nicolas Hug committed
180
        functional(unknown_input, *args, **kwargs)
181

182
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
Nicolas Hug's avatar
Nicolas Hug committed
183
        output = functional(input, *args, **kwargs)
184

Nicolas Hug's avatar
Nicolas Hug committed
185
        spy.assert_any_call(f"{functional.__module__}.{functional.__name__}")
186

187
188
189
190
191
    assert isinstance(output, type(input))

    if isinstance(input, datapoints.BoundingBoxes):
        assert output.format == input.format

192
    if check_scripted_smoke:
Nicolas Hug's avatar
Nicolas Hug committed
193
        _check_functional_scripted_smoke(functional, input, *args, **kwargs)
194
195


Nicolas Hug's avatar
Nicolas Hug committed
196
197
198
def check_functional_kernel_signature_match(functional, *, kernel, input_type):
    """Checks if the signature of the functional matches the kernel signature."""
    functional_params = list(inspect.signature(functional).parameters.values())[1:]
199
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
200

201
    if issubclass(input_type, datapoints.Datapoint):
Nicolas Hug's avatar
Nicolas Hug committed
202
        # We filter out metadata that is implicitly passed to the functional through the input datapoint, but has to be
203
        # explicitly passed to the kernel.
204
205
206
207
        explicit_metadata = {
            datapoints.BoundingBoxes: {"format", "canvas_size"},
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
208

Nicolas Hug's avatar
Nicolas Hug committed
209
210
    functional_params = iter(functional_params)
    for functional_param, kernel_param in zip(functional_params, kernel_params):
211
        try:
Nicolas Hug's avatar
Nicolas Hug committed
212
213
214
215
            # In general, the functional parameters are a superset of the kernel parameters. Thus, we filter out
            # functional parameters that have no kernel equivalent while keeping the order intact.
            while functional_param.name != kernel_param.name:
                functional_param = next(functional_params)
216
217
218
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
Nicolas Hug's avatar
Nicolas Hug committed
219
                f"has no corresponding parameter on the functional `{functional.__name__}`."
220
221
222
223
224
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
Nicolas Hug's avatar
Nicolas Hug committed
225
            functional_param._annotation = kernel_param._annotation = inspect.Parameter.empty
226

Nicolas Hug's avatar
Nicolas Hug committed
227
        assert functional_param == kernel_param
228
229
230
231
232


def _check_transform_v1_compatibility(transform, input):
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
    ``get_params`` method, is scriptable, and the scripted version can be called without error."""
233
    if transform._v1_transform_cls is None:
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        return

    if type(input) is not torch.Tensor:
        return

    if hasattr(transform._v1_transform_cls, "get_params"):
        assert type(transform).get_params is transform._v1_transform_cls.get_params

    scripted_transform = _script(transform)
    with ignore_jit_no_profile_information_warning():
        scripted_transform(input)


def check_transform(transform_cls, input, *args, **kwargs):
    transform = transform_cls(*args, **kwargs)

    output = transform(input)
    assert isinstance(output, type(input))

253
    if isinstance(input, datapoints.BoundingBoxes):
254
255
256
257
258
        assert output.format == input.format

    _check_transform_v1_compatibility(transform, input)


259
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
260
    def wrapper(input, *args, **kwargs):
261
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
262
263
264
265
266
267
268
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


Philip Meier's avatar
Philip Meier committed
339
def reference_affine_bounding_boxes_helper(bounding_boxes, *, format, canvas_size, affine_matrix):
340
    def transform(bbox):
341
342
343
344
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
345
        bbox_xyxy = F.convert_format_bounding_boxes(
346
            bbox.as_subclass(torch.Tensor),
347
            old_format=format,
348
349
350
351
352
353
354
355
356
357
358
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
        )
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
359
        transformed_points = np.matmul(points, affine_matrix.T)
360
361
362
363
364
365
366
367
368
        out_bbox = torch.tensor(
            [
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
            ],
            dtype=bbox_xyxy.dtype,
        )
369
        out_bbox = F.convert_format_bounding_boxes(
370
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
371
372
        )
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
Philip Meier's avatar
Philip Meier committed
373
        out_bbox = F.clamp_bounding_boxes(out_bbox, format=format, canvas_size=canvas_size)
374
375
376
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox

