warp_specialized_rewriter.cc 50.3 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
#include <tvm/ffi/reflection/registry.h>
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
16
#include "./common/collector.h"
17
18
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
19
20
21
22
23

namespace tvm {
namespace tl {

using namespace tir;
24
using namespace runtime;
25
using arith::IRVisitorWithAnalyzer;
26

27
28
29
30
31
32
struct LoopInfo {
  Var loop_var;
  PrimExpr extent;
  PrimExpr min;
};

33
34
enum class Role { kConsumer, kProducer, kBoth };

35
class ProducerBufferDetector : public StmtExprVisitor {
36
public:
37
38
39
40
41
  ProducerBufferDetector(
      std::unordered_set<const BufferNode *> cur_producer_buffers)
      : cur_producer_buffers_(cur_producer_buffers) {}

  void clear() { has_producer_buffer_ = false; }
42
43

  void VisitExpr_(const CallNode *call) final {
44
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
45
      has_producer_buffer_ = true;
46
    }
47
    StmtExprVisitor::VisitExpr_(call);
48
49
  }

50
51
52
53
54
55
56
57
58
  void VisitExpr_(const BufferLoadNode *op) final {
    if (cur_producer_buffers_.count(op->buffer.get())) {
      has_producer_buffer_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_producer_buffer_ = false;
  std::unordered_set<const BufferNode *> cur_producer_buffers_;
59
60
61
62
63
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
64
65
66
67
68
69
70
71
72
73
    producer_buffers_.clear();
    std::unordered_set<const BufferNode *> last_producer_buffers_;
    for (;;) {
      VisitStmt(stmt);
      if (producer_buffers_ == last_producer_buffers_) {
        break;
      }
      last_producer_buffers_ = producer_buffers_;
    }
    return producer_buffers_;
74
75
76
77
78
79
80
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
81
      producer_buffers_.insert(buffer.first);
82
83
84
85
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
86
87
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->then_case);
88
    if (op->else_case.defined()) {
89
      producer_buffer_detector(op->else_case.value());
90
    }
91
    if (producer_buffer_detector.has_producer_buffer_) {
92
93
94
95
96
97
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
98
99
100
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->body);
    if (producer_buffer_detector.has_producer_buffer_) {
101
102
103
104
105
106
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

107
108
109
110
111
112
113
  void VisitStmt_(const BufferStoreNode *op) final {
    if (producer_buffers_.count(op->buffer.get())) {
      InsertBuffer(op->value);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

114
115
116
117
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
118
          producer_buffers_.insert(buffer_load->buffer.get());
119
120
121
122
123
        }
      }
    }
  }

124
private:
125
  std::unordered_set<const BufferNode *> producer_buffers_;
126
127
};

128
class WarpSpecializedRoleMarker : public StmtVisitor {
129
public:
130
131
132
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

133
134
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
135
    producer_buffers_ = finder.FindProducerusedBuffer(stmt);
136
137
  }

138
  Role GetRole(const StmtNode *stmt) const {
139
140
141
142
143
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

144
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
145

146
  void VisitStmt_(const EvaluateNode *op) final {
147
148
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
149
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
150
151
152
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
153
154
155
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
156
157
158
159
    }
    SetRole(op, role);
  }

160
  void VisitStmt_(const BufferStoreNode *op) final {
161
162
    auto scope = StorageScope::Create(GetPtrStorageScope(op->buffer->data));
    bool is_shared_store = scope.rank == StorageRank::kShared;
163
    if (producer_buffers_.count(op->buffer.get())) {
164
165
166
      SetRole(op, Role::kBoth);
      return;
    }
167
168
169
170
171
172
173
174
175
176
177
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
178
179
    if (reads.empty())
      role = Role::kConsumer;
180
181
182
183
184
185
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
186
187
    if (role == Role::kProducer)
      has_simt_copy_ = true;
188
189
190
    SetRole(op, role);
  }

191
  void VisitStmt_(const SeqStmtNode *op) final {
192
193
194
195
196
197
198
199
200
201
202
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

203
  void VisitStmt_(const IfThenElseNode *op) final {
204
205
206
207
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
208
209
      if (role != role_else)
        role = Role::kBoth;
210
211
212
213
    }
    SetRole(op, role);
  }

