warp_specialized_rewriter.cc 50.8 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
#include <tvm/ffi/reflection/registry.h>
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
16
#include "./common/collector.h"
17
18
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
19
20
21
22
23

namespace tvm {
namespace tl {

using namespace tir;
24
using namespace runtime;
25
using arith::IRVisitorWithAnalyzer;
26

27
28
29
30
31
32
struct LoopInfo {
  Var loop_var;
  PrimExpr extent;
  PrimExpr min;
};

33
34
enum class Role { kConsumer, kProducer, kBoth };

35
class ProducerBufferDetector : public StmtExprVisitor {
36
public:
37
38
39
40
41
  ProducerBufferDetector(
      std::unordered_set<const BufferNode *> cur_producer_buffers)
      : cur_producer_buffers_(cur_producer_buffers) {}

  void clear() { has_producer_buffer_ = false; }
42
43

  void VisitExpr_(const CallNode *call) final {
44
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
45
      has_producer_buffer_ = true;
46
    }
47
    StmtExprVisitor::VisitExpr_(call);
48
49
  }

50
51
52
53
54
55
56
57
58
  void VisitExpr_(const BufferLoadNode *op) final {
    if (cur_producer_buffers_.count(op->buffer.get())) {
      has_producer_buffer_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_producer_buffer_ = false;
  std::unordered_set<const BufferNode *> cur_producer_buffers_;
59
60
61
62
63
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
64
65
66
67
68
69
70
71
72
73
    producer_buffers_.clear();
    std::unordered_set<const BufferNode *> last_producer_buffers_;
    for (;;) {
      VisitStmt(stmt);
      if (producer_buffers_ == last_producer_buffers_) {
        break;
      }
      last_producer_buffers_ = producer_buffers_;
    }
    return producer_buffers_;
74
75
76
77
78
79
80
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
81
      producer_buffers_.insert(buffer.first);
82
83
84
85
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
86
87
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->then_case);
88
    if (op->else_case.defined()) {
89
      producer_buffer_detector(op->else_case.value());
90
    }
91
    if (producer_buffer_detector.has_producer_buffer_) {
92
93
94
95
96
97
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
98
99
100
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->body);
    if (producer_buffer_detector.has_producer_buffer_) {
101
102
103
104
105
106
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

107
108
109
110
111
112
113
  void VisitStmt_(const BufferStoreNode *op) final {
    if (producer_buffers_.count(op->buffer.get())) {
      InsertBuffer(op->value);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

114
115
116
117
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
118
          producer_buffers_.insert(buffer_load->buffer.get());
119
120
121
122
123
        }
      }
    }
  }

124
private:
125
  std::unordered_set<const BufferNode *> producer_buffers_;
126
127
};

128
class WarpSpecializedRoleMarker : public StmtVisitor {
129
public:
130
131
132
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

133
134
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
135
    producer_buffers_ = finder.FindProducerusedBuffer(stmt);
136
137
  }

138
  Role GetRole(const StmtNode *stmt) const {
139
140
141
142
143
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

144
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
145

146
  void VisitStmt_(const EvaluateNode *op) final {
147
148
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
149
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
150
151
152
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
153
154
155
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
156
157
158
159
    }
    SetRole(op, role);
  }

160
  void VisitStmt_(const BufferStoreNode *op) final {
161
162
    auto scope = StorageScope::Create(GetPtrStorageScope(op->buffer->data));
    bool is_shared_store = scope.rank == StorageRank::kShared;
163
    if (producer_buffers_.count(op->buffer.get())) {
164
165
166
      SetRole(op, Role::kBoth);
      return;
    }
167
168
169
170
171
172
173
174
175
176
177
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
178
179
    if (reads.empty())
      role = Role::kConsumer;
180
181
182
183
184
185
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
186
187
    if (role == Role::kProducer)
      has_simt_copy_ = true;
188
189
190
    SetRole(op, role);
  }

191
  void VisitStmt_(const SeqStmtNode *op) final {
192
193
194
195
196
197
198
199
200
201
202
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

203
  void VisitStmt_(const IfThenElseNode *op) final {
204
205
206
207
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
208
209
      if (role != role_else)
        role = Role::kBoth;
210
211
212
213
    }
    SetRole(op, role);
  }

214
  void VisitStmt_(const BlockRealizeNode *op) final {
215
216
217
218
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