377
    return torch.stack([transform(b) for b in bounding_boxes.reshape(-1, 4).unbind()]).reshape(bounding_boxes.shape)
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439


class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
440
            F.resize_image,
441
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
442
443
444
445
446
447
448
449
450
451
452
453
454
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
455
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
456
457
458
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

459
        bounding_boxes = make_bounding_box(
460
            format=format,
Philip Meier's avatar
Philip Meier committed
461
            canvas_size=self.INPUT_SIZE,
462
463
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
464
        )
465
        check_kernel(
466
467
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
468
            canvas_size=bounding_boxes.canvas_size,
469
470
471
472
473
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

474
475
476
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
477
478

    def test_kernel_video(self):
479
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
480
481
482

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
483
484
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
485
    )
Nicolas Hug's avatar
Nicolas Hug committed
486
487
    def test_functional(self, size, make_input):
        check_functional(
488
            F.resize,
489
            make_input(self.INPUT_SIZE),
490
491
492
493
494
495
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
496
        ("kernel", "input_type"),
497
        [
498
499
500
            (F.resize_image, torch.Tensor),
            (F._resize_image_pil, PIL.Image.Image),
            (F.resize_image, datapoints.Image),
501
            (F.resize_bounding_boxes, datapoints.BoundingBoxes),
502
503
            (F.resize_mask, datapoints.Mask),
            (F.resize_video, datapoints.Video),
504
505
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
506
507
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
508
509
510
511

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
512
513
514
515
516
517
518
519
520
521
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
522
    )
523
524
    def test_transform(self, size, device, make_input):
        check_transform(transforms.Resize, make_input(self.INPUT_SIZE, device=device), size=size, antialias=True)
525
526

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
527
528
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
529
530
531
532
533
534
535
536
537
538
539
540
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

541
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
542
543

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
544
        expected = F.to_image(F.resize(F.to_pil_image(image), size=size, interpolation=interpolation, **max_size_kwarg))
545
546
547
548

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

549
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
550
        old_height, old_width = bounding_boxes.canvas_size
551
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
552
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
553
554
555
        )

        if (old_height, old_width) == (new_height, new_width):
556
            return bounding_boxes
557
558
559
560
561
562

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
563
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
564
565
        )

566
567
568
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
569
            canvas_size=(new_height, new_width),
570
571
            affine_matrix=affine_matrix,
        )
572
        return datapoints.wrap(expected_bboxes, like=bounding_boxes, canvas_size=(new_height, new_width))
573
574
575
576
577

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
578
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
579
580
581
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

Philip Meier's avatar
Philip Meier committed
582
        bounding_boxes = make_bounding_box(format=format, canvas_size=self.INPUT_SIZE)
583

584
585
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
586

587
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
588
589
590
591
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
592
593
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
594
    )
595
596
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
597
598
599
600
601
602
603
604
605
606
607
608
609

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

Nicolas Hug's avatar
Nicolas Hug committed
610
    def test_functional_pil_antialias_warning(self):
611
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
612
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
613
614
615

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
616
617
618
619
620
621
622
623
624
625
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
626
    )
627
    def test_max_size_error(self, size, make_input):
628
629
630
631
632
633
634
635
636
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
637
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
638
639
640

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
641
642
        "make_input",
        [make_image_tensor, make_image, make_video],
643
    )
644
    def test_antialias_warning(self, interpolation, make_input):
645
646
647
648
649
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
650
            F.resize(
651
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
652
653
654
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
655
656
657

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
658
659
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
660
    )
661
662
663
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

664
665
666
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
667
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
685
686
687
688
689
690
691
692
693
694
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
695
    )
696
697
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
698

Philip Meier's avatar
Philip Meier committed
699
        output = F.resize(input, size=F.get_size(input), antialias=True)
700
701
702

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
703
        if isinstance(input, datapoints.Datapoint):
704
705
706
707
708
709
710
711
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
            # datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
712
713
714
715
716
717
718
719
720
721
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
            make_bounding_box,
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
722
    )
723
    def test_no_regression_5405(self, make_input):
724
725
726
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

