warp_specialized_rewriter.cc 40.4 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
9
10
11
12
13
14
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
15
#include "./common/collector.h"
16
17
18
19
20

namespace tvm {
namespace tl {

using namespace tir;
21
using arith::IRVisitorWithAnalyzer;
22
23
24

enum class Role { kConsumer, kProducer, kBoth };

25
26
27
28
29
class TMAFinder : public StmtExprVisitor {
public:
  void clear() { has_tma_load_ = false; }

  void VisitExpr_(const CallNode *call) final {
30
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
      has_tma_load_ = true;
    }
  }

  bool has_tma_load_ = false;
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
    VisitStmt(stmt);
    return used_in_producer_cond_;
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
      used_in_producer_cond_.insert(buffer.first);
    }
    for (const auto &buffer : used_in_producer_cond_) {
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->then_case);
    if (op->else_case.defined()) {
      tma_finder(op->else_case.value());
    }
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->body);
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

private:
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
};

82
class WarpSpecializedRoleMarker : public StmtVisitor {
83
public:
84
85
86
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

87
88
89
90
91
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
    used_in_producer_cond_ = finder.FindProducerusedBuffer(stmt);
  }

92
  Role GetRole(const StmtNode *stmt) const {
93
94
95
96
97
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

98
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
99

100
  void VisitStmt_(const EvaluateNode *op) final {
101
102
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
103
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
104
105
106
107
108
109
110
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
    }
    SetRole(op, role);
  }

111
112
113
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
114
115
116
117
    if (used_in_producer_cond_.count(op->buffer.get())) {
      SetRole(op, Role::kBoth);
      return;
    }
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
135
136
    if (role == Role::kProducer)
      has_simt_copy_ = true;
137
138
139
    SetRole(op, role);
  }

140
  void VisitStmt_(const SeqStmtNode *op) final {
141
142
143
144
145
146
147
148
149
150
151
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

152
  void VisitStmt_(const IfThenElseNode *op) final {
153
154
155
156
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
157
158
      if (role != role_else)
        role = Role::kBoth;
159
160
161
162
    }
    SetRole(op, role);
  }

163
  void VisitStmt_(const BlockRealizeNode *op) final {
164
165
166
167
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

168
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
169
170
171
172
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

173
174
175
176
177
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
178
179
180
181
182

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

183
184
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
185
  Map<Var, Buffer> buffer_data_to_buffer_;
186
  std::unordered_map<const StmtNode *, Role> map_;
187
188
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
189
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
190
191
192
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
193
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
194
195
196
}

static Stmt makeArriveBarrier(PrimExpr barrier_id) {
197
198
  auto call = Call(DataType::Handle(), builtin::ptx_arrive_barrier(),
                   {makeGetBarrier(barrier_id)});
199
200
201
202
  return Evaluate(call);
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
203
204
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
205
206
207
208
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
209
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
210
                   {makeGetBarrier(barrier_id), parity});
211
212
213
214
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
215
public:
216
217
  ProducerTraitsCollector() { Clear(); }

218
  void Clear() { has_simt_copy = false; }
219
220
221
222
223

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

224
private:
225
226
227
228
229
230
231
232
233
234
235
236
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

237
  void VisitExpr_(const BufferLoadNode *op) final {
238
239
240
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
241
242
243
244
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
245
  bool in_if_cond_ = false;
246
247
248
249
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
250
public:
251
252
253
254
255
256
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

257
258
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
259
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
260
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
261
262
263
264
265
266
267
268
269
270
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
271
public:
272
273
274
275
276
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced) {
    auto rewriter = ThreadIdxRewriter(thread_var, replaced);
    return rewriter(stmt);
  }

277
private:
278
279
280
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced)
      : thread_var_(thread_var), replaced_(replaced) {}

281
  PrimExpr VisitExpr_(const VarNode *var) final {
282
283
284
285
286
287
288
289
290
291
292
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

  Var thread_var_;
  PrimExpr replaced_;
};

293
294
295
296
297
298
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
299
300
301
302
303
304
305
306
307
308
309
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
310
311
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

328
  PipelineInfo(const PipelineInfo &other) {
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
391
392
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
393
394
395
396
397
398
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
399
public:
400
401
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