214
  void VisitStmt_(const BlockRealizeNode *op) final {
215
216
217
218
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

219
220
221
222
223
224
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

225
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
226
227
228
229
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

230
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
231
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
232
233
234
235
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
236
237
238
239
240

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

241
242
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
243
  Map<Var, Buffer> buffer_data_to_buffer_;
244
  std::unordered_map<const StmtNode *, Role> map_;
245
246
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
247
  std::unordered_set<const BufferNode *> producer_buffers_;
248
249
250
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
251
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
252
253
}

254
255
256
257
258
259
260
261
262
static Stmt makeArriveBarrier(PrimExpr barrier_id, int cta_id = -1,
                              PrimExpr pred = 1) {
  Array<PrimExpr> args = {makeGetBarrier(barrier_id)};
  if (cta_id != -1) {
    args.push_back(cta_id);
    args.push_back(pred);
  }
  return Evaluate(
      Call(DataType::Handle(), builtin::ptx_arrive_barrier(), args));
263
264
265
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
266
267
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
268
269
270
271
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
272
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
273
                   {makeGetBarrier(barrier_id), parity});
274
275
276
277
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
278
public:
279
280
  ProducerTraitsCollector() { Clear(); }

281
  void Clear() { has_simt_copy = false; }
282
283
284
285
286

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

287
private:
288
289
290
291
292
293
294
295
296
297
298
299
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

300
  void VisitExpr_(const BufferLoadNode *op) final {
301
302
303
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
304
305
306
307
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
308
  bool in_if_cond_ = false;
309
310
311
312
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
313
public:
314
315
316
317
318
319
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

320
321
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
322
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
323
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
324
325
326
327
328
329
330
331
332
333
334
335
336
      auto mbar = makeGetBarrier(producer_barrier_idx_);
      auto arg0 = call->args[0].as<Call>();
      // Check if this is a 1D TMA load
      auto is_1d_tma_load =
          arg0 && !arg0.value()->op.same_as(create_tma_descriptor()) &&
          call->op.same_as(tma_load());
      if (is_1d_tma_load) {
        call.CopyOnWrite()->args.Set(2, mbar);
      } else {
        Call access_ptr = Downcast<Call>(call->args[2]);
        ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
        call.CopyOnWrite()->args.Set(1, mbar);
      }
337
338
339
340
341
342
343
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
344
public:
345
346
347
348
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced,
                      PrimExpr thread_extent, bool do_shuffle = false) {
    auto rewriter =
        ThreadIdxRewriter(thread_var, replaced, thread_extent, do_shuffle);
349
350
351
    return rewriter(stmt);
  }

352
private:
353
354
355
356
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced, PrimExpr thread_extent,
                    bool do_shuffle)
      : thread_var_(thread_var), replaced_(replaced),
        thread_extent_(thread_extent), do_shuffle_(do_shuffle) {}
357

358
  PrimExpr VisitExpr_(const VarNode *var) final {
359
360
361
362
363
364
365
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
      return parameter == thread_var_.get();
    };
    maybe_thread_opt_ = false;
    if (!op->else_case.defined() && op->condition.as<EQNode>() &&
        UsesVar(op->condition, f_uses_thread_index) &&
        !(UsesVar(op->then_case, f_uses_thread_index))) {
      auto eq_op = Downcast<EQ>(op->condition);
      if (eq_op->a.as<VarNode>() == thread_var_.get() ||
          eq_op->b.as<VarNode>() == thread_var_.get()) {
        maybe_thread_opt_ = true;
      }
      maybe_thread_opt_ = do_shuffle_ && maybe_thread_opt_;
    }
    if (maybe_thread_opt_)
      return IfThenElse(
          Call(DataType::Bool(), tl_shuffle_elect(), {thread_extent_}),
          StmtExprMutator::VisitStmt(op->then_case), std::nullopt);
    else
      return StmtExprMutator::VisitStmt_(op);
  }

389
390
  Var thread_var_;
  PrimExpr replaced_;
391
392
393
  PrimExpr thread_extent_;
  bool maybe_thread_opt_ = false;
  bool do_shuffle_;
394
395
};

396
397
398
399
400
401
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
402
403
404
405
406
407
408
409
410
411
412
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
413
414
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

