test_transforms_v2_refactored.py 125 KB
Newer Older
1
import contextlib
2
import decimal
3
import functools
4
import inspect
5
import itertools
Philip Meier's avatar
Philip Meier committed
6
import math
7
import pickle
8
import re
9
from pathlib import Path
10
11
12
13
14
15
16
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
17
18

import torchvision.ops
19
20
21
22
23
24
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
25
    freeze_rng_state,
26
    ignore_jit_no_profile_information_warning,
27
    make_bounding_boxes,
28
29
    make_detection_mask,
    make_image,
30
31
    make_image_pil,
    make_image_tensor,
32
33
    make_segmentation_mask,
    make_video,
34
    make_video_tensor,
35
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
36
    set_rng_seed,
37
)
38
39

from torch import nn
40
from torch.testing import assert_close
41
from torch.utils._pytree import tree_map
42
from torch.utils.data import DataLoader, default_collate
43
from torchvision import tv_tensors
Philip Meier's avatar
Philip Meier committed
44
45

from torchvision.transforms._functional_tensor import _max_value as get_max_value
46
47
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
48
from torchvision.transforms.v2.functional._utils import _get_kernel, _register_kernel_internal
49
50


Nicolas Hug's avatar
Nicolas Hug committed
51
52
53
54
55
56
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

74
75
76
77
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
78
79
80
81
82

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
83
def _script(obj):
84
    try:
85
        return torch.jit.script(obj)
86
    except Exception as error:
87
88
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

157
    if kernel not in {F.to_dtype_image, F.to_dtype_video}:
158
        assert output.dtype == input.dtype
159
160
161
162
163
164
165
166
167
168
169
170
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


Nicolas Hug's avatar
Nicolas Hug committed
171
172
def _check_functional_scripted_smoke(functional, input, *args, **kwargs):
    """Checks if the functional can be scripted and the scripted version can be called without error."""
173
    if not isinstance(input, tv_tensors.Image):
174
175
        return

Nicolas Hug's avatar
Nicolas Hug committed
176
    functional_scripted = _script(functional)
177
    with ignore_jit_no_profile_information_warning():
Nicolas Hug's avatar
Nicolas Hug committed
178
        functional_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)
179
180


Nicolas Hug's avatar
Nicolas Hug committed
181
def check_functional(functional, input, *args, check_scripted_smoke=True, **kwargs):
182
    unknown_input = object()
183
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
Nicolas Hug's avatar
Nicolas Hug committed
184
        functional(unknown_input, *args, **kwargs)
185

186
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
Nicolas Hug's avatar
Nicolas Hug committed
187
        output = functional(input, *args, **kwargs)
188

Nicolas Hug's avatar
Nicolas Hug committed
189
        spy.assert_any_call(f"{functional.__module__}.{functional.__name__}")
190

191
192
    assert isinstance(output, type(input))

193
    if isinstance(input, tv_tensors.BoundingBoxes) and functional is not F.convert_bounding_box_format:
194
195
        assert output.format == input.format

196
    if check_scripted_smoke:
Nicolas Hug's avatar
Nicolas Hug committed
197
        _check_functional_scripted_smoke(functional, input, *args, **kwargs)
198
199


Nicolas Hug's avatar
Nicolas Hug committed
200
201
202
def check_functional_kernel_signature_match(functional, *, kernel, input_type):
    """Checks if the signature of the functional matches the kernel signature."""
    functional_params = list(inspect.signature(functional).parameters.values())[1:]
203
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
204

205
206
    if issubclass(input_type, tv_tensors.TVTensor):
        # We filter out metadata that is implicitly passed to the functional through the input tv_tensor, but has to be
207
        # explicitly passed to the kernel.
208
        explicit_metadata = {
209
            tv_tensors.BoundingBoxes: {"format", "canvas_size"},
210
211
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
212

Nicolas Hug's avatar
Nicolas Hug committed
213
214
    functional_params = iter(functional_params)
    for functional_param, kernel_param in zip(functional_params, kernel_params):
215
        try:
Nicolas Hug's avatar
Nicolas Hug committed
216
217
218
219
            # In general, the functional parameters are a superset of the kernel parameters. Thus, we filter out
            # functional parameters that have no kernel equivalent while keeping the order intact.
            while functional_param.name != kernel_param.name:
                functional_param = next(functional_params)
220
221
222
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
Nicolas Hug's avatar
Nicolas Hug committed
223
                f"has no corresponding parameter on the functional `{functional.__name__}`."
224
225
226
227
228
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
Nicolas Hug's avatar
Nicolas Hug committed
229
            functional_param._annotation = kernel_param._annotation = inspect.Parameter.empty
230

Nicolas Hug's avatar
Nicolas Hug committed
231
        assert functional_param == kernel_param
232
233


234
def _check_transform_v1_compatibility(transform, input, *, rtol, atol):
235
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
236
237
    ``get_params`` method that is the v1 equivalent, the output is close to v1, is scriptable, and the scripted version
    can be called without error."""
Philip Meier's avatar
Philip Meier committed
238
    if not (type(input) is torch.Tensor or isinstance(input, PIL.Image.Image)):
239
240
        return

241
242
    v1_transform_cls = transform._v1_transform_cls
    if v1_transform_cls is None:
243
244
        return

245
246
    if hasattr(v1_transform_cls, "get_params"):
        assert type(transform).get_params is v1_transform_cls.get_params
247

248
249
250
251
252
253
254
255
    v1_transform = v1_transform_cls(**transform._extract_params_for_v1_transform())

    with freeze_rng_state():
        output_v2 = transform(input)

    with freeze_rng_state():
        output_v1 = v1_transform(input)

Philip Meier's avatar
Philip Meier committed
256
    assert_close(F.to_image(output_v2), F.to_image(output_v1), rtol=rtol, atol=atol)
257

258
259
260
261
    if isinstance(input, PIL.Image.Image):
        return

    _script(v1_transform)(input)
262
263


264
def check_transform(transform, input, check_v1_compatibility=True):
265
266
    pickle.loads(pickle.dumps(transform))

267
268
269
    output = transform(input)
    assert isinstance(output, type(input))

270
    if isinstance(input, tv_tensors.BoundingBoxes) and not isinstance(transform, transforms.ConvertBoundingBoxFormat):
271
272
        assert output.format == input.format

273
274
    if check_v1_compatibility:
        _check_transform_v1_compatibility(transform, input, **_to_tolerances(check_v1_compatibility))
275
276


277
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
278
    def wrapper(input, *args, **kwargs):
279
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
280
281
282
283
284
285
286
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)

    if isinstance(value, (int, float)):
        return type(value)(value * max_value)
    elif isinstance(value, (list, tuple)):
        return type(value)(type(v)(v * max_value) for v in value)
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


357
358
359
360
361
362
def reference_affine_bounding_boxes_helper(bounding_boxes, *, affine_matrix, new_canvas_size=None, clamp=True):
    format = bounding_boxes.format
    canvas_size = new_canvas_size or bounding_boxes.canvas_size

    def affine_bounding_boxes(bounding_boxes):
        dtype = bounding_boxes.dtype
363
        device = bounding_boxes.device
364