402
403
private:
  Stmt VisitStmt_(const ForNode *op) final {
404
405
406
407
408
409
410
411
412
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
413
414
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
415
      Array<Stmt> block_stmt;
416
417
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
418
        // ICHECK(group_info_[i][j].as<IntImmNode>());
419
420
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
421
422
423
424
425
426
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
427
428
429
430
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
431
432
433
434
435
436
437
438
439
440
441
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
    Map<String, ObjectRef> for_annotations = op->annotations;
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
442
443
444
445
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
446
447
448
449
450
451
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
class WSCodeEmitter : public StmtMutator {
452
public:
453
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
454
                Map<Var, Buffer> buffer_data_to_buffer,
455
456
                const WarpSpecializedRoleMarker &marker,
                bool mbarrier_only = false)
457
      : is_emitting_producer_(is_emitting_producer),
458
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
459
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only) {}
460

461
462
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
463
    Role role = marker_.GetRole(op);
464
465
466
467
468
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
469
      return StmtMutator::VisitStmt_(op);
470
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
471
      return GetRef<Stmt>(op);
472
    } else {
473
      return Evaluate(0);
474
    }
475
476
477
  }

  // TODO: only need to add block for ops in the loop
478
  Stmt VisitStmt_(const SeqStmtNode *op) final {
479

480
481
482
483
484
485
486
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
487
488
489
490
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
491

492
493
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
494
495

    auto map = ExtractSyncPattern(op->seq);
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
510
511
512
513
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

514
    if (is_emitting_producer_) { // producer case
515
516
517
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
518
519
520
521
522
523
524
525
526
527
528
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
529
        }
530

531
        for (int pattern_idx : map.acquire[i]) {
532
          PrimExpr acquire_barrier_id =
533
534
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
535
536
                                ? bitwise_xor(parity_, 1)
                                : parity_;
537
538
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
539
540
541
542
543
544
545
546
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
547
          block_stmt.push_back(stmt);
548
549
          if (collector.HasSimtCopy() > 0) {
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
550
          }
551
552
553
554
555
556
557
558
559
560
561
562
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
563
564
        }
      }
565
    } else { // consumer case
566
567
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
568
569
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
570
        for (int pattern_idx : map.acquire[i]) {
571
          PrimExpr acquire_barrier_id =
572
573
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
574
575
                                ? bitwise_xor(parity_, 1)
                                : parity_;
576
577
578
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
579
580
581
582
583
584
585
586
587
588
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
589
590
          }
        }
591
592
593
594
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
595
596
597
598
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
599
600
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

624
  Stmt VisitStmt_(const ForNode *op) final {
625
626
627
628
629
630
631
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
    if (num_stages_anno.defined()) {
      ICHECK(num_stages_anno.as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno.as<IntImmNode>()->value);
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
632
    loop_stack_.emplace_back(op->loop_var, op->extent);
633
634
635
636

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
637

638
639
640
641
642
643
644
645
646
647
648
649
650
    auto group_anno = op->annotations.Get("tl_pipeline_group");
    if (group_anno.defined()) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno);
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
    if (order_anno.defined()) {
      order_info_array = Downcast<Array<Integer>>(order_anno);
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
    if (stage_anno.defined()) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno);
    }

651
652
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
653
    if (pipeline_info.op_infos.size() > 0) {
654
655
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
656
657
658
659
660
661
662
663
664
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
665
666
667
668
669
670
671
672
    PrimExpr linear_index = loop_stack_[0].first;
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
      linear_index =
          linear_index * loop_stack_[i].second + loop_stack_[i].first;
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
673
674
675
676

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
677
678
    if (result.as<ForNode>() && group_anno.defined() &&
        group_info_array.size() > 0 && !is_emitting_producer_) {
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
698
699
      if (is_emitting_producer_ || !group_anno.defined() ||
          group_info_array.size() == 0) {
700
        loop_stack_.pop_back();
701
702
        return for_node;
      }
703
      loop_stack_.pop_back();
704
705
      return grouped_for_node;
    }
706
    loop_stack_.pop_back();
707
708
709
    return result;
  }

710
711
712
713
714
715
716
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
717
718
719
    ICHECK(0);
    return Stmt();
  }
720
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
721
722
723
724
725
726
727
728
729
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
730
731
732
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
733
    std::vector<SyncPattern> patterns;
734
735
736
737
738
739
740
741
742
743

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
744
745
746
    }
  };

747
748
749
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
750
    const int n = seq_stmt.size();
751
    std::vector<std::set<const BufferNode *>> reads, writes;
752
753
754
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
755
756
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
757
758
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
759
760
761
762
763
      std::set<const BufferNode *> read_set, write_set;
      for (auto region : access[0])
        read_set.insert(region->buffer.get());
      for (auto region : access[1])
        write_set.insert(region->buffer.get());
764
765
766
767
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

