warp_specialized_rewriter.cc 32.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file warp_specialized_pipeline.cc
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"

namespace tvm {
namespace tl {

using namespace tir;

enum class Role { kConsumer, kProducer, kBoth };

class WarpSpecializedRoleMarker : public StmtVisitor {
 public:
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

  Role GetRole(const StmtNode* stmt) const {
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

  Role GetRole(const Stmt& stmt) const { return GetRole(stmt.get()); }

  void VisitStmt_(const EvaluateNode* op) final {
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
      if (call->op.same_as(TMALoadOp()) || call->op.same_as(TMALoadIm2ColOp())) {
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
    }
    SetRole(op, role);
  }

  void VisitStmt_(const BufferStoreNode* op) final {
    bool is_shared_store = op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
    if (role == Role::kProducer) has_simt_copy_ = true;
    SetRole(op, role);
  }

  void VisitStmt_(const SeqStmtNode* op) final {
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

  void VisitStmt_(const IfThenElseNode* op) final {
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
      if (role != role_else) role = Role::kBoth;
    }
    SetRole(op, role);
  }

  void VisitStmt_(const BlockRealizeNode* op) final {
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

  template <class NodeType>
  void HandleBodyStmt(const NodeType* op) {
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

  void VisitStmt_(const ForNode* op) final { HandleBodyStmt(op); }
  void VisitStmt_(const LetStmtNode* op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode* op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode* op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode* op) final { HandleBodyStmt(op); }

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

 private:
  void SetRole(const StmtNode* stmt, Role role) { map_[stmt] = role; }
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_map<const StmtNode*, Role> map_;
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
  return Call(DataType::Handle(), GetMBarrierOp(), {barrier_id});
}

static Stmt makeExpectTX(PrimExpr barrier_id, PrimExpr bytes) {
  auto call = Call(DataType::Handle(), MBarrierExpectTX(), {makeGetBarrier(barrier_id), bytes});
  return Evaluate(call);
}

static Stmt makeArriveBarrier(PrimExpr barrier_id) {
  auto call = Call(DataType::Handle(), builtin::ptx_arrive_barrier(), {makeGetBarrier(barrier_id)});
  return Evaluate(call);
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
  auto call =
      Call(DataType::Handle(), builtin::ptx_cp_async_barrier(), {makeGetBarrier(barrier_id)});
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
  auto call = Call(DataType::Handle(), MBarrierWaitParity(), {makeGetBarrier(barrier_id), parity});
  return Evaluate(call);
}

// static bool isGemm(Stmt stmt) {
//   bool is_gemm = false;
//   if (stmt.as<EvaluateNode>()) {
//     auto call = Downcast<Evaluate>(stmt)->value.as<CallNode>();
//     if (call && call->op.same_as(Op::Get("tir.call_extern"))) {
//       if (call->args[0].as<StringImmNode>()) {
//         std::string name = Downcast<StringImm>(call->args[0])->value;
//         if (name.find("gemm") != std::string::npos) {
//           is_gemm = true;
//         }
//       }
//     }
//   }
//   return is_gemm;
// }

class ProducerTraitsCollector : public StmtExprVisitor {
 public:
  ProducerTraitsCollector() { Clear(); }

  void Clear() {
    bulk_copy_bytes = 0;
    loop_extents = 1;
    has_simt_copy = false;
  }

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

  PrimExpr BulkCopyBytes() { return bulk_copy_bytes; }

 private:
  void VisitExpr_(const CallNode* call) final {
    if (call->op.same_as(TMALoadOp()) || call->op.same_as(TMALoadIm2ColOp())) {
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      int type_bytes = access_ptr->args[0]->dtype.bytes();
      bulk_copy_bytes += access_ptr->args[3] * loop_extents * type_bytes;
    }
    StmtExprVisitor::VisitExpr_(call);
  }

  void VisitStmt_(const ForNode* op) final {
    PrimExpr old_loop_evtents = loop_extents;
    loop_extents *= op->extent;
    StmtExprVisitor::VisitStmt_(op);
    loop_extents = old_loop_evtents;
  }