219
220
221
222
223
224
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

225
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
226
227
228
229
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

230
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
231
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
232
233
234
235
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
236
237
238
239
240

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

241
242
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
243
  Map<Var, Buffer> buffer_data_to_buffer_;
244
  std::unordered_map<const StmtNode *, Role> map_;
245
246
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
247
  std::unordered_set<const BufferNode *> producer_buffers_;
248
249
250
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
251
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
252
253
}

254
255
256
257
258
259
260
261
262
static Stmt makeArriveBarrier(PrimExpr barrier_id, int cta_id = -1,
                              PrimExpr pred = 1) {
  Array<PrimExpr> args = {makeGetBarrier(barrier_id)};
  if (cta_id != -1) {
    args.push_back(cta_id);
    args.push_back(pred);
  }
  return Evaluate(
      Call(DataType::Handle(), builtin::ptx_arrive_barrier(), args));
263
264
265
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
266
267
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
268
269
270
271
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
272
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
273
                   {makeGetBarrier(barrier_id), parity});
274
275
276
277
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
278
public:
279
280
  ProducerTraitsCollector() { Clear(); }

281
  void Clear() { has_simt_copy = false; }
282
283
284
285
286

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

287
private:
288
289
290
291
292
293
294
295
296
297
298
299
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

300
  void VisitExpr_(const BufferLoadNode *op) final {
301
302
303
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
304
305
306
307
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
308
  bool in_if_cond_ = false;
309
310
311
312
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
313
public:
314
315
316
317
318
319
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

320
321
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
322
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
323
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
324
325
326
327
328
329
330
331
332
333
334
335
336
      auto mbar = makeGetBarrier(producer_barrier_idx_);
      auto arg0 = call->args[0].as<Call>();
      // Check if this is a 1D TMA load
      auto is_1d_tma_load =
          arg0 && !arg0.value()->op.same_as(create_tma_descriptor()) &&
          call->op.same_as(tma_load());
      if (is_1d_tma_load) {
        call.CopyOnWrite()->args.Set(2, mbar);
      } else {
        Call access_ptr = Downcast<Call>(call->args[2]);
        ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
        call.CopyOnWrite()->args.Set(1, mbar);
      }
337
338
339
340
341
342
343
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
344
public:
345
346
347
348
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced,
                      PrimExpr thread_extent, bool do_shuffle = false) {
    auto rewriter =
        ThreadIdxRewriter(thread_var, replaced, thread_extent, do_shuffle);
349
350
351
    return rewriter(stmt);
  }

352
private:
353
354
355
356
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced, PrimExpr thread_extent,
                    bool do_shuffle)
      : thread_var_(thread_var), replaced_(replaced),
        thread_extent_(thread_extent), do_shuffle_(do_shuffle) {}
357

358
  PrimExpr VisitExpr_(const VarNode *var) final {
359
360
361
362
363
364
365
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

366
367
368
369
370
371
372
373
374
375
376
377
378
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
      return parameter == thread_var_.get();
    };
    maybe_thread_opt_ = false;
    if (!op->else_case.defined() && op->condition.as<EQNode>() &&
        UsesVar(op->condition, f_uses_thread_index) &&
        !(UsesVar(op->then_case, f_uses_thread_index))) {
      auto eq_op = Downcast<EQ>(op->condition);
      if (eq_op->a.as<VarNode>() == thread_var_.get() ||
          eq_op->b.as<VarNode>() == thread_var_.get()) {
        maybe_thread_opt_ = true;
      }
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
      auto then_case = StmtExprMutator::VisitStmt(op->then_case);
      maybe_thread_opt_ = do_shuffle_ && maybe_thread_opt_ && has_tma_op_;
      has_tma_op_ = false;
      if (maybe_thread_opt_) {
        return IfThenElse(
            Call(DataType::Bool(), tl_shuffle_elect(), {thread_extent_}),
            StmtExprMutator::VisitStmt(op->then_case), std::nullopt);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl::tma_load()) ||
        op->op.same_as(tl::tma_load_im2col()) ||
        op->op.same_as(tl::tma_store())) {
      has_tma_op_ = true;
396
    }
397
    return StmtExprMutator::VisitExpr_(op);
398
399
  }

400
401
  Var thread_var_;
  PrimExpr replaced_;
402
403
404
  PrimExpr thread_extent_;
  bool maybe_thread_opt_ = false;
  bool do_shuffle_;
405
  bool has_tma_op_ = false;
406
407
};

