warp_specialized_rewriter.cc 40.6 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
9
10
11
12
13
14
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
15
#include "./common/collector.h"
16
17
18
19
20

namespace tvm {
namespace tl {

using namespace tir;
21
using arith::IRVisitorWithAnalyzer;
22
23
24

enum class Role { kConsumer, kProducer, kBoth };

25
26
27
28
29
class TMAFinder : public StmtExprVisitor {
public:
  void clear() { has_tma_load_ = false; }

  void VisitExpr_(const CallNode *call) final {
30
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
      has_tma_load_ = true;
    }
  }

  bool has_tma_load_ = false;
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
    VisitStmt(stmt);
    return used_in_producer_cond_;
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
      used_in_producer_cond_.insert(buffer.first);
    }
    for (const auto &buffer : used_in_producer_cond_) {
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->then_case);
    if (op->else_case.defined()) {
      tma_finder(op->else_case.value());
    }
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->body);
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

private:
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
};

82
class WarpSpecializedRoleMarker : public StmtVisitor {
83
public:
84
85
86
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

87
88
89
90
91
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
    used_in_producer_cond_ = finder.FindProducerusedBuffer(stmt);
  }

92
  Role GetRole(const StmtNode *stmt) const {
93
94
95
96
97
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

98
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
99

100
  void VisitStmt_(const EvaluateNode *op) final {
101
102
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
103
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
104
105
106
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
107
108
109
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
110
111
112
113
    }
    SetRole(op, role);
  }

114
115
116
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
117
118
119
120
    if (used_in_producer_cond_.count(op->buffer.get())) {
      SetRole(op, Role::kBoth);
      return;
    }
121
122
123
124
125
126
127
128
129
130
131
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
132
133
    if (reads.empty())
      role = Role::kConsumer;
134
135
136
137
138
139
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
140
141
    if (role == Role::kProducer)
      has_simt_copy_ = true;
142
143
144
    SetRole(op, role);
  }

145
  void VisitStmt_(const SeqStmtNode *op) final {
146
147
148
149
150
151
152
153
154
155
156
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

157
  void VisitStmt_(const IfThenElseNode *op) final {
158
159
160
161
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
162
163
      if (role != role_else)
        role = Role::kBoth;
164
165
166
167
    }
    SetRole(op, role);
  }

168
  void VisitStmt_(const BlockRealizeNode *op) final {
169
170
171
172
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

173
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
174
175
176
177
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

178
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
179
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
180
181
182
183
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
184
185
186
187
188

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

189
190
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
191
  Map<Var, Buffer> buffer_data_to_buffer_;
192
  std::unordered_map<const StmtNode *, Role> map_;
193
194
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
195
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
196
197
198
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
199
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
200
201
202
}

static Stmt makeArriveBarrier(PrimExpr barrier_id) {
203
204
  auto call = Call(DataType::Handle(), builtin::ptx_arrive_barrier(),
                   {makeGetBarrier(barrier_id)});
205
206
207
208
  return Evaluate(call);
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
209
210
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
211
212
213
214
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
215
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
216
                   {makeGetBarrier(barrier_id), parity});
217
218
219
220
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
221
public:
222
223
  ProducerTraitsCollector() { Clear(); }

224
  void Clear() { has_simt_copy = false; }
225
226
227
228
229

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

230
private:
231
232
233
234
235
236
237
238
239
240
241
242
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

243
  void VisitExpr_(const BufferLoadNode *op) final {
244
245
246
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
247
248
249
250
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
251
  bool in_if_cond_ = false;
252
253
254
255
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
256
public:
257
258
259
260
261
262
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

263
264
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
265
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
266
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
267
268
269
270
271
272
273
274
275
276
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
277
public:
278
279
280
281
282
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced) {
    auto rewriter = ThreadIdxRewriter(thread_var, replaced);
    return rewriter(stmt);
  }

283
private:
284
285
286
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced)
      : thread_var_(thread_var), replaced_(replaced) {}

287
  PrimExpr VisitExpr_(const VarNode *var) final {
288
289
290
291
292
293
294
295
296
297
298
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

  Var thread_var_;
  PrimExpr replaced_;
};

299
300
301
302
303
304
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
305
306
307
308
309
310
311
312
313
314
315
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
316
317
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

334
  PipelineInfo(const PipelineInfo &other) {
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
397
398
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
399
400
401
402
403
404
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
405
public:
406
407
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