  void VisitExpr_(const BufferLoadNode* op) final {
    has_simt_copy = true;
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
  PrimExpr bulk_copy_bytes;
  PrimExpr loop_extents;
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
 public:
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

 private:
  PrimExpr VisitExpr_(const CallNode* op) final {
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
    if (call->op.same_as(TMALoadOp()) || call->op.same_as(TMALoadIm2ColOp())) {
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};


class ThreadIdxRewriter : public StmtExprMutator {
 public:
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced) {
    auto rewriter = ThreadIdxRewriter(thread_var, replaced);
    return rewriter(stmt);
  }

 private:
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced)
      : thread_var_(thread_var), replaced_(replaced) {}

  PrimExpr VisitExpr_(const VarNode* var) final {
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

  Var thread_var_;
  PrimExpr replaced_;
};

Block MakeGroupBlock(const Stmt& stmt, const Map<String, ObjectRef>& annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"", /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{}, /*annotations=*/annotations);
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
  PipelineInfo(
    Array<Array<Integer>> group_info,
    Array<Integer> order_info,
    Array<Integer> stage_info
  ) {
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

  PipelineInfo(const PipelineInfo& other) {
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
      std::cout << i << " " << op_infos[i].group_size << " " << op_infos[i].order << " " << op_infos[i].stage << std::endl;
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
 public:
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

 private:
  Stmt VisitStmt_(const ForNode* op) final {
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
      if (pipeline_info_.op_infos[i].group_size == 0) continue;
      Array<Stmt> block_stmt;
      for (int j = 0; j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
        // ICHECK(group_info_[i][j].as<IntImmNode>());
        // int index = static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
      new_body.push_back(
        MakeGroupBlock(block_stmt.size() == 1 ? block_stmt[0] : SeqStmt(std::move(block_stmt)), annotations));
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
    Map<String, ObjectRef> for_annotations = op->annotations;
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
    For new_for = For(op->loop_var, op->min, op->extent, op->kind, new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)), op->thread_binding, for_annotations);
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
class WSCodeEmitter : public StmtMutator {
 public:
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
                Map<Var, Buffer> buffer_data_to_buffer, const WarpSpecializedRoleMarker& marker)
      : is_emitting_producer_(is_emitting_producer),
        buffer_data_to_buffer_(buffer_data_to_buffer),
        marker_(marker),
        thread_var_(thread_iv->var) {}

 private:
  template <typename NodeType>
  Stmt FilterByRole(const NodeType* op) {
    Role role = marker_.GetRole(op);
    if (role == Role::kBoth)
      return StmtMutator::VisitStmt_(op);
    else if ((role == Role::kProducer) == is_emitting_producer_)
      return GetRef<Stmt>(op);
    else
      return Evaluate(0);
  }

  // TODO: only need to add block for ops in the loop
  Stmt VisitStmt_(const SeqStmtNode* op) final {
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
    bool need_producer_sync = has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync) return FilterByRole(op);

    auto seq_transformed = op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });

    auto map = ExtractSyncPattern(op->seq);
    // std::cout << "Print ExtractSyncPattern" << std::endl;
    // for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
    //   std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " " << map.release_after[i] << std::endl;
    // }
    // std::cout << "Print sync pattern" << std::endl;
    // for (auto pattern : map.patterns) {
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx << std::endl;
    // }
    // std::cout << "End of ExtractSyncPattern" << std::endl;
    // pipeline_info_.PrintPipelineInfo();
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

