test_transforms.py 81.2 KB
Newer Older
1
import itertools
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
import torchvision.transforms.functional_tensor as F_t
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
import pytest
14
15
16
17
18
19
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

20
21
22
23
24
try:
    from scipy import stats
except ImportError:
    stats = None

25
from common_utils import cycle_over, int_dtypes, float_dtypes
26
from _assert_utils import assert_equal
27
28


29
GRACE_HOPPER = get_file_path_2(
30
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
31
32


33
class Tester(unittest.TestCase):
34

35
    def test_center_crop(self):
36
37
38
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
39
40
        owidth = random.randint(5, (width - 2) / 2) * 2

41
        img = torch.ones(3, height, width)
42
43
44
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
45
46
47
48
49
50
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
51
52
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
53
54
55
56
57
58
59
60
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
61
62
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
63
        oheight += 1
64
        owidth += 1
65
66
67
68
69
70
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
71
72
73
74
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_center_crop_2(self):
        """ Tests when center crop size is larger than image size, along any dimension"""
        even_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
        odd_image_size = (even_image_size[0] + 1, even_image_size[1] + 1)

        # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
        input_image_sizes = [even_image_size, odd_image_size]

        # Get different crop sizes
        delta = random.choice((1, 3, 5))
        crop_size_delta = [-2 * delta, -delta, 0, delta, 2 * delta]
        crop_size_params = itertools.product(input_image_sizes, crop_size_delta, crop_size_delta)

        for (input_image_size, delta_height, delta_width) in crop_size_params:
            img = torch.ones(3, *input_image_size)
            crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

            # Test both transforms, one with PIL input and one with tensor
            output_pil = transforms.Compose([
                transforms.ToPILImage(),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor()],
            )(img)
            self.assertEqual(output_pil.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            output_tensor = transforms.CenterCrop(crop_size)(img)
            self.assertEqual(output_tensor.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Ensure output for PIL and Tensor are equal
107
108
109
110
            assert_equal(
                output_tensor, output_pil, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

            # Check if content in center of both image and cropped output is same.
            center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
            crop_center_tl, input_center_tl = [0, 0], [0, 0]
            for index in range(2):
                if crop_size[index] > input_image_size[index]:
                    crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
                else:
                    input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

            output_center = output_pil[
                :,
                crop_center_tl[0]:crop_center_tl[0] + center_size[0],
                crop_center_tl[1]:crop_center_tl[1] + center_size[1]
            ]

            img_center = img[
                :,
                input_center_tl[0]:input_center_tl[0] + center_size[0],
                input_center_tl[1]:input_center_tl[1] + center_size[1]
            ]

133
134
135
136
            assert_equal(
                output_center, img_center, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

155
            self.assertEqual(len(results), 5)
156
            for crop in results:
157
                self.assertEqual(crop.size, (crop_w, crop_h))
158
159
160
161
162
163
164
165

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
166
            self.assertEqual(results, expected_output)
167
168
169
170
171
172
173
174
175
176
177
178

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
179
180
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
181
182
                    five_crop = transforms.FiveCrop(crop_h)
                else:
183
184
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
185
186
187
188
189
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
190
191
192
193
194

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

195
196
197
198
199
200
201
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

202
203
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
204

205
206
207
208
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

209
210
211
212
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
213

214
215
216
217
218
219
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
220
221
                    transform_script = torch.jit.script(F.convert_image_dtype)

222
                    output_image = transform(input_image)
223
224
                    output_image_script = transform_script(input_image, output_dtype)

225
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
226
227
228
229
230
231
232
233
234
235
236
237
238

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
239
                    transform_script = torch.jit.script(F.convert_image_dtype)
240
241
242
243
244
245
246
247

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
248
249
                        output_image_script = transform_script(input_image, output_dtype)

250
                        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
251
252
253
254
255
256
257
258
259
260
261
262
263

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
264
265
                    transform_script = torch.jit.script(F.convert_image_dtype)

266
                    output_image = transform(input_image)
267
268
                    output_image_script = transform_script(input_image, output_dtype)

269
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
288
289
                    transform_script = torch.jit.script(F.convert_image_dtype)

290
                    output_image = transform(input_image)
291
292
                    output_image_script = transform_script(input_image, output_dtype)

293
294
295
296
297
298
                    torch.testing.assert_close(
                        output_image_script,
                        output_image,
                        rtol=0.0,
                        atol=1e-6,
                        msg="{} vs {}".format(output_image_script, output_image),
299
                    )
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

333
334
335
336
337
338
339
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

340
        torch.testing.assert_close(output, expected_output)
341
342
343
344
345
346
347
348
349