408
409
private:
  Stmt VisitStmt_(const ForNode *op) final {
410
411
412
413
414
415
416
417
418
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
419
420
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
421
      Array<Stmt> block_stmt;
422
423
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
424
        // ICHECK(group_info_[i][j].as<IntImmNode>());
425
426
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
427
428
429
430
431
432
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
433
434
435
436
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
437
438
439
440
441
442
443
444
445
446
447
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
    Map<String, ObjectRef> for_annotations = op->annotations;
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
448
449
450
451
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
452
453
454
455
456
457
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
class WSCodeEmitter : public StmtMutator {
458
public:
459
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
460
                Map<Var, Buffer> buffer_data_to_buffer,
461
462
                const WarpSpecializedRoleMarker &marker,
                bool mbarrier_only = false)
463
      : is_emitting_producer_(is_emitting_producer),
464
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
465
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only) {}
466

467
468
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
469
    Role role = marker_.GetRole(op);
470
471
472
473
474
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
475
      return StmtMutator::VisitStmt_(op);
476
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
477
      return GetRef<Stmt>(op);
478
    } else {
479
      return Evaluate(0);
480
    }
481
482
483
  }

  // TODO: only need to add block for ops in the loop
484
  Stmt VisitStmt_(const SeqStmtNode *op) final {
485

486
487
488
489
490
491
492
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
493
494
495
496
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
497

498
499
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
500
501

    auto map = ExtractSyncPattern(op->seq);
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
516
517
518
519
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

520
    if (is_emitting_producer_) { // producer case
521
522
523
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
524
525
526
527
528
529
530
531
532
533
534
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
535
        }
536

537
        for (int pattern_idx : map.acquire[i]) {
538
          PrimExpr acquire_barrier_id =
539
540
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
541
542
                                ? bitwise_xor(parity_, 1)
                                : parity_;
543
544
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
545
546
547
548
549
550
551
552
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
553
          block_stmt.push_back(stmt);
554
555
          if (collector.HasSimtCopy() > 0) {
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
556
          }
557
558
559
560
561
562
563
564
565
566
567
568
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
569
570
        }
      }
571
    } else { // consumer case
572
573
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
574
575
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
576
        for (int pattern_idx : map.acquire[i]) {
577
          PrimExpr acquire_barrier_id =
578
579
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
580
581
                                ? bitwise_xor(parity_, 1)
                                : parity_;
582
583
584
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
585
586
587
588
589
590
591
592
593
594
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
595
596
          }
        }
597
598
599
600
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
601
602
603
604
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
605
606
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

630
  Stmt VisitStmt_(const ForNode *op) final {
631
632
633
634
635
636
637
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
    if (num_stages_anno.defined()) {
      ICHECK(num_stages_anno.as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno.as<IntImmNode>()->value);
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
638
    loop_stack_.emplace_back(op->loop_var, op->extent);
639
640
641
642

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
643

644
645
646
647
648
649
650
651
652
653
654
655
656
    auto group_anno = op->annotations.Get("tl_pipeline_group");
    if (group_anno.defined()) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno);
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
    if (order_anno.defined()) {
      order_info_array = Downcast<Array<Integer>>(order_anno);
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
    if (stage_anno.defined()) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno);
    }

657
658
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
659
    if (pipeline_info.op_infos.size() > 0) {
660
661
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
662
663
664
665
666
667
668
669
670
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
671
672
673
674
675
676
677
678
    PrimExpr linear_index = loop_stack_[0].first;
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
      linear_index =
          linear_index * loop_stack_[i].second + loop_stack_[i].first;
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
679
680
681
682

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
683
684
    if (result.as<ForNode>() && group_anno.defined() &&
        group_info_array.size() > 0 && !is_emitting_producer_) {
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
704
705
      if (is_emitting_producer_ || !group_anno.defined() ||
          group_info_array.size() == 0) {
706
        loop_stack_.pop_back();
707
708
        return for_node;
      }
709
      loop_stack_.pop_back();
710
711
      return grouped_for_node;
    }
712
    loop_stack_.pop_back();
713
714
715
    return result;
  }

716
717
718
719
720
721
722
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
723
724
725
    ICHECK(0);
    return Stmt();
  }
726
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
727
728
729
730
731
732
733
734
735
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
736
737
738
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
739
    std::vector<SyncPattern> patterns;
740
741
742
743
744
745
746
747
748
749

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
750
751
752
    }
  };

753
754
755
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
756
    const int n = seq_stmt.size();
757
    std::vector<std::set<const BufferNode *>> reads, writes;
758
759
760
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
761
762
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
763
764
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
765
766
767
768
769
      std::set<const BufferNode *> read_set, write_set;
      for (auto region : access[0])
        read_set.insert(region->buffer.get());
      for (auto region : access[1])
        write_set.insert(region->buffer.get());
770
771
772
773
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