431
  PipelineInfo(const PipelineInfo &other) {
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
494
495
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
496
497
498
499
500
501
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
502
public:
503
504
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

505
506
private:
  Stmt VisitStmt_(const ForNode *op) final {
507
508
509
510
511
512
513
514
515
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
516
517
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
518
      Array<Stmt> block_stmt;
519
520
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
521
        // ICHECK(group_info_[i][j].as<IntImmNode>());
522
523
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
524
525
526
527
528
529
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
530
531
532
533
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
534
535
536
537
538
539
540
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
541
    Map<String, Any> for_annotations = op->annotations;
542
543
544
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
545
546
547
548
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
549
550
551
552
553
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

class WgMMACollector : public StmtExprVisitor {
public:
  WgMMACollector() = default;

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl_gemm()) || op->op.same_as(tl_gemm_sp())) {
      auto op_name = std::string(op->args[0].as<StringImmNode>()->value);
      if (has_wgmma_) {
        has_wgmma_ =
            op_name.find("false") == std::string::npos && !in_if_scope_;
      }
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    in_if_scope_ = true;
    StmtExprVisitor::VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      StmtExprVisitor::VisitStmt(op->else_case.value());
    }
    in_if_scope_ = false;
  }

  static bool HasWgMMA(Stmt stmt) {
    auto collector = WgMMACollector();
    collector(stmt);
    return collector.has_wgmma_;
  }

  bool has_wgmma_{true};
  bool in_if_scope_{false};
};

589
class WSCodeEmitter : public StmtMutator {
590
public:
591
  /**
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
   * @brief Construct a warp-specialized code emitter configured for producer or
   * consumer emission.
   *
   * Initializes a WSCodeEmitter that will emit barrier-aware, role-filtered
   * code for a single warp-specialized block. The emitter is configured with
   * the loop/thread iteration variable, buffer mapping, role marker used to
   * classify statements, and two flags that control emission behavior:
   *
   * - `mbarrier_only`: when true, emission is restricted to barrier-related
   * operations only.
   * - `only_has_wgmma`: when true, the emitter will account for the presence of
   * WgMMA (workgroup MMA) operations when computing barrier/thread gating
   * behavior.
   *
   * @param is_emitting_producer True to emit producer-side groups; false to
   * emit consumer-side groups.
   * @param thread_iv IterVar representing the thread iteration variable
   * (threadIdx.*) whose Var is used for thread-index rewrites and gating.
   * @param buffer_data_to_buffer Map from buffer data Var to the corresponding
   * Buffer (used to resolve buffer references during emission).
   * @param marker Role marker that classifies statements as
   * producer/consumer/both; used to filter which statements are emitted on this
   * path.
   * @param mbarrier_only If true, restrict emission to mbarrier-related
   * statements and helpers.
   * @param only_has_wgmma If true, adjust emission and barrier-thread-count
   * logic for blocks that contain WgMMA operations.
   */
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
621
                Map<Var, Buffer> buffer_data_to_buffer,
622
                const WarpSpecializedRoleMarker &marker,
623
                bool mbarrier_only = false, bool only_has_wgmma = false)
624
      : is_emitting_producer_(is_emitting_producer),
625
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
626
627
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only),
        only_has_wgmma_(only_has_wgmma) {}
628

629
  /**
630
631
632
633
634
635
636
637
638
   * @brief Whether a SIMT-style bulk copy was detected.
   *
   * Returns true when a simulated SIMT (thread-parallel) copy pattern was
   * observed during analysis/emission, which can affect barrier insertion and
   * copy emission.
   *
   * @return true if a SIMT copy was detected; false otherwise.
   */
  bool hasSimtCopy() const { return has_simt_copy_; }
639

640
641
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
642
    Role role = marker_.GetRole(op);
643
644
645
646
647
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
648
      return StmtMutator::VisitStmt_(op);
649
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
650
      return GetRef<Stmt>(op);
651
    } else {
652
      return Evaluate(0);
653
    }
654
655
  }