408
409
410
411
412
413
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
414
415
416
417
418
419
420
421
422
423
424
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
425
426
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

443
  PipelineInfo(const PipelineInfo &other) {
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
506
507
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
508
509
510
511
512
513
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
514
public:
515
516
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

517
518
private:
  Stmt VisitStmt_(const ForNode *op) final {
519
520
521
522
523
524
525
526
527
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
528
529
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
530
      Array<Stmt> block_stmt;
531
532
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
533
        // ICHECK(group_info_[i][j].as<IntImmNode>());
534
535
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
536
537
538
539
540
541
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
542
543
544
545
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
546
547
548
549
550
551
552
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
553
    Map<String, Any> for_annotations = op->annotations;
554
555
556
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
557
558
559
560
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
561
562
563
564
565
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

class WgMMACollector : public StmtExprVisitor {
public:
  WgMMACollector() = default;

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl_gemm()) || op->op.same_as(tl_gemm_sp())) {
      auto op_name = std::string(op->args[0].as<StringImmNode>()->value);
      if (has_wgmma_) {
        has_wgmma_ =
            op_name.find("false") == std::string::npos && !in_if_scope_;
      }
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    in_if_scope_ = true;
    StmtExprVisitor::VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      StmtExprVisitor::VisitStmt(op->else_case.value());
    }
    in_if_scope_ = false;
  }

  static bool HasWgMMA(Stmt stmt) {
    auto collector = WgMMACollector();
    collector(stmt);
    return collector.has_wgmma_;
  }

  bool has_wgmma_{true};
  bool in_if_scope_{false};
};

601
class WSCodeEmitter : public StmtMutator {
602
public:
603
  /**
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
   * @brief Construct a warp-specialized code emitter configured for producer or
   * consumer emission.
   *
   * Initializes a WSCodeEmitter that will emit barrier-aware, role-filtered
   * code for a single warp-specialized block. The emitter is configured with
   * the loop/thread iteration variable, buffer mapping, role marker used to
   * classify statements, and two flags that control emission behavior:
   *
   * - `mbarrier_only`: when true, emission is restricted to barrier-related
   * operations only.
   * - `only_has_wgmma`: when true, the emitter will account for the presence of
   * WgMMA (workgroup MMA) operations when computing barrier/thread gating
   * behavior.
   *
   * @param is_emitting_producer True to emit producer-side groups; false to
   * emit consumer-side groups.
   * @param thread_iv IterVar representing the thread iteration variable
   * (threadIdx.*) whose Var is used for thread-index rewrites and gating.
   * @param buffer_data_to_buffer Map from buffer data Var to the corresponding
   * Buffer (used to resolve buffer references during emission).
   * @param marker Role marker that classifies statements as
   * producer/consumer/both; used to filter which statements are emitted on this
   * path.
   * @param mbarrier_only If true, restrict emission to mbarrier-related
   * statements and helpers.
   * @param only_has_wgmma If true, adjust emission and barrier-thread-count
   * logic for blocks that contain WgMMA operations.
   */
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
633
                Map<Var, Buffer> buffer_data_to_buffer,
634
                const WarpSpecializedRoleMarker &marker,
635
                bool mbarrier_only = false, bool only_has_wgmma = false)
636
      : is_emitting_producer_(is_emitting_producer),
637
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
638
639
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only),
        only_has_wgmma_(only_has_wgmma) {}
640

641
  /**
642
643
644
645
646
647
648
649
650
   * @brief Whether a SIMT-style bulk copy was detected.
   *
   * Returns true when a simulated SIMT (thread-parallel) copy pattern was
   * observed during analysis/emission, which can affect barrier insertion and
   * copy emission.
   *
   * @return true if a SIMT copy was detected; false otherwise.
   */
  bool hasSimtCopy() const { return has_simt_copy_; }
651

652
653
  bool onlyHasWgMMA() const { return only_has_wgmma_; }

654
655
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
656
    Role role = marker_.GetRole(op);
657
658
659
660
661
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
662
      return StmtMutator::VisitStmt_(op);
663
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
664
      return GetRef<Stmt>(op);
665
    } else {
666
      return Evaluate(0);
667
    }
668
669
  }