774
775
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
776
      for (auto ptr : lhs)
777
778
        if (rhs.count(ptr))
          return true;
779
780
781
782
783
784
785
786
787
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
788
789
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
790
791
792
793
794
795
796
797
798
799
800
801
802
803
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
804
805
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
806
807
808
809
810
811
812
813
814
815
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

816
817
818
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
851
852
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
853
854
855
856
857
858
859
860
861
862
863
864
865

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
866
867
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
868
869

    // for (auto pattern : sync_patterns) {
870
871
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
872
873
874
    // }

    SyncPatternMap map;
875
    map.resize(num_stmts);
876
    map.patterns = sync_patterns;
877

878
    for (size_t i = 0; i < sync_patterns.size(); i++) {
879
880
881
882
883
884
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
885
886
    }

887
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
888
889
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
890
891
892
893
894
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
895
        } else {
896
897
898
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
899
900
        }
      } else {
901
902
903
904
905
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
906
        } else {
907
908
909
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
910
911
912
913
914
915
916
917
918
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
919
  const WarpSpecializedRoleMarker &marker_;
920
921
922
923
924

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
925
  std::vector<std::pair<Var, PrimExpr>> loop_stack_;
926
  Var thread_var_;
927
  bool mbarrier_only_ = false;
928
929
930
931
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
};

932
933
934
935
936
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
937
938
939
940
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
941
942
943
944
945
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
946
      if (call->op.same_as(set_max_nreg())) {
947
948
949
950
951
952
953
954
955
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
956
      } else if (call->op.same_as(no_set_max_nreg())) {
957
        has_no_set_max_nreg_ = true;
958
959
960
961
962
963
964
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
965
  bool has_no_set_max_nreg_ = false;
966
967
};

968
class WarpSpecializedRewriter : public StmtExprMutator {
969
public:
970
971
972
  WarpSpecializedRewriter(bool disable_warp_specialized)
      : disable_warp_specialized_(disable_warp_specialized) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized) {
973
974
975
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
976
                      "uses thread tags other than threadIdx.x."
977
978
979
980
981
982
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

983
    auto T = WarpSpecializedRewriter(disable_warp_specialized);
984
    T.nreg_ = SetMaxNRegCollector::Collect(f);
985
    T.buffer_lca_ = DetectBufferAccessLCA(f);
986
987
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
988
989
990
991
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

992
993
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1011
1012
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1013
1014
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1015
1016
1017
1018
1019
1020
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1021
1022
1023
1024
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1025
1026
1027
1028
1029
1030
1031
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1032
1033
      Stmt new_body =
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_);
1034
1035
1036
1037
1038
      return new_body;
    }
    return for_node;
  }

1039
1040
1041
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1042
1043
1044
1045
1046
1047
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1048
    marker.Prepare(block);
1049
1050
1051
1052
1053
1054
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1067
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1068
1069
1070
1071
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1072
1073
1074
1075
1076
1077
1078
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1079
1080
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1081
1082

    // TODO: estimate the correct reg usage.
1083
1084
1085
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1086
1087
1088
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
    if (dec_reg >= 0 && inc_reg >= 0) {
1089
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1090
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1091
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1092
1093
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1094
1095
1096
1097

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

1098
1099
1100
    producer_code =
        ThreadIdxRewriter::Rewrite(producer_code, thread_iv_->var,
                                   thread_iv_->var - consumer_thread_extent);
1101
1102
1103
1104
1105
1106
1107
1108
1109
    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1110
1111
1112
      PrimExpr arrive_thread_count = producer.released_barrier_.count(i)
                                         ? producer_thread_extent
                                         : consumer_thread_extent;
1113
1114
1115
      barrier_num_threads.push_back(arrive_thread_count);
    }

1116
    Stmt init_barrier = Evaluate(Call(
1117
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1118
1119
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1120
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1138
  bool disable_warp_specialized_ = false;
1139
  Array<IntImm> nreg_;
1140
1141
};

1142
1143
1144
1145
1146
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1147
1148
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1149
1150
1151
1152
1153
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1154
    has_warp_specialization_ = false;
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1178
  void VisitStmt_(const AttrStmtNode *op) final {
1179
1180
1181
1182
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1193
  bool has_tma_op_{false};
1194
  IterVar thread_var_;
1195
  bool has_mbarrier_op_{false};
1196
  bool has_warp_specialization_{false};
1197
1198
};

1199
1200
1201
1202
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1203
1204
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1205
1206
1207
1208
1209
1210
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized);
    }
    return f;
1211
1212
1213
1214
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1215
1216
TVM_REGISTER_GLOBAL("tl.transform.WarpSpecialized")
    .set_body_typed(WarpSpecialized);
1217

1218
1219
} // namespace tl
} // namespace tvm