    if (is_emitting_producer_) {  // producer case
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
        if (marker_.GetRole(op->seq[i]) == Role::kConsumer) continue;
        if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
          block_stmt.push_back(seq_transformed[i]);
          new_body.push_back(MakeGroupBlock(block_stmt.size() == 1 ? block_stmt[0] : SeqStmt(std::move(block_stmt)), annotations));
          continue;
        }
        if (map.acquire[i] != -1) {
          PrimExpr acquire_barrier_id = stage_ + num_barriers_ + num_stages_ * map.acquire[i];
          PrimExpr parity =
              map.is_loop_dependency(map.acquire[i]) ? bitwise_xor(parity_, 1) : parity_;
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        ICHECK(map.release[i] >= 0);
        PrimExpr release_barrier_id = stage_ + num_barriers_ + num_stages_ * map.release[i];
        auto stmt = MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
        collector.Collect(stmt);
        if (!is_zero(collector.BulkCopyBytes())) {
          auto expect_tx = IfThenElse(EQ(thread_var_, 0),
                                      makeExpectTX(release_barrier_id, collector.BulkCopyBytes()));
          block_stmt.push_back(expect_tx);
        }
        block_stmt.push_back(stmt);
        if (collector.HasSimtCopy() > 0) {
          block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
        }
        if (map.release_after[i]) {
          block_stmt.push_back(makeArriveBarrier(release_barrier_id));
          for (int j = 0; j < num_stages_; j++) {
            released_barrier_.insert(j + num_barriers_ + num_stages_ * map.release[i]);
          }
        }
        collector.Clear();
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1 ? block_stmt[0] : SeqStmt(std::move(block_stmt)), annotations));
      }
    } else {  // consumer case
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
        if (marker_.GetRole(op->seq[i]) == Role::kProducer) continue;
        if (map.acquire[i] != -1) {
          PrimExpr acquire_barrier_id = stage_ + num_barriers_ + num_stages_ * map.acquire[i];
          PrimExpr parity =
              map.is_loop_dependency(map.acquire[i]) ? bitwise_xor(parity_, 1) : parity_;
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
        // new_body.push_back(MakeGroupBlock(block_stmt.size() == 1 ? block_stmt[0] : SeqStmt(std::move(block_stmt)), annotations));
        if (map.release_after[i]) {
          PrimExpr release_barrier_id = stage_ + num_barriers_ + num_stages_ * map.release[i];
          block_stmt.push_back(makeArriveBarrier(release_barrier_id));
          for (int j = 0; j < num_stages_; j++) {
            released_barrier_.insert(j + num_barriers_ + num_stages_ * map.release[i]);
          }
          // Update the pipeline info
          // Todo: handle sync
        }
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1 ? block_stmt[0] : SeqStmt(std::move(block_stmt)), annotations));
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

  Stmt VisitStmt_(const ForNode* op) final {
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
    if (num_stages_anno.defined()) {
      ICHECK(num_stages_anno.as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno.as<IntImmNode>()->value);
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
   
    auto group_anno = op->annotations.Get("tl_pipeline_group");
    if (group_anno.defined()) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno);
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
    if (order_anno.defined()) {
      order_info_array = Downcast<Array<Integer>>(order_anno);
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
    if (stage_anno.defined()) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno);
    }

    PipelineInfo pipeline_info(group_info_array, order_info_array, stage_info_array);
    if (pipeline_info.op_infos.size() > 0) {
      ICHECK(pipeline_info_.op_infos.size() == 0) << "Nested pipeline not supported.";
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
    stage_ = FloorMod(op->loop_var - op->min, num_stages);
    parity_ =
        FloorMod(parity_before * op->extent + FloorDiv(op->loop_var - op->min, num_stages), 2);

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
    if (result.as<ForNode>() && group_anno.defined() && group_info_array.size() > 0 && !is_emitting_producer_) {
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
      if (is_emitting_producer_ || !group_anno.defined() ||group_info_array.size() == 0) {
        return for_node;
      }
      return grouped_for_node;
    }
    return result;
  }

  Stmt VisitStmt_(const IfThenElseNode* op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode* op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode* op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode* op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode* op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode* op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode* op) final {
    ICHECK(0);
    return Stmt();
  }
  Stmt VisitStmt_(const BlockRealizeNode* op) final {
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
    std::vector<int> acquire;
    std::vector<int> release;
    std::vector<bool> release_after;
    std::vector<SyncPattern> patterns;
    bool is_loop_dependency(int i) {
      // return if the acquire is based on release in the previous iteration
      return patterns[i].release_idx > patterns[i].acquire_idx;
    }
  };

  std::vector<SyncPattern> CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                                               const std::vector<bool>& is_producer) {
    const int n = seq_stmt.size();
    std::vector<std::set<const BufferNode*>> reads, writes;
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
      std::set<const BufferNode*> read_set, write_set;
      for (auto region : access[0]) read_set.insert(region->buffer.get());
      for (auto region : access[1]) write_set.insert(region->buffer.get());
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