727
        input = make_input(self.INPUT_SIZE)
728

Philip Meier's avatar
Philip Meier committed
729
        size = min(F.get_size(input))
730
731
732
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
733
        assert max(F.get_size(output)) == max_size
734
735
736
737
738
739


class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
740
        check_kernel(F.horizontal_flip_image, make_image(dtype=dtype, device=device))
741
742
743
744

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
745
746
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
747
        check_kernel(
748
749
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
750
            format=format,
Philip Meier's avatar
Philip Meier committed
751
            canvas_size=bounding_boxes.canvas_size,
752
753
        )

754
755
756
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
757
758

    def test_kernel_video(self):
759
        check_kernel(F.horizontal_flip_video, make_video())
760
761

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
762
763
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
764
    )
Nicolas Hug's avatar
Nicolas Hug committed
765
766
    def test_functional(self, make_input):
        check_functional(F.horizontal_flip, make_input())
767
768

    @pytest.mark.parametrize(
769
        ("kernel", "input_type"),
770
        [
771
772
773
            (F.horizontal_flip_image, torch.Tensor),
            (F._horizontal_flip_image_pil, PIL.Image.Image),
            (F.horizontal_flip_image, datapoints.Image),
774
            (F.horizontal_flip_bounding_boxes, datapoints.BoundingBoxes),
775
776
            (F.horizontal_flip_mask, datapoints.Mask),
            (F.horizontal_flip_video, datapoints.Video),
777
778
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
779
780
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
781
782

    @pytest.mark.parametrize(
783
784
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
785
786
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
787
788
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomHorizontalFlip, make_input(device=device), p=1)
789
790
791
792
793

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
794
        image = make_image(dtype=torch.uint8, device="cpu")
795
796

        actual = fn(image)
797
        expected = F.to_image(F.horizontal_flip(F.to_pil_image(image)))
798
799
800

        torch.testing.assert_close(actual, expected)

801
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
802
803
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
804
                [-1, 0, bounding_boxes.canvas_size[1]],
805
806
                [0, 1, 0],
            ],
807
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
808
809
        )

810
811
812
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
813
            canvas_size=bounding_boxes.canvas_size,
814
815
816
            affine_matrix=affine_matrix,
        )

817
        return datapoints.wrap(expected_bboxes, like=bounding_boxes)
818
819
820
821
822

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
823
824
    def test_bounding_boxes_correctness(self, format, fn):
        bounding_boxes = make_bounding_box(format=format)
825

826
827
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
828
829
830
831

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
832
833
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
834
835
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
836
837
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
838
839
840
841
842
843

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
887
888
889
890
891
892
893
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
894
895
896
897
898
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
899
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
900
        self._check_kernel(
901
            F.affine_image,
902
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
903
904
905
906
907
908
909
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
910
911
912
913
914
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
915
916
917
918
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
919
920
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
921
        self._check_kernel(
922
923
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
924
            format=format,
Philip Meier's avatar
Philip Meier committed
925
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
926
927
928
929
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

930
931
932
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
933
934

    def test_kernel_video(self):
935
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
936
937

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
938
939
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
940
    )
Nicolas Hug's avatar
Nicolas Hug committed
941
942
    def test_functional(self, make_input):
        check_functional(F.affine, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
943
944

    @pytest.mark.parametrize(
945
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
946
        [
947
948
949
            (F.affine_image, torch.Tensor),
            (F._affine_image_pil, PIL.Image.Image),
            (F.affine_image, datapoints.Image),
950
            (F.affine_bounding_boxes, datapoints.BoundingBoxes),
951
952
            (F.affine_mask, datapoints.Mask),
            (F.affine_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
953
954
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
955
956
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
957
958

    @pytest.mark.parametrize(
959
960
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
961
962
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
963
964
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
965
966
967
968
969
970
971
972
973
974
975

        check_transform(transforms.RandomAffine, input, **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES)

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
976
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
977
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
978
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
979

Philip Meier's avatar
Philip Meier committed
980
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
981
982
983
984
985
986
987
988
989
990
991