365
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
366
        input_xyxy = F.convert_bounding_box_format(
367
            bounding_boxes.to(dtype=torch.float64, device="cpu", copy=True),
368
            old_format=format,
369
            new_format=tv_tensors.BoundingBoxFormat.XYXY,
370
371
            inplace=True,
        )
372
373
        x1, y1, x2, y2 = input_xyxy.squeeze(0).tolist()

374
375
        points = np.array(
            [
376
377
378
379
                [x1, y1, 1.0],
                [x2, y1, 1.0],
                [x1, y2, 1.0],
                [x2, y2, 1.0],
380
381
            ]
        )
382
383
384
        transformed_points = np.matmul(points, affine_matrix.astype(points.dtype).T)

        output_xyxy = torch.Tensor(
385
            [
386
387
388
389
390
                float(np.min(transformed_points[:, 0])),
                float(np.min(transformed_points[:, 1])),
                float(np.max(transformed_points[:, 0])),
                float(np.max(transformed_points[:, 1])),
            ]
391
        )
392
393

        output = F.convert_bounding_box_format(
394
            output_xyxy, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format
395
396
        )

397
398
399
400
401
402
        if clamp:
            # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
            output = F.clamp_bounding_boxes(
                output,
                format=format,
                canvas_size=canvas_size,
403
404
405
406
407
            )
        else:
            # We leave the bounding box as float64 so the caller gets the full precision to perform any additional
            # operation
            dtype = output.dtype
408

409
        return output.to(dtype=dtype, device=device)
410

411
    return tv_tensors.BoundingBoxes(
412
413
414
415
416
417
        torch.cat([affine_bounding_boxes(b) for b in bounding_boxes.reshape(-1, 4).unbind()], dim=0).reshape(
            bounding_boxes.shape
        ),
        format=format,
        canvas_size=canvas_size,
    )
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469


class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
470
    def test_kernel_image(self, size, interpolation, use_max_size, antialias, dtype, device):
471
472
473
474
475
476
477
478
479
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
480
            F.resize_image,
481
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
482
483
484
485
486
487
488
489
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

490
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
491
492
493
494
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
495
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
496
497
498
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

499
        bounding_boxes = make_bounding_boxes(
500
            format=format,
Philip Meier's avatar
Philip Meier committed
501
            canvas_size=self.INPUT_SIZE,
502
503
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
504
        )
505
        check_kernel(
506
507
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
508
            canvas_size=bounding_boxes.canvas_size,
509
510
511
512
513
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

514
515
516
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
517
518

    def test_kernel_video(self):
519
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
520
521
522

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
523
        "make_input",
524
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
525
    )
Nicolas Hug's avatar
Nicolas Hug committed
526
527
    def test_functional(self, size, make_input):
        check_functional(
528
            F.resize,
529
            make_input(self.INPUT_SIZE),
530
531
532
533
534
535
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
536
        ("kernel", "input_type"),
537
        [
538
539
            (F.resize_image, torch.Tensor),
            (F._resize_image_pil, PIL.Image.Image),
540
541
542
543
            (F.resize_image, tv_tensors.Image),
            (F.resize_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.resize_mask, tv_tensors.Mask),
            (F.resize_video, tv_tensors.Video),
544
545
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
546
547
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
548
549
550
551

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
552
553
554
555
556
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
557
            make_bounding_boxes,
558
559
560
561
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
562
    )
563
    def test_transform(self, size, device, make_input):
564
565
566
567
568
569
        check_transform(
            transforms.Resize(size=size, antialias=True),
            make_input(self.INPUT_SIZE, device=device),
            # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
570
571

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
572
573
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
574
575
576
577
578
579
580
581
582
583
584
585
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

586
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
587
588

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
589
        expected = F.to_image(F.resize(F.to_pil_image(image), size=size, interpolation=interpolation, **max_size_kwarg))
590
591
592
593

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

594
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
595
        old_height, old_width = bounding_boxes.canvas_size
596
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
597
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
598
599
600
        )

        if (old_height, old_width) == (new_height, new_width):
601
            return bounding_boxes
602
603
604
605
606
607
608
609

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
        )

610
        return reference_affine_bounding_boxes_helper(
611
            bounding_boxes,
612
            affine_matrix=affine_matrix,
613
            new_canvas_size=(new_height, new_width),
614
615
        )

616
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
617
618
619
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
620
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
621
622
623
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

624
        bounding_boxes = make_bounding_boxes(format=format, canvas_size=self.INPUT_SIZE)
625

626
627
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
628

629
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
630
631
632
633
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
634
635
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
636
    )
637
638
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
639
640
641
642
643
644
645
646
647
648
649
650
651

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

Nicolas Hug's avatar
Nicolas Hug committed
652
    def test_functional_pil_antialias_warning(self):
653
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
654
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
655
656
657

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
658
659
660
661
662
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
663
            make_bounding_boxes,
664
665
666
667
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
668
    )
669
    def test_max_size_error(self, size, make_input):
670
671
672
673
674
675
676
677
678
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
679
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
680
681
682

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
683
684
        "make_input",
        [make_image_tensor, make_image, make_video],
685
    )
686
    def test_antialias_warning(self, interpolation, make_input):
687
688
689
690
691
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
692
            F.resize(
693
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
694
695
696
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
697
698
699

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
700
701
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
702
    )
703
704
705
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

706
707
708
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
709
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
727
728
729
730
731
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
732
            make_bounding_boxes,
733
734
735
736
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
737
    )
738
739
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
740

Philip Meier's avatar
Philip Meier committed
741
        output = F.resize(input, size=F.get_size(input), antialias=True)
742
743
744

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
745
        if isinstance(input, tv_tensors.TVTensor):
746
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
747
            # tv_tensors unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
748
749
750
751
752
753
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
754
755
756
757
758
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
759
            make_bounding_boxes,
760
761
762
763
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
764
    )
765
    def test_no_regression_5405(self, make_input):
766
767
768
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

769
        input = make_input(self.INPUT_SIZE)
770

Philip Meier's avatar
Philip Meier committed
771
        size = min(F.get_size(input))
772
773
774
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
775
        assert max(F.get_size(output)) == max_size
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    def _make_image(self, *args, batch_dims=(), memory_format=torch.contiguous_format, **kwargs):
        # torch.channels_last memory_format is only available for 4D tensors, i.e. (B, C, H, W). However, images coming
        # from PIL or our own I/O functions do not have a batch dimensions and are thus 3D, i.e. (C, H, W). Still, the
        # layout of the data in memory is channels last. To emulate this when a 3D input is requested here, we create
        # the image as 4D and create a view with the right shape afterwards. With this the layout in memory is channels
        # last although PyTorch doesn't recognizes it as such.
        emulate_channels_last = memory_format is torch.channels_last and len(batch_dims) != 1

        image = make_image(
            *args,
            batch_dims=(math.prod(batch_dims),) if emulate_channels_last else batch_dims,
            memory_format=memory_format,
            **kwargs,
        )

        if emulate_channels_last:
793
            image = tv_tensors.wrap(image.view(*batch_dims, *image.shape[-3:]), like=image)
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

        return image

    def _check_stride(self, image, *, memory_format):
        C, H, W = F.get_dimensions(image)
        if memory_format is torch.contiguous_format:
            expected_stride = (H * W, W, 1)
        elif memory_format is torch.channels_last:
            expected_stride = (1, W * C, C)
        else:
            raise ValueError(f"Unknown memory_format: {memory_format}")

        assert image.stride() == expected_stride

    # TODO: We can remove this test and related torchvision workaround
    #  once we fixed related pytorch issue: https://github.com/pytorch/pytorch/issues/68430
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("memory_format", [torch.contiguous_format, torch.channels_last])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_memory_format_consistency(self, interpolation, antialias, memory_format, dtype, device):
        size = self.OUTPUT_SIZES[0]

        input = self._make_image(self.INPUT_SIZE, dtype=dtype, device=device, memory_format=memory_format)