    auto intersect_fn = [](const std::set<const BufferNode*>& lhs,
                           const std::set<const BufferNode*>& rhs) {
      for (auto ptr : lhs)
        if (rhs.count(ptr)) return true;
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
            (intersect_fn(writes[i], reads[j]) || intersect_fn(reads[i], writes[j]))) {
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
              (intersect_fn(writes[i], reads[j]) || intersect_fn(reads[i], writes[j]))) {
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

  static std::vector<SyncPattern> RemoveUnusedSyncPatterns(
      const std::vector<SyncPattern>& sync_patterns, const std::vector<bool>& is_producer) {
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
      if (!removed[i]) sync_pattern_cleaned.push_back(sync_patterns[i]);

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
    auto sync_patterns = RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);

    // for (auto pattern : sync_patterns) {
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx << std::endl;
    // }

    SyncPatternMap map;
    map.patterns = sync_patterns;
    map.acquire.resize(num_stmts, -1);
    map.release.resize(num_stmts, -1);
    map.release_after.resize(num_stmts, false);
    for (size_t i = 0; i < sync_patterns.size(); i++) {
      map.acquire[sync_patterns[i].acquire_idx] = i;
      map.release[sync_patterns[i].release_idx] = i;
      map.release_after[sync_patterns[i].release_idx] = true;
    }

    int cur_consumer_barrier = -1, cur_producer_barrier = -1;
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
        if (map.release[i] == -1) {
          map.release[i] = cur_producer_barrier;
        } else {
          cur_producer_barrier = map.release[i];
        }
      } else {
        if (map.release[i] == -1) {
          map.release[i] = cur_consumer_barrier;
        } else {
          cur_consumer_barrier = map.release[i];
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
  const WarpSpecializedRoleMarker& marker_;

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
  Var thread_var_;
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
};

class WarpSpecializedRewriter : public StmtExprMutator {
 public:
  static PrimFunc Substitute(PrimFunc f) {
    auto T = WarpSpecializedRewriter();
    T.buffer_lca_ = DetectBufferAccessLCA(f);
    for (auto [buffer, _] : T.buffer_lca_) T.buffer_data_to_buffer_.Set(buffer->data, buffer);
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

 private:
  Stmt VisitStmt_(const AttrStmtNode* op) final {
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

  // If users define a thread binding, we will replace the thread binding with threadIdx.x
  // We require the thread binding is threadIdx.x, and the extent is the same as the thread extent
  Stmt VisitStmt_(const ForNode* op) final {
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
      Stmt new_body = ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_);
      return new_body;
    }
    return for_node;
  }

  Stmt VisitStmt_(const BlockRealizeNode* op) final {
    BlockRealize block_realize = Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);

    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
    if (!marker.HasSimtCopy()) producer_thread_extent = 128;

    // TODO: estimate the correct reg usage.
    auto inc_reg_stmt = Evaluate(Call(DataType::Handle(), SetMaxNReg(), {240, 1}));
    auto dec_reg_stmt = Evaluate(Call(DataType::Handle(), SetMaxNReg(), {24, 0}));

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

    producer_code = ThreadIdxRewriter::Rewrite(producer_code, thread_iv_->var,
                                               thread_iv_->var - consumer_thread_extent);
    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i) ? producer_thread_extent : consumer_thread_extent;
      barrier_num_threads.push_back(arrive_thread_count);
    }

    Stmt init_barrier =
        Evaluate(Call(DataType::Handle(), CreateListofMBarrierOp(), barrier_num_threads));
    Stmt body =
        IfThenElse(GE(thread_iv_->var, consumer_thread_extent), producer_code, consumer_code);
    // Add an attr here to handle the partial thread count in THreadSync pass.
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
};

using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return WarpSpecializedRewriter::Substitute(f);
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

TVM_REGISTER_GLOBAL("tl.transform.WarpSpecialized").set_body_typed(WarpSpecialized);

}  // namespace tl
}  // namespace tvm