768
769
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
770
      for (auto ptr : lhs)
771
772
        if (rhs.count(ptr))
          return true;
773
774
775
776
777
778
779
780
781
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
782
783
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
784
785
786
787
788
789
790
791
792
793
794
795
796
797
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
798
799
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
800
801
802
803
804
805
806
807
808
809
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

810
811
812
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
845
846
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
847
848
849
850
851
852
853
854
855
856
857
858
859

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
860
861
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
862
863

    // for (auto pattern : sync_patterns) {
864
865
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
866
867
868
    // }

    SyncPatternMap map;
869
    map.resize(num_stmts);
870
    map.patterns = sync_patterns;
871

872
    for (size_t i = 0; i < sync_patterns.size(); i++) {
873
874
875
876
877
878
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
879
880
    }

881
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
882
883
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
884
885
886
887
888
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
889
        } else {
890
891
892
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
893
894
        }
      } else {
895
896
897
898
899
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
900
        } else {
901
902
903
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
904
905
906
907
908
909
910
911
912
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
913
  const WarpSpecializedRoleMarker &marker_;
914
915
916
917
918

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
919
  std::vector<std::pair<Var, PrimExpr>> loop_stack_;
920
  Var thread_var_;
921
  bool mbarrier_only_ = false;
922
923
924
925
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
};

926
927
928
929
930
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
931
932
933
934
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
935
936
937
938
939
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
940
      if (call->op.same_as(set_max_nreg())) {
941
942
943
944
945
946
947
948
949
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
950
      } else if (call->op.same_as(no_set_max_nreg())) {
951
        has_no_set_max_nreg_ = true;
952
953
954
955
956
957
958
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
959
  bool has_no_set_max_nreg_ = false;
960
961
};

962
class WarpSpecializedRewriter : public StmtExprMutator {
963
public:
964
965
966
  WarpSpecializedRewriter(bool disable_warp_specialized)
      : disable_warp_specialized_(disable_warp_specialized) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized) {
967
968
969
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
970
                      "uses thread tags other than threadIdx.x."
971
972
973
974
975
976
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

977
    auto T = WarpSpecializedRewriter(disable_warp_specialized);
978
    T.nreg_ = SetMaxNRegCollector::Collect(f);
979
    T.buffer_lca_ = DetectBufferAccessLCA(f);
980
981
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
982
983
984
985
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

986
987
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1005
1006
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1007
1008
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1009
1010
1011
1012
1013
1014
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1015
1016
1017
1018
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1019
1020
1021
1022
1023
1024
1025
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1026
1027
      Stmt new_body =
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_);
1028
1029
1030
1031
1032
      return new_body;
    }
    return for_node;
  }

1033
1034
1035
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1036
1037
1038
1039
1040
1041
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1042
    marker.Prepare(block);
1043
1044
1045
1046
1047
1048
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1061
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1062
1063
1064
1065
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1066
1067
1068
1069
1070
1071
1072
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1073
1074
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1075
1076

    // TODO: estimate the correct reg usage.
1077
1078
1079
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1080
1081
1082
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
    if (dec_reg >= 0 && inc_reg >= 0) {
1083
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1084
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1085
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1086
1087
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1088
1089
1090
1091

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

1092
1093
1094
    producer_code =
        ThreadIdxRewriter::Rewrite(producer_code, thread_iv_->var,
                                   thread_iv_->var - consumer_thread_extent);
1095
1096
1097
1098
1099
1100
1101
1102
1103
    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1104
1105
1106
      PrimExpr arrive_thread_count = producer.released_barrier_.count(i)
                                         ? producer_thread_extent
                                         : consumer_thread_extent;
1107
1108
1109
      barrier_num_threads.push_back(arrive_thread_count);
    }

1110
    Stmt init_barrier = Evaluate(Call(
1111
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1112
1113
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1114
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1132
  bool disable_warp_specialized_ = false;
1133
  Array<IntImm> nreg_;
1134
1135
};

1136
1137
1138
1139
1140
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1141
1142
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1143
1144
1145
1146
1147
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1148
    has_warp_specialization_ = false;
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1172
  void VisitStmt_(const AttrStmtNode *op) final {
1173
1174
1175
1176
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1187
  bool has_tma_op_{false};
1188
  IterVar thread_var_;
1189
  bool has_mbarrier_op_{false};
1190
  bool has_warp_specialization_{false};
1191
1192
};

1193
1194
1195
1196
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1197
1198
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1199
1200
1201
1202
1203
1204
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized);
    }
    return f;
1205
1206
1207
1208
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1209
1210
TVM_REGISTER_GLOBAL("tl.transform.WarpSpecialized")
    .set_body_typed(WarpSpecialized);
1211

1212
1213
} // namespace tl
} // namespace tvm