656
  /**
657
658
   * @brief Visit and transform a SeqStmt node, emitting grouped blocks with
   * barrier synchronization according to producer/consumer roles.
659
660
   *
   * This method examines the sequence to determine whether producer-side
661
662
   * synchronization is required (based on marker_ roles). If no producer sync
   * is needed it delegates to FilterByRole. Otherwise it:
663
664
665
666
   * - Recursively visits and transforms each child statement.
   * - Extracts an acquire/release sync pattern for the sequence via
   *   ExtractSyncPattern.
   * - For producer emission (is_emitting_producer_ == true):
667
668
   *   - Skips consumer-only statements unless marker_ marks a statement as
   * Both, in which case the statement is emitted as its own group.
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
   *   - For each statement, inserts parity waits for acquire patterns, rewrites
   *     release statements with MbarrierRewriter using a computed barrier id,
   *     collects SimT-copy presence (setting has_simt_copy_ and inserting
   *     cp.async barriers when found), optionally emits arrive barriers for
   *     release-after events, and emits each resulting set of statements as a
   *     group block annotated with "stmt_group".
   * - For consumer emission (is_emitting_producer_ == false):
   *   - Skips producer-only statements.
   *   - Inserts parity waits for acquire patterns, appends the transformed
   *     statement, and emits arrive barriers for release-after events. When
   *     only_has_wgmma_ is set, the arrive barrier uses a per-thread predicate
   *     (FloorMod(thread_var_,128)==0) with CTA=0; otherwise a full arrive is
   *     emitted.
   *   - Recomputes pipeline_info_ to drop producer-only ops.
   *
   * Side effects / state updates:
   * - Increments num_barriers_ by (number of extracted patterns * num_stages_).
   * - May set has_simt_copy_ when a SimT copy is detected in producer rewrites.
   * - Inserts barrier ids into released_barrier_ for release-after events.
   * - Updates pipeline_info_ for the consumer path to remove producer ops.
   *
   * The resulting statements are emitted as grouped blocks (via MakeGroupBlock)
   * with the annotation "stmt_group" and returned as either a single Stmt (if
   * there's only one group) or a SeqStmt containing the grouped blocks.
   *
   * @return Stmt The transformed statement (either a single group block or a
   * SeqStmt of group blocks).
   */
697
  Stmt VisitStmt_(const SeqStmtNode *op) final {
698

699
700
701
702
703
704
705
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
706
707
708
709
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
710

711
712
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
713
714

    auto map = ExtractSyncPattern(op->seq);
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
730
731
732
733
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

734
    if (is_emitting_producer_) { // producer case
735
736
737
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
738
739
740
741
742
743
744
745
746
747
748
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
749
        }
750

751
        for (int pattern_idx : map.acquire[i]) {
752
          PrimExpr acquire_barrier_id =
753
754
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
755
756
                                ? bitwise_xor(parity_, 1)
                                : parity_;
757
758
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
759
760
761
762
763
764
765
766
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
767
          block_stmt.push_back(stmt);
768
          if (collector.HasSimtCopy()) {
769
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
770
            has_simt_copy_ = true;
771
          }
772
773
774
775
776
777
778
779
780
781
782
783
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
784
785
        }
      }
786
    } else { // consumer case
787
788
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
789
790
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
791
        for (int pattern_idx : map.acquire[i]) {
792
          PrimExpr acquire_barrier_id =
793
794
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
795
796
                                ? bitwise_xor(parity_, 1)
                                : parity_;
797
798
799
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
800
801
802
803
804
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
805
806
807
808
809
            if (only_has_wgmma_)
              block_stmt.push_back(makeArriveBarrier(
                  release_barrier_id, 0, EQ(FloorMod(thread_var_, 128), 0)));
            else
              block_stmt.push_back(makeArriveBarrier(release_barrier_id));
810
811
812
813
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
814
815
          }
        }
816
817
818
819
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
820
821
822
823
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
824
825
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

849
  Stmt VisitStmt_(const ForNode *op) final {
850
851
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
852
853
854
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
855
856
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
857
    loop_stack_.emplace_back(LoopInfo{op->loop_var, op->extent, op->min});
858
859
860
861

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
862

863
    auto group_anno = op->annotations.Get("tl_pipeline_group");
864
865
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
866
867
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
868
869
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
870
871
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
872
873
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
874
875
    }