        # Smoke test to make sure we aren't starting with wrong assumptions
        self._check_stride(input, memory_format=memory_format)

        output = F.resize_image(input, size=size, interpolation=interpolation, antialias=antialias)

        self._check_stride(output, memory_format=memory_format)

    def test_float16_no_rounding(self):
        # Make sure Resize() doesn't round float16 images
        # Non-regression test for https://github.com/pytorch/vision/issues/7667

        input = make_image_tensor(self.INPUT_SIZE, dtype=torch.float16)
832
        output = F.resize_image(input, size=self.OUTPUT_SIZES[0], antialias=True)
833
834
835
836

        assert output.dtype is torch.float16
        assert (output.round() - output).abs().sum() > 0

837
838
839
840

class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
841
    def test_kernel_image(self, dtype, device):
842
        check_kernel(F.horizontal_flip_image, make_image(dtype=dtype, device=device))
843

844
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
845
846
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
847
    def test_kernel_bounding_boxes(self, format, dtype, device):
848
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
849
        check_kernel(
850
851
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
852
            format=format,
Philip Meier's avatar
Philip Meier committed
853
            canvas_size=bounding_boxes.canvas_size,
854
855
        )

856
857
858
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
859
860

    def test_kernel_video(self):
861
        check_kernel(F.horizontal_flip_video, make_video())
862
863

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
864
        "make_input",
865
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
866
    )
Nicolas Hug's avatar
Nicolas Hug committed
867
868
    def test_functional(self, make_input):
        check_functional(F.horizontal_flip, make_input())
869
870

    @pytest.mark.parametrize(
871
        ("kernel", "input_type"),
872
        [
873
874
            (F.horizontal_flip_image, torch.Tensor),
            (F._horizontal_flip_image_pil, PIL.Image.Image),
875
876
877
878
            (F.horizontal_flip_image, tv_tensors.Image),
            (F.horizontal_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.horizontal_flip_mask, tv_tensors.Mask),
            (F.horizontal_flip_video, tv_tensors.Video),
879
880
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
881
882
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
883
884

    @pytest.mark.parametrize(
885
        "make_input",
886
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
887
888
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
889
    def test_transform(self, make_input, device):
890
        check_transform(transforms.RandomHorizontalFlip(p=1), make_input(device=device))
891
892
893
894
895

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
896
        image = make_image(dtype=torch.uint8, device="cpu")
897
898

        actual = fn(image)
899
        expected = F.to_image(F.horizontal_flip(F.to_pil_image(image)))
900
901
902

        torch.testing.assert_close(actual, expected)

903
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
904
905
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
906
                [-1, 0, bounding_boxes.canvas_size[1]],
907
908
909
910
                [0, 1, 0],
            ],
        )

911
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
912

913
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
914
915
916
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
917
    def test_bounding_boxes_correctness(self, format, fn):
918
        bounding_boxes = make_bounding_boxes(format=format)
919

920
921
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
922
923
924
925

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
926
        "make_input",
927
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
928
929
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
930
931
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
932
933
934
935
936
937

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
981
982
983
984
985
986
987
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
988
989
990
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
991
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
992
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
993
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
994
        self._check_kernel(
995
            F.affine_image,
996
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
997
998
999
1000
1001
1002
1003
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
1004
1005
1006
1007
1008
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
1009
    )
1010
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1011
1012
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1013
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
1014
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1015
        self._check_kernel(
1016
1017
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1018
            format=format,
Philip Meier's avatar
Philip Meier committed
1019
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1020
1021
1022
1023
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

1024
1025
1026
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1027
1028

    def test_kernel_video(self):
1029
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
1030
1031

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1032
        "make_input",
1033
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1034
    )
Nicolas Hug's avatar
Nicolas Hug committed
1035
1036
    def test_functional(self, make_input):
        check_functional(F.affine, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1037
1038

    @pytest.mark.parametrize(
1039
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1040
        [
1041
1042
            (F.affine_image, torch.Tensor),
            (F._affine_image_pil, PIL.Image.Image),
1043
1044
1045
1046
            (F.affine_image, tv_tensors.Image),
            (F.affine_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.affine_mask, tv_tensors.Mask),
            (F.affine_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1047
1048
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1049
1050
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1051
1052

    @pytest.mark.parametrize(
1053
        "make_input",
1054
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1055
1056
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1057
1058
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1059

1060
        check_transform(transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), input)
Philip Meier's avatar
Philip Meier committed
1061
1062
1063
1064
1065
1066
1067
1068
1069

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1070
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1071
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1072
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1073

Philip Meier's avatar
Philip Meier committed
1074
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
1086
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1087
            F.affine(
1088
                F.to_pil_image(image),
Philip Meier's avatar
Philip Meier committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1106
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1107
1108
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1109
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1110

Philip Meier's avatar
Philip Meier committed
1111
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1112
1113
1114
1115
1116
1117
1118
1119
1120

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1121
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
1146
        return true_matrix[:2, :]
Philip Meier's avatar
Philip Meier committed
1147

1148
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1149
        if center is None:
Philip Meier's avatar
Philip Meier committed
1150
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1151

1152
        return reference_affine_bounding_boxes_helper(
1153
            bounding_boxes,
1154
1155
1156
            affine_matrix=self._compute_affine_matrix(
                angle=angle, translate=translate, scale=scale, shear=shear, center=center
            ),
Philip Meier's avatar
Philip Meier committed
1157
1158
        )

1159
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1160
1161
1162
1163
1164
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1165
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
1166
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1167
1168

        actual = F.affine(
1169
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1170
1171
1172
1173
1174
1175
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1176
1177
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

1187
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1188
1189
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1190
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
1191
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1192
1193
1194
1195

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1196
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1197
1198

        torch.manual_seed(seed)
1199
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1200

1201
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1202
1203
1204
1205
1206
1207
1208
1209
1210

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1211
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1212
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1286
1287
1288
1289
1290


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1291
    def test_kernel_image(self, dtype, device):
1292
        check_kernel(F.vertical_flip_image, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1293

1294
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1295
1296
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1297
    def test_kernel_bounding_boxes(self, format, dtype, device):
1298
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1299
        check_kernel(
1300
1301
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1302
            format=format,
Philip Meier's avatar
Philip Meier committed
1303
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1304
1305
        )

1306
1307
1308
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1309
1310

    def test_kernel_video(self):
1311
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1312
1313

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1314
        "make_input",
1315
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1316
    )
Nicolas Hug's avatar
Nicolas Hug committed
1317
1318
    def test_functional(self, make_input):
        check_functional(F.vertical_flip, make_input())
Philip Meier's avatar
Philip Meier committed
1319
1320