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
992
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
993
            F.affine(
994
                F.to_pil_image(image),
Philip Meier's avatar
Philip Meier committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1012
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1013
1014
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1015
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1016

Philip Meier's avatar
Philip Meier committed
1017
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1018
1019
1020
1021
1022
1023
1024
1025
1026

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1027
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
        return true_matrix

1054
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1055
        if center is None:
Philip Meier's avatar
Philip Meier committed
1056
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1057
1058
1059
1060
1061
1062

        affine_matrix = self._compute_affine_matrix(
            angle=angle, translate=translate, scale=scale, shear=shear, center=center
        )
        affine_matrix = affine_matrix[:2, :]

1063
1064
1065
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1066
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1078
1079
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1080
1081

        actual = F.affine(
1082
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1083
1084
1085
1086
1087
1088
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1089
1090
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1103
1104
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1105
1106
1107
1108

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1109
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1110
1111

        torch.manual_seed(seed)
1112
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1113

1114
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1115
1116
1117
1118
1119
1120
1121
1122
1123

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1124
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1125
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1199
1200
1201
1202
1203
1204


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, dtype, device):
1205
        check_kernel(F.vertical_flip_image, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1206
1207
1208
1209

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1210
1211
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1212
        check_kernel(
1213
1214
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1215
            format=format,
Philip Meier's avatar
Philip Meier committed
1216
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1217
1218
        )

1219
1220
1221
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1222
1223

    def test_kernel_video(self):
1224
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1225
1226

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1227
1228
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1229
    )
Nicolas Hug's avatar
Nicolas Hug committed
1230
1231
    def test_functional(self, make_input):
        check_functional(F.vertical_flip, make_input())
Philip Meier's avatar
Philip Meier committed
1232
1233

    @pytest.mark.parametrize(
1234
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1235
        [
1236
1237
1238
            (F.vertical_flip_image, torch.Tensor),
            (F._vertical_flip_image_pil, PIL.Image.Image),
            (F.vertical_flip_image, datapoints.Image),
1239
            (F.vertical_flip_bounding_boxes, datapoints.BoundingBoxes),
1240
1241
            (F.vertical_flip_mask, datapoints.Mask),
            (F.vertical_flip_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1242
1243
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1244
1245
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1246
1247

    @pytest.mark.parametrize(
1248
1249
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1250
1251
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1252
1253
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomVerticalFlip, make_input(device=device), p=1)
Philip Meier's avatar
Philip Meier committed
1254
1255
1256

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1257
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1258
1259

        actual = fn(image)
1260
        expected = F.to_image(F.vertical_flip(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1261
1262
1263

        torch.testing.assert_close(actual, expected)

1264
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1265
1266
1267
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1268
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1269
            ],
1270
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
Philip Meier's avatar
Philip Meier committed
1271
1272
        )

1273
1274
1275
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1276
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1277
1278
1279
            affine_matrix=affine_matrix,
        )

1280
        return datapoints.wrap(expected_bboxes, like=bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1281
1282
1283

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1284
1285
    def test_bounding_boxes_correctness(self, format, fn):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1286

1287
1288
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1289
1290
1291
1292

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1293
1294
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1295
1296
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1297
1298
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1299
1300
1301
1302
1303
1304

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
1340
            F.rotate_image,
1341
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1354
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1355
1356
1357
1358
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1359
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1360
1361

        check_kernel(
1362
1363
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1364
            format=format,
Philip Meier's avatar
Philip Meier committed
1365
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1366
1367
1368
            **kwargs,
        )

1369
1370
1371
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1372
1373

    def test_kernel_video(self):
1374
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1375
1376

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1377
1378
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1379
    )
Nicolas Hug's avatar
Nicolas Hug committed
1380
1381
    def test_functional(self, make_input):
        check_functional(F.rotate, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1382
1383

    @pytest.mark.parametrize(
1384
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1385
        [
1386
1387
1388
            (F.rotate_image, torch.Tensor),
            (F._rotate_image_pil, PIL.Image.Image),
            (F.rotate_image, datapoints.Image),
1389
            (F.rotate_bounding_boxes, datapoints.BoundingBoxes),
1390
1391
            (F.rotate_mask, datapoints.Mask),
            (F.rotate_video, datapoints.Video),
Philip Meier's avatar
Philip Meier committed
1392
1393
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1394
1395
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1396
1397