876
877
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
878
    if (pipeline_info.op_infos.size() > 0) {
879
880
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
881
882
883
884
885
886
887
888
889
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
890
    PrimExpr linear_index = loop_stack_[0].loop_var - loop_stack_[0].min;
891
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
892
893
      linear_index = linear_index * loop_stack_[i].extent +
                     (loop_stack_[i].loop_var - loop_stack_[i].min);
894
895
896
897
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
898
899
900
    auto result = FilterByRole(op);

    Stmt grouped_for_node;
901
902
    if (result.as<ForNode>() && group_anno && group_info_array.size() > 0 &&
        !is_emitting_producer_) {
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
922
      if (is_emitting_producer_ || !group_anno ||
923
          group_info_array.size() == 0) {
924
        loop_stack_.pop_back();
925
926
        return for_node;
      }
927
      loop_stack_.pop_back();
928
929
      return grouped_for_node;
    }
930
    loop_stack_.pop_back();
931
932
933
    return result;
  }

934
935
936
937
938
939
940
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
941
942
943
    ICHECK(0);
    return Stmt();
  }
944
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
945
946
947
948
949
950
951
952
953
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
954
955
956
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
957
    std::vector<SyncPattern> patterns;
958
959
960
961
962
963
964
965
966
967

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
968
969
970
    }
  };

971
972
973
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
974
    const int n = seq_stmt.size();
975
    std::vector<std::set<const BufferNode *>> reads, writes;
976
977
978
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
979
980
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
981
982
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
983
      std::set<const BufferNode *> read_set, write_set;
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
1000
1001
1002
1003
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

1004
1005
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
1006
      for (auto ptr : lhs)
1007
1008
        if (rhs.count(ptr))
          return true;
1009
1010
1011
1012
1013
1014
1015
1016
1017
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
1018
1019
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
1034
1035
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

1046
1047
1048
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
1081
1082
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
1096
1097
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
1098
1099

    // for (auto pattern : sync_patterns) {
1100
1101
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
1102
1103
1104
    // }

    SyncPatternMap map;
1105
    map.resize(num_stmts);
1106
    map.patterns = sync_patterns;
1107

1108
    for (size_t i = 0; i < sync_patterns.size(); i++) {
1109
1110
1111
1112
1113
1114
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
1115
1116
    }

1117
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
1118
1119
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
1120
1121
1122
1123
1124
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1125
        } else {
1126
1127
1128
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
1129
1130
        }
      } else {
1131
1132
1133
1134
1135
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1136
        } else {
1137
1138
1139
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
1140
1141
1142
1143
1144
1145
1146
1147
1148
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
1149
  const WarpSpecializedRoleMarker &marker_;
1150
1151
1152
1153
1154

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
1155
  std::vector<LoopInfo> loop_stack_;
1156
  Var thread_var_;
1157
  bool mbarrier_only_ = false;
1158
1159
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
1160
1161
  bool only_has_wgmma_ = false;
  bool has_simt_copy_ = false;
1162
1163
1164
};

class WarpSpecializedRewriter : public StmtExprMutator {
1165
public:
1166
1167
1168
1169
1170
1171
  WarpSpecializedRewriter(bool disable_warp_specialized,
                          bool disable_shuffle_elect)
      : disable_warp_specialized_(disable_warp_specialized),
        disable_shuffle_elect_(disable_shuffle_elect) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized,
                             bool disable_shuffle_elect) {
1172
1173
1174
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1175
                      "uses thread tags other than threadIdx.x."
1176
1177
1178
1179
1180
1181
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1182
1183
    auto T = WarpSpecializedRewriter(disable_warp_specialized,
                                     disable_shuffle_elect);
1184
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1185
1186
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1187
1188
1189
1190
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1191
1192
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1210
1211
1212
1213
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1214
1215
1216
1217
1218
1219
1220
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1221
      Stmt new_body =
1222
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_, 0);
1223
1224
1225
1226
1227
      return new_body;
    }
    return for_node;
  }