    @pytest.mark.parametrize(
1321
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1322
        [
1323
1324
            (F.vertical_flip_image, torch.Tensor),
            (F._vertical_flip_image_pil, PIL.Image.Image),
1325
1326
1327
1328
            (F.vertical_flip_image, tv_tensors.Image),
            (F.vertical_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.vertical_flip_mask, tv_tensors.Mask),
            (F.vertical_flip_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1329
1330
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1331
1332
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1333
1334

    @pytest.mark.parametrize(
1335
        "make_input",
1336
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1337
1338
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1339
    def test_transform(self, make_input, device):
1340
        check_transform(transforms.RandomVerticalFlip(p=1), make_input(device=device))
Philip Meier's avatar
Philip Meier committed
1341
1342
1343

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1344
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1345
1346

        actual = fn(image)
1347
        expected = F.to_image(F.vertical_flip(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1348
1349
1350

        torch.testing.assert_close(actual, expected)

1351
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1352
1353
1354
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1355
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1356
1357
1358
            ],
        )

1359
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
Philip Meier's avatar
Philip Meier committed
1360

1361
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1362
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1363
    def test_bounding_boxes_correctness(self, format, fn):
1364
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1365

1366
1367
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1368
1369
1370
1371

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1372
        "make_input",
1373
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1374
1375
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1376
1377
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1378
1379
1380
1381
1382
1383

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1414
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
1415
1416
1417
1418
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
1419
            F.rotate_image,
1420
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
1430
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1431
1432
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1433
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1434
1435
1436
1437
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1438
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1439
1440

        check_kernel(
1441
1442
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1443
            format=format,
Philip Meier's avatar
Philip Meier committed
1444
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1445
1446
1447
            **kwargs,
        )

1448
1449
1450
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1451
1452

    def test_kernel_video(self):
1453
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1454
1455

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1456
        "make_input",
1457
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1458
    )
Nicolas Hug's avatar
Nicolas Hug committed
1459
1460
    def test_functional(self, make_input):
        check_functional(F.rotate, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1461
1462

    @pytest.mark.parametrize(
1463
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1464
        [
1465
1466
            (F.rotate_image, torch.Tensor),
            (F._rotate_image_pil, PIL.Image.Image),
1467
1468
1469
1470
            (F.rotate_image, tv_tensors.Image),
            (F.rotate_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.rotate_mask, tv_tensors.Mask),
            (F.rotate_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1471
1472
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1473
1474
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1475
1476

    @pytest.mark.parametrize(
1477
        "make_input",
1478
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1479
1480
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1481
1482
    def test_transform(self, make_input, device):
        check_transform(
1483
            transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), make_input(device=device)
1484
        )
Philip Meier's avatar
Philip Meier committed
1485
1486
1487
1488
1489
1490
1491
1492
1493

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1494
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1495
1496
1497
1498

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
1499
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1500
            F.rotate(
1501
                F.to_pil_image(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
Philip Meier's avatar
Philip Meier committed
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1516
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1532
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1533
1534
1535
1536

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1537
1538
1539
1540
1541
    def _compute_output_canvas_size(self, *, expand, canvas_size, affine_matrix):
        if not expand:
            return canvas_size, (0.0, 0.0)

        input_height, input_width = canvas_size
Philip Meier's avatar
Philip Meier committed
1542

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
        input_image_frame = np.array(
            [
                [0.0, 0.0, 1.0],
                [0.0, input_height, 1.0],
                [input_width, input_height, 1.0],
                [input_width, 0.0, 1.0],
            ],
            dtype=np.float64,
        )
        output_image_frame = np.matmul(input_image_frame, affine_matrix.astype(input_image_frame.dtype).T)

        recenter_x = float(np.min(output_image_frame[:, 0]))
        recenter_y = float(np.min(output_image_frame[:, 1]))

        output_width = int(np.max(output_image_frame[:, 0]) - recenter_x)
        output_height = int(np.max(output_image_frame[:, 1]) - recenter_y)

        return (output_height, output_width), (recenter_x, recenter_y)

    def _recenter_bounding_boxes_after_expand(self, bounding_boxes, *, recenter_xy):
        x, y = recenter_xy
1564
        if bounding_boxes.format is tv_tensors.BoundingBoxFormat.XYXY:
1565
1566
1567
            translate = [x, y, x, y]
        else:
            translate = [x, y, 0.0, 0.0]
1568
        return tv_tensors.wrap(
1569
1570
1571
1572
            (bounding_boxes.to(torch.float64) - torch.tensor(translate)).to(bounding_boxes.dtype), like=bounding_boxes
        )

    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1573
        if center is None:
Philip Meier's avatar
Philip Meier committed
1574
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
1575
        cx, cy = center
Philip Meier's avatar
Philip Meier committed
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
        )

1586
1587
1588
1589
1590
        new_canvas_size, recenter_xy = self._compute_output_canvas_size(
            expand=expand, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix
        )

        output = reference_affine_bounding_boxes_helper(
1591
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1592
            affine_matrix=affine_matrix,
1593
1594
            new_canvas_size=new_canvas_size,
            clamp=False,
Philip Meier's avatar
Philip Meier committed
1595
1596
        )

1597
1598
1599
        return F.clamp_bounding_boxes(self._recenter_bounding_boxes_after_expand(output, recenter_xy=recenter_xy)).to(
            bounding_boxes
        )
Philip Meier's avatar
Philip Meier committed
1600

1601
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1602
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
1603
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1604
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1605
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
1606
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1607

1608
1609
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1610
1611

        torch.testing.assert_close(actual, expected)
1612
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1613

1614
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
1615
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1616
1617
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1618
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
1619
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1620
1621
1622
1623

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1624
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1625
1626

        torch.manual_seed(seed)
1627
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1628

1629
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1630
1631

        torch.testing.assert_close(actual, expected)
1632
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1730
1731
1732
1733
1734
1735


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1736
1737
            (F.to_dtype_image, make_image_tensor),
            (F.to_dtype_image, make_image),
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

Philip Meier's avatar
Philip Meier committed
1753
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
1754
1755
1756
1757
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
Nicolas Hug's avatar
Nicolas Hug committed
1758
1759
    def test_functional(self, make_input, input_dtype, output_dtype, device, scale):
        check_functional(
1760
1761
1762
1763
1764
1765
1766
1767
            F.to_dtype,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
1768
        [make_image_tensor, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
1779
        check_transform(transforms.ToDtype(dtype=output_dtype, scale=scale), input)
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
1843
            "bbox": make_bounding_boxes(canvas_size=(H, W), dtype=bbox_dtype),
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
1871
        out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.int64, "others": None})(sample)
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
1884
            dtype={type(sample["inpt"]): torch.float32, tv_tensors.Mask: torch.int64, "others": None}, scale=True
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
1898
            out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.float32})(sample)
1899
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
1900
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, tv_tensors.Image: torch.float32})
1901
1902
1903
1904
1905
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1906
1907


1908
1909
1910
1911
1912
1913
1914
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1915
            (F.adjust_brightness_image, make_image),
1916
1917
1918
1919
1920
1921
1922
1923
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

Philip Meier's avatar
Philip Meier committed
1924
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
1925
1926
    def test_functional(self, make_input):
        check_functional(F.adjust_brightness, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)
1927
1928
1929
1930