670
  /**
671
672
   * @brief Visit and transform a SeqStmt node, emitting grouped blocks with
   * barrier synchronization according to producer/consumer roles.
673
674
   *
   * This method examines the sequence to determine whether producer-side
675
676
   * synchronization is required (based on marker_ roles). If no producer sync
   * is needed it delegates to FilterByRole. Otherwise it:
677
678
679
680
   * - Recursively visits and transforms each child statement.
   * - Extracts an acquire/release sync pattern for the sequence via
   *   ExtractSyncPattern.
   * - For producer emission (is_emitting_producer_ == true):
681
682
   *   - Skips consumer-only statements unless marker_ marks a statement as
   * Both, in which case the statement is emitted as its own group.
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
   *   - For each statement, inserts parity waits for acquire patterns, rewrites
   *     release statements with MbarrierRewriter using a computed barrier id,
   *     collects SimT-copy presence (setting has_simt_copy_ and inserting
   *     cp.async barriers when found), optionally emits arrive barriers for
   *     release-after events, and emits each resulting set of statements as a
   *     group block annotated with "stmt_group".
   * - For consumer emission (is_emitting_producer_ == false):
   *   - Skips producer-only statements.
   *   - Inserts parity waits for acquire patterns, appends the transformed
   *     statement, and emits arrive barriers for release-after events. When
   *     only_has_wgmma_ is set, the arrive barrier uses a per-thread predicate
   *     (FloorMod(thread_var_,128)==0) with CTA=0; otherwise a full arrive is
   *     emitted.
   *   - Recomputes pipeline_info_ to drop producer-only ops.
   *
   * Side effects / state updates:
   * - Increments num_barriers_ by (number of extracted patterns * num_stages_).
   * - May set has_simt_copy_ when a SimT copy is detected in producer rewrites.
   * - Inserts barrier ids into released_barrier_ for release-after events.
   * - Updates pipeline_info_ for the consumer path to remove producer ops.
   *
   * The resulting statements are emitted as grouped blocks (via MakeGroupBlock)
   * with the annotation "stmt_group" and returned as either a single Stmt (if
   * there's only one group) or a SeqStmt containing the grouped blocks.
   *
   * @return Stmt The transformed statement (either a single group block or a
   * SeqStmt of group blocks).
   */
711
  Stmt VisitStmt_(const SeqStmtNode *op) final {
712

713
714
715
716
717
718
719
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
720
721
722
723
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
724

725
726
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
727
728

    auto map = ExtractSyncPattern(op->seq);
729

730
731
732
733
734
735
736
737
738
739
740
741
742
743
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
744
745
746
747
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

748
    if (is_emitting_producer_) { // producer case
749
750
751
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
752
753
754
755
756
757
758
759
760
761
762
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
763
        }
764

765
        for (int pattern_idx : map.acquire[i]) {
766
          PrimExpr acquire_barrier_id =
767
768
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
769
770
                                ? bitwise_xor(parity_, 1)
                                : parity_;
771
772
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
773
774
775
776
777
778
779
780
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
781
          block_stmt.push_back(stmt);
782
          if (collector.HasSimtCopy()) {
783
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
784
            has_simt_copy_ = true;
785
          }
786
787
788
789
790
791
792
793
794
795
796
797
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
798
799
        }
      }
800
    } else { // consumer case
801
802
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
803
804
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
805
        for (int pattern_idx : map.acquire[i]) {
806
          PrimExpr acquire_barrier_id =
807
808
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
809
810
                                ? bitwise_xor(parity_, 1)
                                : parity_;
811
812
813
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
814
815
816
817
818
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
819
820
821
822
823
            if (only_has_wgmma_)
              block_stmt.push_back(makeArriveBarrier(
                  release_barrier_id, 0, EQ(FloorMod(thread_var_, 128), 0)));
            else
              block_stmt.push_back(makeArriveBarrier(release_barrier_id));
824
825
826
827
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
828
829
          }
        }
830
831
832
833
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
834
835
836
837
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
838
839
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

863
  Stmt VisitStmt_(const ForNode *op) final {
864
865
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
866
867
868
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
869
870
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
871
    loop_stack_.emplace_back(LoopInfo{op->loop_var, op->extent, op->min});
872
873
874
875

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
876

877
    auto group_anno = op->annotations.Get("tl_pipeline_group");
878
879
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
880
881
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
882
883
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
884
885
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
886
887
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
888
889
    }

