warp_specialized_rewriter.cc 41.4 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
#include <tvm/ffi/reflection/registry.h>
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
16
#include "./common/collector.h"
17
18
19
20
21

namespace tvm {
namespace tl {

using namespace tir;
22
using arith::IRVisitorWithAnalyzer;
23
24
25

enum class Role { kConsumer, kProducer, kBoth };

26
27
28
29
30
class TMAFinder : public StmtExprVisitor {
public:
  void clear() { has_tma_load_ = false; }

  void VisitExpr_(const CallNode *call) final {
31
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
      has_tma_load_ = true;
    }
  }

  bool has_tma_load_ = false;
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
    VisitStmt(stmt);
    return used_in_producer_cond_;
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
      used_in_producer_cond_.insert(buffer.first);
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->then_case);
    if (op->else_case.defined()) {
      tma_finder(op->else_case.value());
    }
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->body);
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

77
78
79
80
81
82
83
84
85
86
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
          used_in_producer_cond_.insert(buffer_load->buffer.get());
        }
      }
    }
  }

87
88
89
90
private:
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
};

91
class WarpSpecializedRoleMarker : public StmtVisitor {
92
public:
93
94
95
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

96
97
98
99
100
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
    used_in_producer_cond_ = finder.FindProducerusedBuffer(stmt);
  }

101
  Role GetRole(const StmtNode *stmt) const {
102
103
104
105
106
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

107
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
108

109
  void VisitStmt_(const EvaluateNode *op) final {
110
111
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
112
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
113
114
115
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
116
117
118
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
119
120
121
122
    }
    SetRole(op, role);
  }

123
124
125
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
126
127
128
129
    if (used_in_producer_cond_.count(op->buffer.get())) {
      SetRole(op, Role::kBoth);
      return;
    }
130
131
132
133
134
135
136
137
138
139
140
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
141
142
    if (reads.empty())
      role = Role::kConsumer;
143
144
145
146
147
148
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
149
150
    if (role == Role::kProducer)
      has_simt_copy_ = true;
151
152
153
    SetRole(op, role);
  }

154
  void VisitStmt_(const SeqStmtNode *op) final {
155
156
157
158
159
160
161
162
163
164
165
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

166
  void VisitStmt_(const IfThenElseNode *op) final {
167
168
169
170
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
171
172
      if (role != role_else)
        role = Role::kBoth;
173
174
175
176
    }
    SetRole(op, role);
  }

177
  void VisitStmt_(const BlockRealizeNode *op) final {
178
179
180
181
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

182
183
184
185
186
187
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

188
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
189
190
191
192
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

193
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
194
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
195
196
197
198
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
199
200
201
202
203

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

204
205
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
206
  Map<Var, Buffer> buffer_data_to_buffer_;
207
  std::unordered_map<const StmtNode *, Role> map_;
208
209
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
210
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
211
212
213
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
214
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
215
216
217
}

static Stmt makeArriveBarrier(PrimExpr barrier_id) {
218
219
  auto call = Call(DataType::Handle(), builtin::ptx_arrive_barrier(),
                   {makeGetBarrier(barrier_id)});
220
221
222
223
  return Evaluate(call);
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
224
225
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
226
227
228
229
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
230
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
231
                   {makeGetBarrier(barrier_id), parity});
232
233
234
235
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
236
public:
237
238
  ProducerTraitsCollector() { Clear(); }

239
  void Clear() { has_simt_copy = false; }
240
241
242
243
244

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

245
private:
246
247
248
249
250
251
252
253
254
255
256
257
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

258
  void VisitExpr_(const BufferLoadNode *op) final {
259
260
261
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
262
263
264
265
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
266
  bool in_if_cond_ = false;
267
268
269
270
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
271
public:
272
273
274
275
276
277
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

278
279
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
280
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
281
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
282
283
284
285
286
287
288
289
290
291
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
292
public:
293
294
295
296
297
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced) {
    auto rewriter = ThreadIdxRewriter(thread_var, replaced);
    return rewriter(stmt);
  }

298
private:
299
300
301
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced)
      : thread_var_(thread_var), replaced_(replaced) {}

302
  PrimExpr VisitExpr_(const VarNode *var) final {
303
304
305
306
307
308
309
310
311
312
313
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

  Var thread_var_;
  PrimExpr replaced_;
};

314
315
316
317
318
319
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
320
321
322
323
324
325
326
327
328
329
330
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
331
332
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

349
  PipelineInfo(const PipelineInfo &other) {
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
412
413
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
414
415
416
417
418
419
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
420
public:
421
422
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