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
1931
1932
            (F.adjust_brightness_image, torch.Tensor),
            (F._adjust_brightness_image_pil, PIL.Image.Image),
1933
1934
            (F.adjust_brightness_image, tv_tensors.Image),
            (F.adjust_brightness_video, tv_tensors.Video),
1935
1936
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1937
1938
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)
1939
1940
1941
1942
1943
1944

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
1945
        expected = F.to_image(F.adjust_brightness(F.to_pil_image(image), brightness_factor=brightness_factor))
1946
1947
1948
1949

        torch.testing.assert_close(actual, expected)


1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
1965
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1966
1967
1968
1969
1970
1971
1972
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

1973
        cutmix_mixup = T(num_classes=num_classes)
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
2015
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
2027
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
2038
2039
            tv_tensors.Mask(torch.rand(12, 12)),
            tv_tensors.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
2087
2088
2089
2090
2091
2092


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2093
2094
2095
            (F.get_dimensions_image, make_image_tensor),
            (F._get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image, make_image),
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2110
2111
2112
            (F.get_num_channels_image, make_image_tensor),
            (F._get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image, make_image),
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2126
2127
2128
            (F.get_size_image, make_image_tensor),
            (F._get_size_image_pil, make_image_pil),
            (F.get_size_image, make_image),
2129
            (F.get_size_bounding_boxes, make_bounding_boxes),
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
Nicolas Hug's avatar
Nicolas Hug committed
2157
        ("functional", "make_input"),
2158
        [
2159
            (F.get_dimensions, make_bounding_boxes),
2160
2161
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
2162
            (F.get_num_channels, make_bounding_boxes),
2163
2164
2165
2166
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
2167
            (F.get_num_frames, make_bounding_boxes),
2168
2169
2170
2171
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2172
    def test_unsupported_types(self, functional, make_input):
2173
2174
2175
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
Nicolas Hug's avatar
Nicolas Hug committed
2176
            functional(input)
2177
2178
2179


class TestRegisterKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2180
2181
    @pytest.mark.parametrize("functional", (F.resize, "resize"))
    def test_register_kernel(self, functional):
2182
        class CustomTVTensor(tv_tensors.TVTensor):
2183
2184
2185
2186
            pass

        kernel_was_called = False

2187
        @F.register_kernel(functional, CustomTVTensor)
2188
2189
2190
2191
2192
2193
2194
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

2195
        my_dp = CustomTVTensor(torch.rand(3, 10, 10))
2196
2197
2198
2199
2200
2201
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
2202
        t(tv_tensors.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)
2203

2204
    def test_errors(self):
Nicolas Hug's avatar
Nicolas Hug committed
2205
        with pytest.raises(ValueError, match="Could not find functional with name"):
2206
            F.register_kernel("bad_name", tv_tensors.Image)
2207

Nicolas Hug's avatar
Nicolas Hug committed
2208
        with pytest.raises(ValueError, match="Kernels can only be registered on functionals"):
2209
            F.register_kernel(tv_tensors.Image, F.resize)
2210
2211
2212
2213

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

2214
2215
        with pytest.raises(ValueError, match="cannot be registered for the builtin tv_tensor classes"):
            F.register_kernel(F.resize, tv_tensors.Image)(F.resize_image)
2216

2217
        class CustomTVTensor(tv_tensors.TVTensor):
2218
2219
            pass

2220
        def resize_custom_tv_tensor():
2221
2222
            pass

2223
        F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2224
2225

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
2226
            F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2227

2228
2229

class TestGetKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2230
    # We are using F.resize as functional and the kernels below as proxy. Any other functional / kernels combination
2231
2232
    # would also be fine
    KERNELS = {
2233
2234
        torch.Tensor: F.resize_image,
        PIL.Image.Image: F._resize_image_pil,
2235
2236
2237
2238
        tv_tensors.Image: F.resize_image,
        tv_tensors.BoundingBoxes: F.resize_bounding_boxes,
        tv_tensors.Mask: F.resize_mask,
        tv_tensors.Video: F.resize_video,
2239
2240
    }

2241
2242
2243
2244
    @pytest.mark.parametrize("input_type", [str, int, object])
    def test_unsupported_types(self, input_type):
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, input_type)
2245
2246
2247

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2248
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2249
2250
2251
2252
2253
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
2254
            _register_kernel_internal(resize_with_pure_kernels, input_type, tv_tensor_wrapper=False)(kernel)
2255
2256
2257

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

2258
    def test_builtin_tv_tensor_subclass(self):
2259
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2260
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2261
        # here, register the kernels without wrapper, and check if subclasses of our builtin tv_tensors get dispatched
2262
2263
2264
2265
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

2266
        class MyImage(tv_tensors.Image):
2267
2268
            pass

2269
        class MyBoundingBoxes(tv_tensors.BoundingBoxes):
2270
2271
            pass

2272
        class MyMask(tv_tensors.Mask):
2273
2274
            pass

2275
        class MyVideo(tv_tensors.Video):
2276
2277
            pass

2278
        for custom_tv_tensor_subclass in [
2279
2280
2281
2282
2283
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
2284
2285
2286
2287
            builtin_tv_tensor_class = custom_tv_tensor_subclass.__mro__[1]
            builtin_tv_tensor_kernel = self.KERNELS[builtin_tv_tensor_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_tv_tensor_class, tv_tensor_wrapper=False)(
                builtin_tv_tensor_kernel
2288
2289
            )

2290
            assert _get_kernel(resize_with_pure_kernels, custom_tv_tensor_subclass) is builtin_tv_tensor_kernel
2291

2292
2293
    def test_tv_tensor_subclass(self):
        class MyTVTensor(tv_tensors.TVTensor):
2294
2295
            pass

2296
        with pytest.raises(TypeError, match="supports inputs of type"):
2297
            _get_kernel(F.resize, MyTVTensor)
2298

2299
        def resize_my_tv_tensor():
2300
2301
            pass

2302
        _register_kernel_internal(F.resize, MyTVTensor, tv_tensor_wrapper=False)(resize_my_tv_tensor)
2303

2304
        assert _get_kernel(F.resize, MyTVTensor) is resize_my_tv_tensor
2305

2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
    def test_pil_image_subclass(self):
        opened_image = PIL.Image.open(Path(__file__).parent / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")
        loaded_image = opened_image.convert("RGB")

        # check the assumptions
        assert isinstance(opened_image, PIL.Image.Image)
        assert type(opened_image) is not PIL.Image.Image

        assert type(loaded_image) is PIL.Image.Image

        size = [17, 11]
        for image in [opened_image, loaded_image]:
            kernel = _get_kernel(F.resize, type(image))

            output = kernel(image, size=size)

            assert F.get_size(output) == size

2324
2325
2326
2327
2328
2329
2330

class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2331
            (F.permute_channels_image, make_image_tensor),
2332
2333
            # FIXME
            # check_kernel does not support PIL kernel, but it should
2334
            (F.permute_channels_image, make_image),
2335
2336
2337
2338
2339
2340
2341
2342
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

Nicolas Hug's avatar
Nicolas Hug committed
2343
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
2344
2345
    def test_functional(self, make_input):
        check_functional(F.permute_channels, make_input(), permutation=self._DEFAULT_PERMUTATION)
2346
2347
2348
2349