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
350
        torch.testing.assert_close(output, expected_output, check_stride=False)
351
352
353
354

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
355
            transforms.Resize(256, interpolation=Image.LINEAR),
356
357
358
            transforms.ToTensor(),
        ])

359
360
361
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

362
363
364
365
366
367
368
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
369
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
370
371
372
373
374
375
376
377

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

378
379
380
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

381
382
383
384
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
385
        torch.testing.assert_close(output, expected_output)
386

387
    def test_1_channel_tensor_to_pil_image(self):
388
389
        to_tensor = transforms.ToTensor()

390
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
391
392
393
394
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

395
396
397
398
399
400
401
402
403
404
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
405
                self.assertEqual(img.mode, mode)
406
                torch.testing.assert_close(expected_output, to_tensor(img).numpy(), check_stride=False)
407
408
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
409
        self.assertEqual(img_F_mode.mode, 'F')
410
411
412
        torch.testing.assert_close(
            np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')), np.array(img_F_mode)
        )
413
414
415
416
417
418
419
420
421
422
423
424

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
425
                self.assertEqual(img.mode, mode)
426
427
428
                # note: we explicitly convert img's dtype because pytorch doesn't support uint16
                # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
                torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
429

surgan12's avatar
surgan12 committed
430
431
432
433
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
434
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
435
436
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
437
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
438
439
            split = img.split()
            for i in range(2):
440
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
surgan12's avatar
surgan12 committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
458
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
459
460
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
461
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
462
463
            split = img.split()
            for i in range(2):
464
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
465
466
467
468
469
470
471
472
473
474
475
476

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

477
478
479
480
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
481
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
482
483
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
484
                self.assertEqual(img.mode, mode)
485
486
            split = img.split()
            for i in range(3):
487
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
488

489
490
491
492
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
493

494
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
495
            # should raise if we try a mode for 4 or 1 or 2 channel images
496
497
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
498
            transforms.ToPILImage(mode='LA')(img_data)
499

Varun Agrawal's avatar
Varun Agrawal committed
500
501
502
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

503
504
505
506
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
507
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
508
509
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
510
                self.assertEqual(img.mode, mode)
511
512
            split = img.split()
            for i in range(3):
513
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
514

515
516
517
518
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

519
520
521
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

522
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
523
            # should raise if we try a mode for 4 or 1 or 2 channel images
524
525
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
526
            transforms.ToPILImage(mode='LA')(img_data)
527
528
529
530
531

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
532
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
533
534
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
535
                self.assertEqual(img.mode, mode)
536
537
538

            split = img.split()
            for i in range(4):
539
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
540

541
        img_data = torch.Tensor(4, 4, 4).uniform_()
542
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
543
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
544
            verify_img_data(img_data, expected_output, mode)
545

546
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
547
            # should raise if we try a mode for 3 or 1 or 2 channel images
548
549
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
550
            transforms.ToPILImage(mode='LA')(img_data)
551
552
553
554
555

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
556
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
557
558
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
559
                self.assertEqual(img.mode, mode)
560
561
            split = img.split()
            for i in range(4):
562
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
563

564
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
565
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
566
            verify_img_data(img_data, mode)
567

568
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
569
            # should raise if we try a mode for 3 or 1 or 2 channel images
570
571
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
572
            transforms.ToPILImage(mode='LA')(img_data)
573

Varun Agrawal's avatar
Varun Agrawal committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
592
                self.assertEqual(img.mode, mode)
593
                np.testing.assert_allclose(expected_output, to_tensor(img).numpy()[0])
Varun Agrawal's avatar
Varun Agrawal committed
594
595
596
597
598
599
600
601
602
603
604
605

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
606
                self.assertEqual(img.mode, mode)
607
                np.testing.assert_allclose(img_data, img)
Varun Agrawal's avatar
Varun Agrawal committed
608
609

    def test_tensor_bad_types_to_pil_image(self):
610
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
611
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
612
613
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
614

615
    def test_ndarray_bad_types_to_pil_image(self):
616
        trans = transforms.ToPILImage()
617
618
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
619
            trans(np.ones([4, 4, 1], np.int64))
620
        with self.assertRaisesRegex(TypeError, reg_msg):
621
            trans(np.ones([4, 4, 1], np.uint16))
622
        with self.assertRaisesRegex(TypeError, reg_msg):
623
            trans(np.ones([4, 4, 1], np.uint32))
624
        with self.assertRaisesRegex(TypeError, reg_msg):
625
626
            trans(np.ones([4, 4, 1], np.float64))

627
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
628
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
629
630
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
631