    @pytest.mark.parametrize(
1398
1399
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1400
1401
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1402
1403
1404
1405
    def test_transform(self, make_input, device):
        check_transform(
            transforms.RandomRotation, make_input(device=device), **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES
        )
Philip Meier's avatar
Philip Meier committed
1406
1407
1408
1409
1410
1411
1412
1413
1414

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1415
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1416
1417
1418
1419

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
1420
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1421
            F.rotate(
1422
                F.to_pil_image(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
Philip Meier's avatar
Philip Meier committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1437
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1453
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1454
1455
1456
1457

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1458
    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1459
1460
1461
1462
1463
        # FIXME
        if expand:
            raise ValueError("This reference currently does not support expand=True")

        if center is None:
Philip Meier's avatar
Philip Meier committed
1464
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        cx = center[0]
        cy = center[1]
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
1475
            dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32",
Philip Meier's avatar
Philip Meier committed
1476
1477
        )

1478
1479
1480
        expected_bboxes = reference_affine_bounding_boxes_helper(
            bounding_boxes,
            format=bounding_boxes.format,
Philip Meier's avatar
Philip Meier committed
1481
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
            affine_matrix=affine_matrix,
        )

        return expected_bboxes

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1492
1493
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1494

1495
1496
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1497
1498
1499
1500
1501
1502
1503
1504

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    # TODO: add support for expand=True in the reference
    @pytest.mark.parametrize("expand", [False])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1505
1506
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
        bounding_boxes = make_bounding_box(format=format)
Philip Meier's avatar
Philip Meier committed
1507
1508
1509
1510

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1511
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1512
1513

        torch.manual_seed(seed)
1514
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1515

1516
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1616
1617
1618
1619
1620
1621


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1622
1623
            (F.to_dtype_image, make_image_tensor),
            (F.to_dtype_image, make_image),
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            expect_same_dtype=input_dtype is output_dtype,
            dtype=output_dtype,
            scale=scale,
        )

Philip Meier's avatar
Philip Meier committed
1640
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
1641
1642
1643
1644
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
Nicolas Hug's avatar
Nicolas Hug committed
1645
1646
    def test_functional(self, make_input, input_dtype, output_dtype, device, scale):
        check_functional(
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
            F.to_dtype,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
        check_transform(transforms.ToDtype, input, dtype=output_dtype, scale=scale)

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
Philip Meier's avatar
Philip Meier committed
1730
            "bbox": make_bounding_box(canvas_size=(H, W), dtype=bbox_dtype),
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype={datapoints.Mask: torch.int64, "others": None})(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
            dtype={type(sample["inpt"]): torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
            out = transforms.ToDtype(dtype={datapoints.Mask: torch.float32})(sample)
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, datapoints.Image: torch.float32})
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1793
1794


1795
1796
1797
1798
1799
1800
1801
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1802
            (F.adjust_brightness_image, make_image),
1803
1804
1805
1806
1807
1808
1809
1810
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

Philip Meier's avatar
Philip Meier committed
1811
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
1812
1813
    def test_functional(self, make_input):
        check_functional(F.adjust_brightness, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)
1814
1815
1816
1817

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
1818
1819
1820
            (F.adjust_brightness_image, torch.Tensor),
            (F._adjust_brightness_image_pil, PIL.Image.Image),
            (F.adjust_brightness_image, datapoints.Image),
1821
1822
1823
            (F.adjust_brightness_video, datapoints.Video),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1824
1825
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)
1826
1827
1828
1829
1830
1831

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
1832
        expected = F.to_image(F.adjust_brightness(F.to_pil_image(image), brightness_factor=brightness_factor))
1833
1834
1835
1836

        torch.testing.assert_close(actual, expected)


1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
1852
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1853
1854
1855
1856
1857
1858
1859
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