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
2350
2351
            (F.permute_channels_image, torch.Tensor),
            (F._permute_channels_image_pil, PIL.Image.Image),
2352
2353
            (F.permute_channels_image, tv_tensors.Image),
            (F.permute_channels_video, tv_tensors.Video),
2354
2355
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2356
2357
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)
2358
2359
2360
2361

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
2362
        return tv_tensors.Image(torch.concat(permuted_channel_images, dim=-3))
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)
Philip Meier's avatar
Philip Meier committed
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390


class TestElastic:
    def _make_displacement(self, inpt):
        return torch.rand(
            1,
            *F.get_size(inpt),
            2,
            dtype=torch.float32,
            device=inpt.device if isinstance(inpt, torch.Tensor) else "cpu",
        )

    @param_value_parametrization(
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
2391
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
2392
2393
2394
        image = make_image_tensor(dtype=dtype, device=device)

        check_kernel(
Philip Meier's avatar
Philip Meier committed
2395
            F.elastic_image,
Philip Meier's avatar
Philip Meier committed
2396
2397
2398
2399
2400
2401
            image,
            displacement=self._make_displacement(image),
            **{param: value},
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

2402
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
2403
2404
2405
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_boxes(self, format, dtype, device):
2406
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426

        check_kernel(
            F.elastic_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            displacement=self._make_displacement(bounding_boxes),
        )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        mask = make_mask()
        check_kernel(F.elastic_mask, mask, displacement=self._make_displacement(mask))

    def test_kernel_video(self):
        video = make_video()
        check_kernel(F.elastic_video, video, displacement=self._make_displacement(video))

    @pytest.mark.parametrize(
        "make_input",
2427
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2428
2429
2430
2431
2432
2433
2434
2435
    )
    def test_functional(self, make_input):
        input = make_input()
        check_functional(F.elastic, input, displacement=self._make_displacement(input))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
Philip Meier's avatar
Philip Meier committed
2436
2437
            (F.elastic_image, torch.Tensor),
            (F._elastic_image_pil, PIL.Image.Image),
2438
2439
2440
2441
            (F.elastic_image, tv_tensors.Image),
            (F.elastic_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.elastic_mask, tv_tensors.Mask),
            (F.elastic_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
2442
2443
2444
2445
2446
2447
2448
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.elastic, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
2449
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
    )
    def test_displacement_error(self, make_input):
        input = make_input()

        with pytest.raises(TypeError, match="displacement should be a Tensor"):
            F.elastic(input, displacement=None)

        with pytest.raises(ValueError, match="displacement shape should be"):
            F.elastic(input, displacement=torch.rand(F.get_size(input)))

    @pytest.mark.parametrize(
        "make_input",
2462
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2463
2464
2465
2466
2467
    )
    # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
    @pytest.mark.parametrize("size", [(163, 163), (72, 333), (313, 95)])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, size, device):
2468
2469
2470
2471
2472
2473
        check_transform(
            transforms.ElasticTransform(),
            make_input(size, device=device),
            # We updated gaussian blur kernel generation with a faster and numerically more stable version
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483


class TestToPureTensor:
    def test_correctness(self):
        input = {
            "img": make_image(),
            "img_tensor": make_image_tensor(),
            "img_pil": make_image_pil(),
            "mask": make_detection_mask(),
            "video": make_video(),
2484
            "bbox": make_bounding_boxes(),
2485
2486
2487
2488
2489
2490
            "str": "str",
        }

        out = transforms.ToPureTensor()(input)

        for input_value, out_value in zip(input.values(), out.values()):
2491
2492
            if isinstance(input_value, tv_tensors.TVTensor):
                assert isinstance(out_value, torch.Tensor) and not isinstance(out_value, tv_tensors.TVTensor)
2493
2494
            else:
                assert isinstance(out_value, type(input_value))
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718


class TestCrop:
    INPUT_SIZE = (21, 11)

    CORRECTNESS_CROP_KWARGS = [
        # center
        dict(top=5, left=5, height=10, width=5),
        # larger than input, i.e. pad
        dict(top=-5, left=-5, height=30, width=20),
        # sides: left, right, top, bottom
        dict(top=-5, left=-5, height=30, width=10),
        dict(top=-5, left=5, height=30, width=10),
        dict(top=-5, left=-5, height=20, width=20),
        dict(top=5, left=-5, height=20, width=20),
        # corners: top-left, top-right, bottom-left, bottom-right
        dict(top=-5, left=-5, height=20, width=10),
        dict(top=-5, left=5, height=20, width=10),
        dict(top=5, left=-5, height=20, width=10),
        dict(top=5, left=5, height=20, width=10),
    ]
    MINIMAL_CROP_KWARGS = CORRECTNESS_CROP_KWARGS[0]

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, kwargs, dtype, device):
        check_kernel(F.crop_image, make_image(self.INPUT_SIZE, dtype=dtype, device=device), **kwargs)

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, kwargs, format, dtype, device):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)
        check_kernel(F.crop_bounding_boxes, bounding_boxes, format=format, **kwargs)

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.crop_mask, make_mask(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    def test_kernel_video(self):
        check_kernel(F.crop_video, make_video(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.crop, make_input(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.crop_image, torch.Tensor),
            (F._crop_image_pil, PIL.Image.Image),
            (F.crop_image, tv_tensors.Image),
            (F.crop_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.crop_mask, tv_tensors.Mask),
            (F.crop_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.crop, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    def test_functional_image_correctness(self, kwargs):
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8, device="cpu")

        actual = F.crop(image, **kwargs)
        expected = F.to_image(F.crop(F.to_pil_image(image), **kwargs))

        assert_equal(actual, expected)

    @param_value_parametrization(
        size=[(10, 5), (25, 15), (25, 5), (10, 15)],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, param, value, make_input):
        input = make_input(self.INPUT_SIZE)

        kwargs = {param: value}
        if param == "fill":
            # 1. size is required
            # 2. the fill parameter only has an affect if we need padding
            kwargs["size"] = [s + 4 for s in self.INPUT_SIZE]

            if isinstance(input, tv_tensors.Mask) and isinstance(value, (tuple, list)):
                pytest.skip("F.pad_mask doesn't support non-scalar fill.")

        check_transform(
            transforms.RandomCrop(**kwargs, pad_if_needed=True),
            input,
            check_v1_compatibility=param != "fill" or isinstance(value, (int, float)),
        )

    @pytest.mark.parametrize("padding", [1, (1, 1), (1, 1, 1, 1)])
    def test_transform_padding(self, padding):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s + 2 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, padding=padding)

        output = transform(inpt)

        assert F.get_size(output) == output_size

    @pytest.mark.parametrize("padding", [None, 1, (1, 1), (1, 1, 1, 1)])
    def test_transform_insufficient_padding(self, padding):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s + 3 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, padding=padding)

        with pytest.raises(ValueError, match="larger than (padded )?input image size"):
            transform(inpt)

    def test_transform_pad_if_needed(self):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s * 2 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, pad_if_needed=True)

        output = transform(inpt)

        assert F.get_size(output) == output_size

    @param_value_parametrization(
        size=[(10, 5), (25, 15), (25, 5), (10, 15)],
        fill=CORRECTNESS_FILLS,
        padding_mode=["constant", "edge", "reflect", "symmetric"],
    )
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, param, value, seed):
        kwargs = {param: value}
        if param != "size":
            # 1. size is required
            # 2. the fill / padding_mode parameters only have an affect if we need padding
            kwargs["size"] = [s + 4 for s in self.INPUT_SIZE]
        if param == "fill":
            kwargs["fill"] = adapt_fill(kwargs["fill"], dtype=torch.uint8)

        transform = transforms.RandomCrop(pad_if_needed=True, **kwargs)

        image = make_image(self.INPUT_SIZE)

        with freeze_rng_state():
            torch.manual_seed(seed)
            actual = transform(image)

            torch.manual_seed(seed)
            expected = F.to_image(transform(F.to_pil_image(image)))

        assert_equal(actual, expected)

    def _reference_crop_bounding_boxes(self, bounding_boxes, *, top, left, height, width):
        affine_matrix = np.array(
            [
                [1, 0, -left],
                [0, 1, -top],
            ],
        )
        return reference_affine_bounding_boxes_helper(
            bounding_boxes, affine_matrix=affine_matrix, new_canvas_size=(height, width)
        )