632
633
634
635
636
637
638
639
640
641
642
    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
643
            self.assertEqual(y_pil.mode, x_pil.mode)
644
645

            y_pil_2 = color_jitter(x_pil_2)
646
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
647

648
649
650
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

651
    def test_linear_transformation(self):
ekka's avatar
ekka committed
652
653
654
655
656
657
658
659
660
661
662
663
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
664
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
665
666
667
668
669
670
671
672
673
674
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
675
676
677
678
        torch.testing.assert_close(cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False,
                                   msg="cov not close to 1")
        torch.testing.assert_close(mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False,
                                   msg="mean not close to 0")
ekka's avatar
ekka committed
679

680
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
681
682
        whitening.__repr__()

683
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
684
685
686
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
687
688
689
690
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
691
692
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
693
694
695
696
697
698
699
700
701
702
703

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
704
            s_rad = [math.radians(sh_) for sh_ in sh]
705
706
707
708
709
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

710
            # 1) Check transformation matrix:
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

736
737
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
738
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
739
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
740
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
741
742
743
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
744
745
746
747
748
749
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
750
751
752
753
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
754
            self.assertEqual(result.size, pil_img.size)
755
756
757
758
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
759
760
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
761
                            "n diff pixels={}\n".format(n_diff_pixels))
762
763
764

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
765
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
766
767
768

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
769
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
770
771
772

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
773
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
774
775

        # Test shear
ptrblck's avatar
ptrblck committed
776
        sh = [45.0, 25.0]
777
778
779
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
780
        for a in range(-90, 90, 36):
781
            for t1 in range(-10, 10, 5):
782
                for s in [0.77, 1.0, 1.27]:
783
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
784
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
805
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
806

807
808
809
810
811
812
813
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomAffine(0, fill={})

        t = transforms.RandomAffine(0, fill=None)
        self.assertTrue(t.fill == 0)

814
815
816
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
817
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
818
819
820
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
821
822
823
824
825
826
827
828
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
829
830
831
832

        # Checking if RandomAffine can be printed as string
        t.__repr__()

833
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
834
835
836
837
838
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
839
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
840
841
842
843
844
845

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
846
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
847
            t = transforms.RandomAffine(10, interpolation=2)
848
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
849

850
851
852
853
854
855
856
857
858
859
    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
@pytest.mark.parametrize('channels', [1, 3, 4])
def test_to_tensor(channels):
    height, width = 4, 4
    trans = transforms.ToTensor()

    input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
    img = transforms.ToPILImage()(input_data)
    output = trans(img)
    torch.testing.assert_close(output, input_data, check_stride=False)

    ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
    output = trans(ndarray)
    expected_output = ndarray.transpose((2, 0, 1)) / 255.0
    torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)

    ndarray = np.random.rand(height, width, channels).astype(np.float32)
    output = trans(ndarray)
    expected_output = ndarray.transpose((2, 0, 1))
    torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)

    # separate test for mode '1' PIL images
    input_data = torch.ByteTensor(1, height, width).bernoulli_()
    img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
    output = trans(img)
    torch.testing.assert_close(input_data, output, check_dtype=False, check_stride=False)


def test_to_tensor_errors():
    height, width = 4, 4
    trans = transforms.ToTensor()

    with pytest.raises(TypeError):
        trans(np.random.rand(1, height, width).tolist())

    with pytest.raises(ValueError):
        trans(np.random.rand(height))

    with pytest.raises(ValueError):
        trans(np.random.rand(1, 1, height, width))


@pytest.mark.parametrize('dtype', [torch.float16, torch.float, torch.double])
def test_to_tensor_with_other_default_dtypes(dtype):
    current_def_dtype = torch.get_default_dtype()

    t = transforms.ToTensor()
    np_arr = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
    img = Image.fromarray(np_arr)

    torch.set_default_dtype(dtype)
    res = t(img)
    assert res.dtype == dtype, f"{res.dtype} vs {dtype}"

    torch.set_default_dtype(current_def_dtype)


@pytest.mark.parametrize('channels', [1, 3, 4])
def test_pil_to_tensor(channels):
    height, width = 4, 4
    trans = transforms.PILToTensor()

    input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
    img = transforms.ToPILImage()(input_data)
    output = trans(img)
    torch.testing.assert_close(input_data, output, check_stride=False)

    input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
    img = transforms.ToPILImage()(input_data)
    output = trans(img)
    expected_output = input_data.transpose((2, 0, 1))
    torch.testing.assert_close(output.numpy(), expected_output)

    input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
    img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
    output = trans(img)  # HWC -> CHW
    expected_output = (input_data * 255).byte()
    torch.testing.assert_close(output, expected_output, check_stride=False)