1860
        cutmix_mixup = T(num_classes=num_classes)
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
1902
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
1914
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
            datapoints.Mask(torch.rand(12, 12)),
Philip Meier's avatar
Philip Meier committed
1926
            datapoints.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
1974
1975
1976
1977
1978
1979


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1980
1981
1982
            (F.get_dimensions_image, make_image_tensor),
            (F._get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image, make_image),
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1997
1998
1999
            (F.get_num_channels_image, make_image_tensor),
            (F._get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image, make_image),
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2013
2014
2015
            (F.get_size_image, make_image_tensor),
            (F._get_size_image_pil, make_image_pil),
            (F.get_size_image, make_image),
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
            (F.get_size_bounding_boxes, make_bounding_box),
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
Nicolas Hug's avatar
Nicolas Hug committed
2044
        ("functional", "make_input"),
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
        [
            (F.get_dimensions, make_bounding_box),
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
            (F.get_num_channels, make_bounding_box),
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
            (F.get_num_frames, make_bounding_box),
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2059
    def test_unsupported_types(self, functional, make_input):
2060
2061
2062
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
Nicolas Hug's avatar
Nicolas Hug committed
2063
            functional(input)
2064
2065
2066


class TestRegisterKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2067
2068
    @pytest.mark.parametrize("functional", (F.resize, "resize"))
    def test_register_kernel(self, functional):
2069
2070
2071
2072
2073
        class CustomDatapoint(datapoints.Datapoint):
            pass

        kernel_was_called = False

Nicolas Hug's avatar
Nicolas Hug committed
2074
        @F.register_kernel(functional, CustomDatapoint)
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

        my_dp = CustomDatapoint(torch.rand(3, 10, 10))
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
        t(datapoints.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)

2091
    def test_errors(self):
Nicolas Hug's avatar
Nicolas Hug committed
2092
        with pytest.raises(ValueError, match="Could not find functional with name"):
2093
2094
            F.register_kernel("bad_name", datapoints.Image)

Nicolas Hug's avatar
Nicolas Hug committed
2095
        with pytest.raises(ValueError, match="Kernels can only be registered on functionals"):
2096
2097
2098
2099
2100
            F.register_kernel(datapoints.Image, F.resize)

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

2101
        with pytest.raises(ValueError, match="cannot be registered for the builtin datapoint classes"):
2102
            F.register_kernel(F.resize, datapoints.Image)(F.resize_image)
2103

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
        class CustomDatapoint(datapoints.Datapoint):
            pass

        def resize_custom_datapoint():
            pass

        F.register_kernel(F.resize, CustomDatapoint)(resize_custom_datapoint)

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
            F.register_kernel(F.resize, CustomDatapoint)(resize_custom_datapoint)

2115
2116

class TestGetKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2117
    # We are using F.resize as functional and the kernels below as proxy. Any other functional / kernels combination
2118
2119
    # would also be fine
    KERNELS = {
2120
2121
2122
        torch.Tensor: F.resize_image,
        PIL.Image.Image: F._resize_image_pil,
        datapoints.Image: F.resize_image,
2123
2124
2125
2126
2127
        datapoints.BoundingBoxes: F.resize_bounding_boxes,
        datapoints.Mask: F.resize_mask,
        datapoints.Video: F.resize_video,
    }

2128
2129
2130
2131
    @pytest.mark.parametrize("input_type", [str, int, object])
    def test_unsupported_types(self, input_type):
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, input_type)
2132
2133
2134

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2135
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
            _register_kernel_internal(resize_with_pure_kernels, input_type, datapoint_wrapper=False)(kernel)

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

    def test_builtin_datapoint_subclass(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2147
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
        # here, register the kernels without wrapper, and check if subclasses of our builtin datapoints get dispatched
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

        class MyImage(datapoints.Image):
            pass

        class MyBoundingBoxes(datapoints.BoundingBoxes):
            pass

        class MyMask(datapoints.Mask):
            pass

        class MyVideo(datapoints.Video):
            pass

        for custom_datapoint_subclass in [
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
            builtin_datapoint_class = custom_datapoint_subclass.__mro__[1]
            builtin_datapoint_kernel = self.KERNELS[builtin_datapoint_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_datapoint_class, datapoint_wrapper=False)(
                builtin_datapoint_kernel
            )

            assert _get_kernel(resize_with_pure_kernels, custom_datapoint_subclass) is builtin_datapoint_kernel

    def test_datapoint_subclass(self):
        class MyDatapoint(datapoints.Datapoint):
            pass