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_bounding_box_correctness(self, kwargs, format, dtype, device):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)

        actual = F.crop(bounding_boxes, **kwargs)
        expected = self._reference_crop_bounding_boxes(bounding_boxes, **kwargs)

        assert_equal(actual, expected, atol=1, rtol=0)
        assert_equal(F.get_size(actual), F.get_size(expected))

    @pytest.mark.parametrize("output_size", [(17, 11), (11, 17), (11, 11)])
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_boxes_correctness(self, output_size, format, dtype, device, seed):
        input_size = [s * 2 for s in output_size]
        bounding_boxes = make_bounding_boxes(input_size, format=format, dtype=dtype, device=device)

        transform = transforms.RandomCrop(output_size)

        with freeze_rng_state():
            torch.manual_seed(seed)
            params = transform._get_params([bounding_boxes])
            assert not params.pop("needs_pad")
            del params["padding"]
            assert params.pop("needs_crop")

            torch.manual_seed(seed)
            actual = transform(bounding_boxes)

        expected = self._reference_crop_bounding_boxes(bounding_boxes, **params)

        assert_equal(actual, expected)
        assert_equal(F.get_size(actual), F.get_size(expected))

    def test_errors(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776


class TestErase:
    INPUT_SIZE = (17, 11)
    FUNCTIONAL_KWARGS = dict(
        zip("ijhwv", [2, 2, 10, 8, torch.tensor(0.0, dtype=torch.float32, device="cpu").reshape(-1, 1, 1)])
    )

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.erase_image, make_image(self.INPUT_SIZE, dtype=dtype, device=device), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_inplace(self, dtype, device):
        input = make_image(self.INPUT_SIZE, dtype=dtype, device=device)
        input_version = input._version

        output_out_of_place = F.erase_image(input, **self.FUNCTIONAL_KWARGS)
        assert output_out_of_place.data_ptr() != input.data_ptr()
        assert output_out_of_place is not input

        output_inplace = F.erase_image(input, **self.FUNCTIONAL_KWARGS, inplace=True)
        assert output_inplace.data_ptr() == input.data_ptr()
        assert output_inplace._version > input_version
        assert output_inplace is input

        assert_equal(output_inplace, output_out_of_place)

    def test_kernel_video(self):
        check_kernel(F.erase_video, make_video(self.INPUT_SIZE), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.erase, make_input(), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.erase_image, torch.Tensor),
            (F._erase_image_pil, PIL.Image.Image),
            (F.erase_image, tv_tensors.Image),
            (F.erase_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.erase, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, device):
Philip Meier's avatar
Philip Meier committed
2777
2778
2779
2780
        input = make_input(device=device)
        check_transform(
            transforms.RandomErasing(p=1), input, check_v1_compatibility=not isinstance(input, PIL.Image.Image)
        )
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862

    def _reference_erase_image(self, image, *, i, j, h, w, v):
        mask = torch.zeros_like(image, dtype=torch.bool)
        mask[..., i : i + h, j : j + w] = True

        # The broadcasting and type casting logic is handled automagically in the kernel through indexing
        value = torch.broadcast_to(v, (*image.shape[:-2], h, w)).to(image)

        erased_image = torch.empty_like(image)
        erased_image[mask] = value.flatten()
        erased_image[~mask] = image[~mask]

        return erased_image

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_image_correctness(self, dtype, device):
        image = make_image(dtype=dtype, device=device)

        actual = F.erase(image, **self.FUNCTIONAL_KWARGS)
        expected = self._reference_erase_image(image, **self.FUNCTIONAL_KWARGS)

        assert_equal(actual, expected)

    @param_value_parametrization(
        scale=[(0.1, 0.2), [0.0, 1.0]],
        ratio=[(0.3, 0.7), [0.1, 5.0]],
        value=[0, 0.5, (0, 1, 0), [-0.2, 0.0, 1.3], "random"],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, param, value, dtype, device, seed):
        transform = transforms.RandomErasing(**{param: value}, p=1)

        image = make_image(dtype=dtype, device=device)

        with freeze_rng_state():
            torch.manual_seed(seed)
            # This emulates the random apply check that happens before _get_params is called
            torch.rand(1)
            params = transform._get_params([image])

            torch.manual_seed(seed)
            actual = transform(image)

        expected = self._reference_erase_image(image, **params)

        assert_equal(actual, expected)

    def test_transform_errors(self):
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([make_image()])

    @pytest.mark.parametrize("make_input", [make_bounding_boxes, make_detection_mask])
    def test_transform_passthrough(self, make_input):
        transform = transforms.RandomErasing(p=1)

        input = make_input(self.INPUT_SIZE)

        with pytest.warns(UserWarning, match="currently passing through inputs of type"):
            # RandomErasing requires an image or video to be present
            _, output = transform(make_image(self.INPUT_SIZE), input)

        assert output is input
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905


class TestGaussianBlur:
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("sigma", [5, (0.5, 2)])
    def test_transform(self, make_input, device, sigma):
        check_transform(transforms.GaussianBlur(kernel_size=3, sigma=sigma), make_input(device=device))

    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(ValueError, match="If sigma is a sequence its length should be 1 or 2. Got 3"):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

        with pytest.raises(TypeError, match="sigma should be a number or a sequence of numbers"):
            transforms.GaussianBlur(3, sigma={})

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0], (10, 12.0), [10]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == sigma
        elif isinstance(sigma, list) and len(sigma) == 1:
            assert params["sigma"][0] == params["sigma"][1] == sigma[0]
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]
Philip Meier's avatar
Philip Meier committed
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013


class TestAutoAugmentTransforms:
    # These transforms have a lot of branches in their `forward()` passes which are conditioned on random sampling.
    # It's typically very hard to test the effect on some parameters without heavy mocking logic.
    # This class adds correctness tests for the kernels that are specific to those transforms. The rest of kernels, e.g.
    # rotate, are tested in their respective classes. The rest of the tests here are mostly smoke tests.

    def _reference_shear_translate(self, image, *, transform_id, magnitude, interpolation, fill):
        if isinstance(image, PIL.Image.Image):
            input = image
        else:
            input = F.to_pil_image(image)

        matrix = {
            "ShearX": (1, magnitude, 0, 0, 1, 0),
            "ShearY": (1, 0, 0, magnitude, 1, 0),
            "TranslateX": (1, 0, -int(magnitude), 0, 1, 0),
            "TranslateY": (1, 0, 0, 0, 1, -int(magnitude)),
        }[transform_id]

        output = input.transform(
            input.size, PIL.Image.AFFINE, matrix, resample=pil_modes_mapping[interpolation], fill=fill
        )

        if isinstance(image, PIL.Image.Image):
            return output
        else:
            return F.to_image(output)