1228
  /**
1229
1230
   * @brief Rewrite a BlockRealize for warp specialization, inserting barriers
   * and emitting producer/consumer bodies.
1231
1232
1233
1234
1235
   *
   * This visitor handles BlockRealize nodes when a thread IterVar (thread_iv_)
   * is defined and warp-specialization is applicable. It:
   * - Determines producer/consumer roles via WarpSpecializedRoleMarker and
   *   returns the original block if no producer is detected.
1236
1237
   * - If warp specialization is disabled, emits only mbarrier initialization
   * and the mbarrier-only transformed body.
1238
1239
1240
   * - Otherwise, detects WgMMA usage for the block body and constructs separate
   *   WSCodeEmitter instances for producer and consumer paths (propagating the
   *   WgMMA flag to the consumer emitter).
1241
1242
1243
   * - Generates producer/consumer code, applies register hint calls
   * (set_max_nreg) when available, and rewrites thread indices with
   * ThreadIdxRewriter to partition threads between producer and consumer roles.
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
   * - Computes and initializes a list of mbarrier handles with per-barrier
   *   arrive thread counts (taking SIMT-copy and WgMMA cases into account).
   * - Wraps the transformed body in an IfThenElse that dispatches producer vs
   *   consumer based on thread index, and annotates the region with the
   *   "kWarpSpecializationScope" attribute that contains producer/consumer
   *   thread extents.
   *
   * Side effects:
   * - May update member state: only_has_wgmma_, updated_thread_extent_,
   *   need_update_thread_extent_.
   * - May abort via ICHECK if invariants (e.g., matching barrier counts) are
   *   violated.
   *
   * @return The possibly rewritten BlockRealize statement (original when no
   *         warp-specialization is applied or thread_iv_ is undefined).
   */
1260
1261
1262
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1263
1264
1265
1266
1267
1268
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1269
    marker.Prepare(block);
1270
1271
1272
1273
1274
1275
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1288
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1289
1290
1291
1292
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1293
    only_has_wgmma_ = WgMMACollector::HasWgMMA(block->body);
1294
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
1295
1296
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker,
                           false, only_has_wgmma_);
1297
1298
1299
1300
1301
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1302
1303
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1304
1305

    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
1306
1307
1308
1309
1310
1311
1312
1313

    producer_code = ThreadIdxRewriter::Rewrite(
        producer_code, thread_iv_->var,
        thread_iv_->var - consumer_thread_extent, producer_thread_extent,
        !disable_shuffle_elect_);
    consumer_code = ThreadIdxRewriter::Rewrite(
        consumer_code, thread_iv_->var, thread_iv_->var, consumer_thread_extent,
        !disable_shuffle_elect_);
1314
1315
1316
1317
1318
1319
1320
1321
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1322
1323
1324
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i)
              ? (producer.hasSimtCopy() ? producer_thread_extent : 1)
1325
1326
              : (only_has_wgmma_ ? FloorDiv(consumer_thread_extent, 128)
                                 : consumer_thread_extent);
1327
1328
1329
      barrier_num_threads.push_back(arrive_thread_count);
    }

1330
    Stmt init_barrier = Evaluate(Call(
1331
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1332
1333
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1334
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1335
1336
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
1337
    body = AttrStmt(ws_partition, attr::kWarpSpecializationScope, 0, body);
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1352
  bool disable_warp_specialized_ = false;
1353
  bool disable_shuffle_elect_ = false;
1354
  bool only_has_wgmma_ = false;
1355
1356
};

1357
1358
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
1359
  // return true means this aws will be disabled
1360
1361
1362
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
    if (detector.has_warp_specialization_) {
      LOG(WARNING) << "Auto warp specialization will be disabled because warp "
                      "specialization is manually enabled";
      return true;
    }
    if (detector.has_tma_op_ && detector.has_mbarrier_op_) {
      LOG(WARNING) << "Auto warp specialization will be disabled because TMA "
                      "and mbarrier are both present";
      return true;
    }
    return false;
1374
1375
1376
1377
1378
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1379
    has_warp_specialization_ = false;
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1403
  void VisitStmt_(const AttrStmtNode *op) final {
1404
1405
1406
1407
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1418
  bool has_tma_op_{false};
1419
  IterVar thread_var_;
1420
  bool has_mbarrier_op_{false};
1421
  bool has_warp_specialization_{false};
1422
1423
};

1424
1425
1426
1427
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1428
1429
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1430
1431
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
1432
1433
1434
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
1435
1436
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized,
                                                 disable_shuffle_elect);
1437
1438
    }
    return f;
1439
1440
1441
1442
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1443
1444
1445
1446
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1447

1448
1449
} // namespace tl
} // namespace tvm