2183
2184
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, MyDatapoint)
2185
2186
2187
2188
2189
2190
2191

        def resize_my_datapoint():
            pass

        _register_kernel_internal(F.resize, MyDatapoint, datapoint_wrapper=False)(resize_my_datapoint)

        assert _get_kernel(F.resize, MyDatapoint) is resize_my_datapoint
2192

2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
    def test_pil_image_subclass(self):
        opened_image = PIL.Image.open(Path(__file__).parent / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")
        loaded_image = opened_image.convert("RGB")

        # check the assumptions
        assert isinstance(opened_image, PIL.Image.Image)
        assert type(opened_image) is not PIL.Image.Image

        assert type(loaded_image) is PIL.Image.Image

        size = [17, 11]
        for image in [opened_image, loaded_image]:
            kernel = _get_kernel(F.resize, type(image))

            output = kernel(image, size=size)

            assert F.get_size(output) == size

2211
2212
2213
2214
2215
2216
2217

class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2218
            (F.permute_channels_image, make_image_tensor),
2219
2220
            # FIXME
            # check_kernel does not support PIL kernel, but it should
2221
            (F.permute_channels_image, make_image),
2222
2223
2224
2225
2226
2227
2228
2229
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

Nicolas Hug's avatar
Nicolas Hug committed
2230
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
2231
2232
    def test_functional(self, make_input):
        check_functional(F.permute_channels, make_input(), permutation=self._DEFAULT_PERMUTATION)
2233
2234
2235
2236

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
2237
2238
2239
            (F.permute_channels_image, torch.Tensor),
            (F._permute_channels_image_pil, PIL.Image.Image),
            (F.permute_channels_image, datapoints.Image),
2240
2241
2242
            (F.permute_channels_video, datapoints.Video),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2243
2244
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
        return datapoints.Image(torch.concat(permuted_channel_images, dim=-3))

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)
Philip Meier's avatar
Philip Meier committed
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355


class TestElastic:
    def _make_displacement(self, inpt):
        return torch.rand(
            1,
            *F.get_size(inpt),
            2,
            dtype=torch.float32,
            device=inpt.device if isinstance(inpt, torch.Tensor) else "cpu",
        )

    @param_value_parametrization(
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_tensor(self, param, value, dtype, device):
        image = make_image_tensor(dtype=dtype, device=device)

        check_kernel(
            F.elastic_image_tensor,
            image,
            displacement=self._make_displacement(image),
            **{param: value},
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_boxes(self, format, dtype, device):
        bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device)

        check_kernel(
            F.elastic_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            displacement=self._make_displacement(bounding_boxes),
        )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        mask = make_mask()
        check_kernel(F.elastic_mask, mask, displacement=self._make_displacement(mask))

    def test_kernel_video(self):
        video = make_video()
        check_kernel(F.elastic_video, video, displacement=self._make_displacement(video))

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        input = make_input()
        check_functional(F.elastic, input, displacement=self._make_displacement(input))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.elastic_image_tensor, torch.Tensor),
            (F.elastic_image_pil, PIL.Image.Image),
            (F.elastic_image_tensor, datapoints.Image),
            (F.elastic_bounding_boxes, datapoints.BoundingBoxes),
            (F.elastic_mask, datapoints.Mask),
            (F.elastic_video, datapoints.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.elastic, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    def test_displacement_error(self, make_input):
        input = make_input()

        with pytest.raises(TypeError, match="displacement should be a Tensor"):
            F.elastic(input, displacement=None)

        with pytest.raises(ValueError, match="displacement shape should be"):
            F.elastic(input, displacement=torch.rand(F.get_size(input)))

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video],
    )
    # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
    @pytest.mark.parametrize("size", [(163, 163), (72, 333), (313, 95)])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, size, device):
        check_transform(transforms.ElasticTransform, make_input(size, device=device))