    @pytest.mark.parametrize("transform_id", ["ShearX", "ShearY", "TranslateX", "TranslateY"])
    @pytest.mark.parametrize("magnitude", [0.3, -0.2, 0.0])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("input_type", ["Tensor", "PIL"])
    def test_correctness_shear_translate(self, transform_id, magnitude, interpolation, fill, input_type):
        # ShearX/Y and TranslateX/Y are the only ops that are native to the AA transforms. They are modeled after the
        # reference implementation:
        # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L362
        # All other ops are checked in their respective dedicated tests.

        image = make_image(dtype=torch.uint8, device="cpu")
        if input_type == "PIL":
            image = F.to_pil_image(image)

        if "Translate" in transform_id:
            # For TranslateX/Y magnitude is a value in pixels
            magnitude *= min(F.get_size(image))

        actual = transforms.AutoAugment()._apply_image_or_video_transform(
            image,
            transform_id=transform_id,
            magnitude=magnitude,
            interpolation=interpolation,
            fill={type(image): fill},
        )
        expected = self._reference_shear_translate(
            image, transform_id=transform_id, magnitude=magnitude, interpolation=interpolation, fill=fill
        )

        if input_type == "PIL":
            actual, expected = F.to_image(actual), F.to_image(expected)

        if "Shear" in transform_id and input_type == "Tensor":
            mae = (actual.float() - expected.float()).abs().mean()
            assert mae < (12 if interpolation is transforms.InterpolationMode.NEAREST else 5)
        else:
            assert_close(actual, expected, rtol=0, atol=1)

    @pytest.mark.parametrize(
        "transform",
        [transforms.AutoAugment(), transforms.RandAugment(), transforms.TrivialAugmentWide(), transforms.AugMix()],
    )
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform_smoke(self, transform, make_input, dtype, device):
        if make_input is make_image_pil and not (dtype is torch.uint8 and device == "cpu"):
            pytest.skip(
                "PIL image tests with parametrization other than dtype=torch.uint8 and device='cpu' "
                "will degenerate to that anyway."
            )
        input = make_input(dtype=dtype, device=device)

        with freeze_rng_state():
            # By default every test starts from the same random seed. This leads to minimal coverage of the sampling
            # that happens inside forward(). To avoid calling the transform multiple times to achieve higher coverage,
            # we build a reproducible random seed from the input type, dtype, and device.
            torch.manual_seed(hash((make_input, dtype, device)))

            # For v2, we changed the random sampling of the AA transforms. This makes it impossible to compare the v1
            # and v2 outputs without complicated mocking and monkeypatching. Thus, we skip the v1 compatibility checks
            # here and only check if we can script the v2 transform and subsequently call the result.
            check_transform(transform, input, check_v1_compatibility=False)

            if type(input) is torch.Tensor and dtype is torch.uint8:
                _script(transform)(input)

    def test_auto_augment_policy_error(self):
        with pytest.raises(ValueError, match="provided policy"):
            transforms.AutoAugment(policy=None)

    @pytest.mark.parametrize("severity", [0, 11])
    def test_aug_mix_severity_error(self, severity):
        with pytest.raises(ValueError, match="severity must be between"):
            transforms.AugMix(severity=severity)
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112


class TestConvertBoundingBoxFormat:
    old_new_formats = list(itertools.permutations(iter(tv_tensors.BoundingBoxFormat), 2))

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    def test_kernel(self, old_format, new_format):
        check_kernel(
            F.convert_bounding_box_format,
            make_bounding_boxes(format=old_format),
            new_format=new_format,
            old_format=old_format,
        )

    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("inplace", [False, True])
    def test_kernel_noop(self, format, inplace):
        input = make_bounding_boxes(format=format).as_subclass(torch.Tensor)
        input_version = input._version

        output = F.convert_bounding_box_format(input, old_format=format, new_format=format, inplace=inplace)

        assert output is input
        assert output.data_ptr() == input.data_ptr()
        assert output._version == input_version

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    def test_kernel_inplace(self, old_format, new_format):
        input = make_bounding_boxes(format=old_format).as_subclass(torch.Tensor)
        input_version = input._version

        output_out_of_place = F.convert_bounding_box_format(input, old_format=old_format, new_format=new_format)
        assert output_out_of_place.data_ptr() != input.data_ptr()
        assert output_out_of_place is not input

        output_inplace = F.convert_bounding_box_format(
            input, old_format=old_format, new_format=new_format, inplace=True
        )
        assert output_inplace.data_ptr() == input.data_ptr()
        assert output_inplace._version > input_version
        assert output_inplace is input

        assert_equal(output_inplace, output_out_of_place)

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    def test_functional(self, old_format, new_format):
        check_functional(F.convert_bounding_box_format, make_bounding_boxes(format=old_format), new_format=new_format)

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    @pytest.mark.parametrize("format_type", ["enum", "str"])
    def test_transform(self, old_format, new_format, format_type):
        check_transform(
            transforms.ConvertBoundingBoxFormat(new_format.name if format_type == "str" else new_format),
            make_bounding_boxes(format=old_format),
        )

    def _reference_convert_bounding_box_format(self, bounding_boxes, new_format):
        return tv_tensors.wrap(
            torchvision.ops.box_convert(
                bounding_boxes.as_subclass(torch.Tensor),
                in_fmt=bounding_boxes.format.name.lower(),
                out_fmt=new_format.name.lower(),
            ).to(bounding_boxes.dtype),
            like=bounding_boxes,
            format=new_format,
        )

    @pytest.mark.parametrize(("old_format", "new_format"), old_new_formats)
    @pytest.mark.parametrize("dtype", [torch.int64, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("fn_type", ["functional", "transform"])
    def test_correctness(self, old_format, new_format, dtype, device, fn_type):
        bounding_boxes = make_bounding_boxes(format=old_format, dtype=dtype, device=device)

        if fn_type == "functional":
            fn = functools.partial(F.convert_bounding_box_format, new_format=new_format)
        else:
            fn = transforms.ConvertBoundingBoxFormat(format=new_format)

        actual = fn(bounding_boxes)
        expected = self._reference_convert_bounding_box_format(bounding_boxes, new_format)

        assert_equal(actual, expected)

    def test_errors(self):
        input_tv_tensor = make_bounding_boxes()
        input_pure_tensor = input_tv_tensor.as_subclass(torch.Tensor)

        for input in [input_tv_tensor, input_pure_tensor]:
            with pytest.raises(TypeError, match="missing 1 required argument: 'new_format'"):
                F.convert_bounding_box_format(input)

        with pytest.raises(ValueError, match="`old_format` has to be passed"):
            F.convert_bounding_box_format(input_pure_tensor, new_format=input_tv_tensor.format)

        with pytest.raises(ValueError, match="`old_format` must not be passed"):
            F.convert_bounding_box_format(
                input_tv_tensor, old_format=input_tv_tensor.format, new_format=input_tv_tensor.format
            )