    # separate test for mode '1' PIL images
    input_data = torch.ByteTensor(1, height, width).bernoulli_()
    img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
    output = trans(img).view(torch.uint8).bool().to(torch.uint8)
    torch.testing.assert_close(input_data, output, check_stride=False)


def test_pil_to_tensor_errors():
    height, width = 4, 4
    trans = transforms.PILToTensor()

    with pytest.raises(TypeError):
        trans(np.random.rand(1, height, width).tolist())

    with pytest.raises(TypeError):
        trans(np.random.rand(1, height, width))


957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
        assert((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
               aspect_ratio_obtained == 1.0)
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


@pytest.mark.parametrize('height, width', [
    # height, width
    # square image
    (28, 28),
    (27, 27),
    # rectangular image: h < w
    (28, 34),
    (29, 35),
    # rectangular image: h > w
    (34, 28),
    (35, 29),
])
@pytest.mark.parametrize('osize', [
    # single integer
    22, 27, 28, 36,
    # single integer in tuple/list
    [22, ], (27, ),
])
@pytest.mark.parametrize('max_size', (None, 37, 1000))
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

    msg = "{}, {} - {} - {}".format(height, width, osize, max_size)
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


@pytest.mark.parametrize('height, width', [
    # height, width
    # square image
    (28, 28),
    (27, 27),
    # rectangular image: h < w
    (28, 34),
    (29, 35),
    # rectangular image: h > w
    (34, 28),
    (35, 29),
])
@pytest.mark.parametrize('osize', [
    # two integers sequence output
    [22, 22], [22, 28], [22, 36],
    [27, 22], [36, 22], [28, 28],
    [28, 37], [37, 27], [37, 37]
])
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
class TestPad:

    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding, fill=fill),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
        torch.testing.assert_close(
            h_padded, torch.full_like(h_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        torch.testing.assert_close(
            w_padded, torch.full_like(w_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                      transforms.ToPILImage()(img))

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8), check_stride=False)
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size], check_stride=False)


1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
@pytest.mark.parametrize('fn, trans, config', [
                        (F.invert, transforms.RandomInvert, {}),
                        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
                        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
                        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
                        (F.autocontrast, transforms.RandomAutocontrast, {}),
                        (F.equalize, transforms.RandomEqualize, {})])
@pytest.mark.parametrize('p', (.5, .7))
def test_randomness(fn, trans, config, p):
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

    inv_img = fn(img, **config)

    num_samples = 250
    counts = 0
    for _ in range(num_samples):
        tranformation = trans(p=p, **config)
        tranformation.__repr__()
        out = tranformation(img)
        if out == inv_img:
            counts += 1

    p_value = stats.binom_test(counts, num_samples, p=p)
    random.setstate(random_state)
    assert p_value > 0.0001


1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


@pytest.mark.skipif(Image.__version__ >= '7', reason="Temporarily disabled")
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
    x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
              0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
              111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
             30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
             107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
             0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
             119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_rgb = Image.fromarray(x_np, mode='RGB')

    x_l = x_rgb.convert('L')
    assert F.adjust_brightness(x_l, 2).mode == 'L'
    assert F.adjust_saturation(x_l, 2).mode == 'L'
    assert F.adjust_contrast(x_l, 2).mode == 'L'
    assert F.adjust_hue(x_l, 0.4).mode == 'L'
    assert F.adjust_sharpness(x_l, 2).mode == 'L'
    assert F.adjust_gamma(x_l, 0.5).mode == 'L'


1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


@pytest.mark.parametrize('mode', ["L", "RGB", "F"])
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
    assert gray_pil_1.mode == 'L', 'mode should be L'
    assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
    assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
    assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
    assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
    assert_equal(gray_np, gray_np_4[:, :, 0], check_stride=False)

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
def test_random_grayscale():
    """Unit tests for random grayscale transform"""

    # Test Set 1: RGB -> 3 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
    x_np = np.random.randint(0, 256, x_shape, np.uint8)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
                np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                np.array_equal(gray_np, gray_np_2[:, :, 0]):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test Set 2: grayscale -> 1 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
    x_np = np.random.randint(0, 256, x_shape, np.uint8)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        if np.array_equal(gray_np, gray_np_3):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test set 3: Explicit tests
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    # Case 3a: RGB -> 3 channel grayscale (grayscaled)
    trans2 = transforms.RandomGrayscale(p=1.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
    assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)

    # Case 3b: RGB -> 3 channel grayscale (unchanged)
    trans2 = transforms.RandomGrayscale(p=0.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(x_np, gray_np_2)

    # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
    trans3 = transforms.RandomGrayscale(p=1.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
    trans3 = transforms.RandomGrayscale(p=0.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Checking if RandomGrayscale can be printed as string
    trans3.__repr__()


1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_apply():
    random_state = random.getstate()
    random.seed(42)
    random_apply_transform = transforms.RandomApply(
        [
            transforms.RandomRotation((-45, 45)),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
        ], p=0.75
    )
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    num_samples = 250
    num_applies = 0
    for _ in range(num_samples):
        out = random_apply_transform(img)
        if out != img:
            num_applies += 1

    p_value = stats.binom_test(num_applies, num_samples, p=0.75)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_choice():
    random_state = random.getstate()
    random.seed(42)
    random_choice_transform = transforms.RandomChoice(
        [
            transforms.Resize(15),
            transforms.Resize(20),
            transforms.CenterCrop(10)
        ]
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_resize_15 = 0
    num_resize_20 = 0
    num_crop_10 = 0
    for _ in range(num_samples):
        out = random_choice_transform(img)
        if out.size == (15, 15):
            num_resize_15 += 1
        elif out.size == (20, 20):
            num_resize_20 += 1
        elif out.size == (10, 10):
            num_crop_10 += 1

    p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
    assert p_value > 0.0001

    random.setstate(random_state)
    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
    random_order_transform = transforms.RandomOrder(
        [
            transforms.Resize(20),
            transforms.CenterCrop(10)
        ]
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
    img = torch.ones(3, height, width)
    result = transforms.Compose([
        transforms.ToPILImage(),
        transforms.RandomCrop((oheight, owidth)),
        transforms.ToTensor(),
    ])(img)
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
    result = transforms.Compose([
        transforms.ToPILImage(),
        transforms.RandomCrop((oheight, owidth), padding=padding),
        transforms.ToTensor(),
    ])(img)
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    result = transforms.Compose([
        transforms.ToPILImage(),
        transforms.RandomCrop((height, width)),
        transforms.ToTensor()
    ])(img)
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

    result = transforms.Compose([
        transforms.ToPILImage(),
        transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
        transforms.ToTensor(),
    ])(img)
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

    t = transforms.RandomCrop(48)
    img = torch.ones(3, 32, 32)
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger then input image size .+"):
        t(img)


@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
def test_random_erasing():
    img = torch.ones(3, 128, 128)

    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.))
    y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
    assert (1 / 3 - tol <= aspect_ratio <= 3 + tol)

    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
        y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
    assert (angle > -10 and angle < 10)

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
    assert (-10 < angle < 10)

    # Checking if RandomRotation can be printed as string
    t.__repr__()

    # assert deprecation warning and non-BC
    with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
        t = transforms.RandomRotation((-10, 10), resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomRotation((-10, 10), interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
        tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
        tr_img = F.to_tensor(tr_img)
        assert img.size[0] == width
        assert img.size[1] == height
        assert (torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3 >
                torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))


@pytest.mark.parametrize('mode', ["L", "RGB", "F"])
def test_randomperspective_fill(mode):

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_vertical_flip():
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

    num_samples = 250
    num_vertical = 0
    for _ in range(num_samples):
        out = transforms.RandomVerticalFlip()(img)
        if out == vimg:
            num_vertical += 1

    p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    num_samples = 250
    num_vertical = 0
    for _ in range(num_samples):
        out = transforms.RandomVerticalFlip(p=0.7)(img)
        if out == vimg:
            num_vertical += 1

    p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomVerticalFlip can be printed as string
    transforms.RandomVerticalFlip().__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_horizontal_flip():
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    himg = img.transpose(Image.FLIP_LEFT_RIGHT)

    num_samples = 250
    num_horizontal = 0
    for _ in range(num_samples):
        out = transforms.RandomHorizontalFlip()(img)
        if out == himg:
            num_horizontal += 1

    p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    num_samples = 250
    num_horizontal = 0
    for _ in range(num_samples):
        out = transforms.RandomHorizontalFlip(p=0.7)(img)
        if out == himg:
            num_horizontal += 1

    p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomHorizontalFlip can be printed as string
    transforms.RandomHorizontalFlip().__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_normalize():
    def samples_from_standard_normal(tensor):
        p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


@pytest.mark.parametrize('dtype1', [torch.float32, torch.float64])
@pytest.mark.parametrize('dtype2', [torch.int64, torch.float32, torch.float64])
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
    result2 = F.normalize(img, mean_unsqueezed.repeat(1, img_size, img_size),
                          std_unsqueezed.repeat(1, img_size, img_size))
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


2039
2040
if __name__ == '__main__':
    unittest.main()