423
424
private:
  Stmt VisitStmt_(const ForNode *op) final {
425
426
427
428
429
430
431
432
433
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
434
435
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
436
      Array<Stmt> block_stmt;
437
438
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
439
        // ICHECK(group_info_[i][j].as<IntImmNode>());
440
441
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
442
443
444
445
446
447
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
448
449
450
451
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
452
453
454
455
456
457
458
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
459
    Map<String, Any> for_annotations = op->annotations;
460
461
462
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
463
464
465
466
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
467
468
469
470
471
472
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
class WSCodeEmitter : public StmtMutator {
473
public:
474
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
475
                Map<Var, Buffer> buffer_data_to_buffer,
476
477
                const WarpSpecializedRoleMarker &marker,
                bool mbarrier_only = false)
478
      : is_emitting_producer_(is_emitting_producer),
479
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
480
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only) {}
481

482
483
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
484
    Role role = marker_.GetRole(op);
485
486
487
488
489
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
490
      return StmtMutator::VisitStmt_(op);
491
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
492
      return GetRef<Stmt>(op);
493
    } else {
494
      return Evaluate(0);
495
    }
496
497
498
  }

  // TODO: only need to add block for ops in the loop
499
  Stmt VisitStmt_(const SeqStmtNode *op) final {
500

501
502
503
504
505
506
507
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
508
509
510
511
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
512

513
514
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
515
516

    auto map = ExtractSyncPattern(op->seq);
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
531
532
533
534
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

535
    if (is_emitting_producer_) { // producer case
536
537
538
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
539
540
541
542
543
544
545
546
547
548
549
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
550
        }
551

552
        for (int pattern_idx : map.acquire[i]) {
553
          PrimExpr acquire_barrier_id =
554
555
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
556
557
                                ? bitwise_xor(parity_, 1)
                                : parity_;
558
559
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
560
561
562
563
564
565
566
567
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
568
          block_stmt.push_back(stmt);
569
570
          if (collector.HasSimtCopy() > 0) {
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
571
          }
572
573
574
575
576
577
578
579
580
581
582
583
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
584
585
        }
      }
586
    } else { // consumer case
587
588
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
589
590
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
591
        for (int pattern_idx : map.acquire[i]) {
592
          PrimExpr acquire_barrier_id =
593
594
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
595
596
                                ? bitwise_xor(parity_, 1)
                                : parity_;
597
598
599
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
600
601
602
603
604
605
606
607
608
609
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
610
611
          }
        }
612
613
614
615
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
616
617
618
619
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
620
621
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

645
  Stmt VisitStmt_(const ForNode *op) final {
646
647
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
648
649
650
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
651
652
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
653
    loop_stack_.emplace_back(op->loop_var, op->extent);
654
655
656
657

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
658

659
    auto group_anno = op->annotations.Get("tl_pipeline_group");
660
661
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
662
663
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
664
665
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
666
667
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
668
669
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
670
671
    }

672
673
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
674
    if (pipeline_info.op_infos.size() > 0) {
675
676
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
677
678
679
680
681
682
683
684
685
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
686
687
688
689
690
691
692
693
    PrimExpr linear_index = loop_stack_[0].first;
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
      linear_index =
          linear_index * loop_stack_[i].second + loop_stack_[i].first;
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
694
695
696
697

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
698
699
    if (result.as<ForNode>() && group_anno && group_info_array.size() > 0 &&
        !is_emitting_producer_) {
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
719
      if (is_emitting_producer_ || !group_anno ||
720
          group_info_array.size() == 0) {
721
        loop_stack_.pop_back();
722
723
        return for_node;
      }
724
      loop_stack_.pop_back();
725
726
      return grouped_for_node;
    }
727
    loop_stack_.pop_back();
728
729
730
    return result;
  }

731
732
733
734
735
736
737
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
738
739
740
    ICHECK(0);
    return Stmt();
  }
741
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
742
743
744
745
746
747
748
749
750
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
751
752
753
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
754
    std::vector<SyncPattern> patterns;
755
756
757
758
759
760
761
762
763
764

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
765
766
767
    }
  };

768
769
770
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
771
    const int n = seq_stmt.size();
772
    std::vector<std::set<const BufferNode *>> reads, writes;
773
774
775
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
776
777
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
778
779
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
780
      std::set<const BufferNode *> read_set, write_set;
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
797
798
799
800
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