890
891
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
892
    if (pipeline_info.op_infos.size() > 0) {
893
894
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
895
896
897
898
899
900
901
902
903
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
904
    PrimExpr linear_index = loop_stack_[0].loop_var - loop_stack_[0].min;
905
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
906
907
      linear_index = linear_index * loop_stack_[i].extent +
                     (loop_stack_[i].loop_var - loop_stack_[i].min);
908
909
910
911
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
912
913
914
    auto result = FilterByRole(op);

    Stmt grouped_for_node;
915
916
    if (result.as<ForNode>() && group_anno && group_info_array.size() > 0 &&
        !is_emitting_producer_) {
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
936
      if (is_emitting_producer_ || !group_anno ||
937
          group_info_array.size() == 0) {
938
        loop_stack_.pop_back();
939
940
        return for_node;
      }
941
      loop_stack_.pop_back();
942
943
      return grouped_for_node;
    }
944
    loop_stack_.pop_back();
945
946
947
    return result;
  }

948
949
950
951
952
953
954
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
955
956
957
    ICHECK(0);
    return Stmt();
  }
958
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
959
960
961
962
963
964
965
966
967
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
968
969
970
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
971
    std::vector<SyncPattern> patterns;
972
973
974
975
976
977
978
979
980
981

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
982
983
984
    }
  };

985
986
987
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
988
    const int n = seq_stmt.size();
989
    std::vector<std::set<const BufferNode *>> reads, writes;
990
991
992
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
993
994
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
995
996
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
997
      std::set<const BufferNode *> read_set, write_set;
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
1014
1015
1016
1017
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

1018
1019
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
1020
      for (auto ptr : lhs)
1021
1022
        if (rhs.count(ptr))
          return true;
1023
1024
1025
1026
1027
1028
1029
1030
1031
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
1032
1033
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
1048
1049
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

1060
1061
1062
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
1095
1096
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
1110
1111
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
1112
1113

    // for (auto pattern : sync_patterns) {
1114
1115
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
1116
1117
1118
    // }

    SyncPatternMap map;
1119
    map.resize(num_stmts);
1120
    map.patterns = sync_patterns;
1121

1122
    for (size_t i = 0; i < sync_patterns.size(); i++) {
1123
1124
1125
1126
1127
1128
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
1129
1130
    }

1131
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
1132
1133
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
1134
1135
1136
1137
1138
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1139
        } else {
1140
1141
1142
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
1143
1144
        }
      } else {
1145
1146
1147
1148
1149
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1150
        } else {
1151
1152
1153
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
1154
1155
1156
1157
1158
1159
1160
1161
1162
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
1163
  const WarpSpecializedRoleMarker &marker_;
1164
1165
1166
1167
1168

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
1169
  std::vector<LoopInfo> loop_stack_;
1170
  Var thread_var_;
1171
  bool mbarrier_only_ = false;
1172
1173
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
1174
1175
  bool only_has_wgmma_ = false;
  bool has_simt_copy_ = false;
1176
1177
1178
};

class WarpSpecializedRewriter : public StmtExprMutator {
1179
public:
1180
1181
1182
1183
1184
1185
  WarpSpecializedRewriter(bool disable_warp_specialized,
                          bool disable_shuffle_elect)
      : disable_warp_specialized_(disable_warp_specialized),
        disable_shuffle_elect_(disable_shuffle_elect) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized,
                             bool disable_shuffle_elect) {
1186
1187
1188
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1189
                      "uses thread tags other than threadIdx.x."
1190
1191
1192
1193
1194
1195
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1196
1197
    auto T = WarpSpecializedRewriter(disable_warp_specialized,
                                     disable_shuffle_elect);
1198
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1199
1200
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1201
1202
1203
1204
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1205
1206
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1224
1225
1226
1227
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1228
1229
1230
1231
1232
1233
1234
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1235
      Stmt new_body =
1236
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_, 0);
1237
1238
1239
1240
1241
      return new_body;
    }
    return for_node;
  }

1242
  /**
1243
1244
   * @brief Rewrite a BlockRealize for warp specialization, inserting barriers
   * and emitting producer/consumer bodies.
1245
1246
1247
1248
1249
   *
   * This visitor handles BlockRealize nodes when a thread IterVar (thread_iv_)
   * is defined and warp-specialization is applicable. It:
   * - Determines producer/consumer roles via WarpSpecializedRoleMarker and
   *   returns the original block if no producer is detected.
1250
1251
   * - If warp specialization is disabled, emits only mbarrier initialization
   * and the mbarrier-only transformed body.
1252
1253
1254
   * - Otherwise, detects WgMMA usage for the block body and constructs separate
   *   WSCodeEmitter instances for producer and consumer paths (propagating the
   *   WgMMA flag to the consumer emitter).
1255
1256
1257
   * - Generates producer/consumer code, applies register hint calls
   * (set_max_nreg) when available, and rewrites thread indices with
   * ThreadIdxRewriter to partition threads between producer and consumer roles.
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
   * - Computes and initializes a list of mbarrier handles with per-barrier
   *   arrive thread counts (taking SIMT-copy and WgMMA cases into account).
   * - Wraps the transformed body in an IfThenElse that dispatches producer vs
   *   consumer based on thread index, and annotates the region with the
   *   "kWarpSpecializationScope" attribute that contains producer/consumer
   *   thread extents.
   *
   * Side effects:
   * - May update member state: only_has_wgmma_, updated_thread_extent_,
   *   need_update_thread_extent_.
   * - May abort via ICHECK if invariants (e.g., matching barrier counts) are
   *   violated.
   *
   * @return The possibly rewritten BlockRealize statement (original when no
   *         warp-specialization is applied or thread_iv_ is undefined).
   */
1274
1275
1276
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1277
1278
1279
1280
1281
1282
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1283
    marker.Prepare(block);
1284
1285
1286
1287
1288
1289
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1302
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1303
1304
1305
1306
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1307
    only_has_wgmma_ = WgMMACollector::HasWgMMA(block->body);
1308
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
1309
1310
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker,
                           false, only_has_wgmma_);
1311
1312
1313
1314
1315
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1316
1317
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1318
1319

    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
1320
1321
1322
1323
1324
1325
1326
1327

    producer_code = ThreadIdxRewriter::Rewrite(
        producer_code, thread_iv_->var,
        thread_iv_->var - consumer_thread_extent, producer_thread_extent,
        !disable_shuffle_elect_);
    consumer_code = ThreadIdxRewriter::Rewrite(
        consumer_code, thread_iv_->var, thread_iv_->var, consumer_thread_extent,
        !disable_shuffle_elect_);
1328
1329
1330
1331
1332
1333
1334
1335
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1336
1337
1338
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i)
              ? (producer.hasSimtCopy() ? producer_thread_extent : 1)
1339
1340
              : (only_has_wgmma_ ? FloorDiv(consumer_thread_extent, 128)
                                 : consumer_thread_extent);
1341
1342
1343
      barrier_num_threads.push_back(arrive_thread_count);
    }

1344
    Stmt init_barrier = Evaluate(Call(
1345
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1346
1347
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1348
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1349
1350
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
1351
    body = AttrStmt(ws_partition, attr::kWarpSpecializationScope, 0, body);
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1366
  bool disable_warp_specialized_ = false;
1367
  bool disable_shuffle_elect_ = false;
1368
  bool only_has_wgmma_ = false;
1369
1370
};

1371
1372
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
1373
  // return true means this aws will be disabled
1374
1375
1376
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    if (detector.has_warp_specialization_) {
      LOG(WARNING) << "Auto warp specialization will be disabled because warp "
                      "specialization is manually enabled";
      return true;
    }
    if (detector.has_tma_op_ && detector.has_mbarrier_op_) {
      LOG(WARNING) << "Auto warp specialization will be disabled because TMA "
                      "and mbarrier are both present";
      return true;
    }
    return false;
1388
1389
1390
1391
1392
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1393
    has_warp_specialization_ = false;
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1417
  void VisitStmt_(const AttrStmtNode *op) final {
1418
1419
1420
1421
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1432
  bool has_tma_op_{false};
1433
  IterVar thread_var_;
1434
  bool has_mbarrier_op_{false};
1435
  bool has_warp_specialization_{false};
1436
1437
};

1438
1439
1440
1441
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1442
1443
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1444
1445
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
1446
1447
1448
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
1449
1450
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized,
                                                 disable_shuffle_elect);
1451
1452
    }
    return f;
1453
1454
1455
1456
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1457
1458
1459
1460
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1461

1462
1463
} // namespace tl
} // namespace tvm