801
802
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
803
      for (auto ptr : lhs)
804
805
        if (rhs.count(ptr))
          return true;
806
807
808
809
810
811
812
813
814
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
815
816
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
817
818
819
820
821
822
823
824
825
826
827
828
829
830
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
831
832
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
833
834
835
836
837
838
839
840
841
842
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

843
844
845
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
878
879
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
880
881
882
883
884
885
886
887
888
889
890
891
892

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
893
894
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
895
896

    // for (auto pattern : sync_patterns) {
897
898
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
899
900
901
    // }

    SyncPatternMap map;
902
    map.resize(num_stmts);
903
    map.patterns = sync_patterns;
904

905
    for (size_t i = 0; i < sync_patterns.size(); i++) {
906
907
908
909
910
911
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
912
913
    }

914
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
915
916
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
917
918
919
920
921
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
922
        } else {
923
924
925
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
926
927
        }
      } else {
928
929
930
931
932
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
933
        } else {
934
935
936
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
937
938
939
940
941
942
943
944
945
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
946
  const WarpSpecializedRoleMarker &marker_;
947
948
949
950
951

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
952
  std::vector<std::pair<Var, PrimExpr>> loop_stack_;
953
  Var thread_var_;
954
  bool mbarrier_only_ = false;
955
956
957
958
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
};

959
960
961
962
963
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
964
965
966
967
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
968
969
970
971
972
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
973
      if (call->op.same_as(set_max_nreg())) {
974
975
976
977
978
979
980
981
982
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
983
      } else if (call->op.same_as(no_set_max_nreg())) {
984
        has_no_set_max_nreg_ = true;
985
986
987
988
989
990
991
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
992
  bool has_no_set_max_nreg_ = false;
993
994
};

995
class WarpSpecializedRewriter : public StmtExprMutator {
996
public:
997
998
999
  WarpSpecializedRewriter(bool disable_warp_specialized)
      : disable_warp_specialized_(disable_warp_specialized) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized) {
1000
1001
1002
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1003
                      "uses thread tags other than threadIdx.x."
1004
1005
1006
1007
1008
1009
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1010
    auto T = WarpSpecializedRewriter(disable_warp_specialized);
1011
    T.nreg_ = SetMaxNRegCollector::Collect(f);
1012
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1013
1014
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1015
1016
1017
1018
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1019
1020
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1038
1039
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1040
1041
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1042
1043
1044
1045
1046
1047
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1048
1049
1050
1051
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1052
1053
1054
1055
1056
1057
1058
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1059
1060
      Stmt new_body =
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_);
1061
1062
1063
1064
1065
      return new_body;
    }
    return for_node;
  }

1066
1067
1068
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1069
1070
1071
1072
1073
1074
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1075
    marker.Prepare(block);
1076
1077
1078
1079
1080
1081
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1094
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1095
1096
1097
1098
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1099
1100
1101
1102
1103
1104
1105
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1106
1107
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1108
1109

    // TODO: estimate the correct reg usage.
1110
1111
1112
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1113
1114
1115
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
    if (dec_reg >= 0 && inc_reg >= 0) {
1116
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1117
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1118
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1119
1120
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1121
1122
1123
1124

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

1125
1126
1127
    producer_code =
        ThreadIdxRewriter::Rewrite(producer_code, thread_iv_->var,
                                   thread_iv_->var - consumer_thread_extent);
1128
1129
1130
1131
1132
1133
1134
1135
1136
    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1137
1138
1139
      PrimExpr arrive_thread_count = producer.released_barrier_.count(i)
                                         ? producer_thread_extent
                                         : consumer_thread_extent;
1140
1141
1142
      barrier_num_threads.push_back(arrive_thread_count);
    }

1143
    Stmt init_barrier = Evaluate(Call(
1144
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1145
1146
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1147
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1165
  bool disable_warp_specialized_ = false;
1166
  Array<IntImm> nreg_;
1167
1168
};

1169
1170
1171
1172
1173
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1174
1175
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1176
1177
1178
1179
1180
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1181
    has_warp_specialization_ = false;
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1205
  void VisitStmt_(const AttrStmtNode *op) final {
1206
1207
1208
1209
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1220
  bool has_tma_op_{false};
1221
  IterVar thread_var_;
1222
  bool has_mbarrier_op_{false};
1223
  bool has_warp_specialization_{false};
1224
1225
};

1226
1227
1228
1229
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1230
1231
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1232
1233
1234
1235
1236
1237
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized);
    }
    return f;
1238
1239
1240
1241
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1242
1243
1244
1245
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1246

1247
1248
} // namespace tl
} // namespace tvm