warp_specialized_rewriter.cc 41.3 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
9
10
11
12
13
14
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
15
#include "./common/collector.h"
16
17
18
19
20

namespace tvm {
namespace tl {

using namespace tir;
21
using arith::IRVisitorWithAnalyzer;
22
23
24

enum class Role { kConsumer, kProducer, kBoth };

25
26
27
28
29
class TMAFinder : public StmtExprVisitor {
public:
  void clear() { has_tma_load_ = false; }

  void VisitExpr_(const CallNode *call) final {
30
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
      has_tma_load_ = true;
    }
  }

  bool has_tma_load_ = false;
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
    VisitStmt(stmt);
    return used_in_producer_cond_;
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
      used_in_producer_cond_.insert(buffer.first);
    }
    for (const auto &buffer : used_in_producer_cond_) {
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->then_case);
    if (op->else_case.defined()) {
      tma_finder(op->else_case.value());
    }
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
    TMAFinder tma_finder;
    tma_finder(op->body);
    if (tma_finder.has_tma_load_) {
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

private:
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
};

82
class WarpSpecializedRoleMarker : public StmtVisitor {
83
public:
84
85
86
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

87
88
89
90
91
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
    used_in_producer_cond_ = finder.FindProducerusedBuffer(stmt);
  }

92
  Role GetRole(const StmtNode *stmt) const {
93
94
95
96
97
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

98
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
99

100
  void VisitStmt_(const EvaluateNode *op) final {
101
102
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
103
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
104
105
106
107
108
109
110
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
    }
    SetRole(op, role);
  }

111
112
113
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
114
115
116
117
    if (used_in_producer_cond_.count(op->buffer.get())) {
      SetRole(op, Role::kBoth);
      return;
    }
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
135
136
    if (role == Role::kProducer)
      has_simt_copy_ = true;
137
138
139
    SetRole(op, role);
  }

140
  void VisitStmt_(const SeqStmtNode *op) final {
141
142
143
144
145
146
147
148
149
150
151
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

152
  void VisitStmt_(const IfThenElseNode *op) final {
153
154
155
156
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
157
158
      if (role != role_else)
        role = Role::kBoth;
159
160
161
162
    }
    SetRole(op, role);
  }

163
  void VisitStmt_(const BlockRealizeNode *op) final {
164
165
166
167
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

168
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
169
170
171
172
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

173
174
175
176
177
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
178
179
180
181
182

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

183
184
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
185
  Map<Var, Buffer> buffer_data_to_buffer_;
186
  std::unordered_map<const StmtNode *, Role> map_;
187
188
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
189
  std::unordered_set<const BufferNode *> used_in_producer_cond_;
190
191
192
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
193
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
194
195
196
}

static Stmt makeArriveBarrier(PrimExpr barrier_id) {
197
198
  auto call = Call(DataType::Handle(), builtin::ptx_arrive_barrier(),
                   {makeGetBarrier(barrier_id)});
199
200
201
202
  return Evaluate(call);
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
203
204
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
205
206
207
208
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
209
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
210
                   {makeGetBarrier(barrier_id), parity});
211
212
213
214
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
215
public:
216
217
  ProducerTraitsCollector() { Clear(); }

218
  void Clear() { has_simt_copy = false; }
219
220
221
222
223

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

224
private:
225
226
227
228
229
230
231
232
233
234
235
236
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

237
  void VisitExpr_(const BufferLoadNode *op) final {
238
239
240
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
241
242
243
244
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
245
  bool in_if_cond_ = false;
246
247
248
249
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
250
public:
251
252
253
254
255
256
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

257
258
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
259
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
260
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
261
262
263
264
265
266
267
268
269
270
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
271
public:
272
273
274
275
276
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced) {
    auto rewriter = ThreadIdxRewriter(thread_var, replaced);
    return rewriter(stmt);
  }

277
private:
278
279
280
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced)
      : thread_var_(thread_var), replaced_(replaced) {}

281
  PrimExpr VisitExpr_(const VarNode *var) final {
282
283
284
285
286
287
288
289
290
291
292
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

  Var thread_var_;
  PrimExpr replaced_;
};

293
294
295
296
297
298
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
299
300
301
302
303
304
305
306
307
308
309
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
310
311
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

328
  PipelineInfo(const PipelineInfo &other) {
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
391
392
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
393
394
395
396
397
398
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
399
public:
400
401
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

402
403
private:
  Stmt VisitStmt_(const ForNode *op) final {
404
405
406
407
408
409
410
411
412
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
413
414
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
415
      Array<Stmt> block_stmt;
416
417
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
418
        // ICHECK(group_info_[i][j].as<IntImmNode>());
419
420
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
421
422
423
424
425
426
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
427
428
429
430
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
431
432
433
434
435
436
437
438
439
440
441
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
    Map<String, ObjectRef> for_annotations = op->annotations;
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
442
443
444
445
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
446
447
448
449
450
451
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
class WSCodeEmitter : public StmtMutator {
452
public:
453
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
454
                Map<Var, Buffer> buffer_data_to_buffer,
455
456
                const WarpSpecializedRoleMarker &marker,
                bool mbarrier_only = false)
457
      : is_emitting_producer_(is_emitting_producer),
458
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
459
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only) {}
460

461
462
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
463
    Role role = marker_.GetRole(op);
464
465
466
467
468
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
469
      return StmtMutator::VisitStmt_(op);
470
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
471
      return GetRef<Stmt>(op);
472
    } else {
473
      return Evaluate(0);
474
    }
475
476
477
  }

  // TODO: only need to add block for ops in the loop
478
  Stmt VisitStmt_(const SeqStmtNode *op) final {
479

480
481
482
483
484
485
486
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
487
488
489
490
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
491

492
493
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
494
495

    auto map = ExtractSyncPattern(op->seq);
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
510
511
512
513
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

514
    if (is_emitting_producer_) { // producer case
515
516
517
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
518
519
520
521
522
523
524
525
526
527
528
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
529
        }
530

531
        for (int pattern_idx : map.acquire[i]) {
532
          PrimExpr acquire_barrier_id =
533
534
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
535
536
                                ? bitwise_xor(parity_, 1)
                                : parity_;
537
538
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
539
540
541
542
543
544
545
546
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
547
          block_stmt.push_back(stmt);
548
549
          if (collector.HasSimtCopy() > 0) {
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
550
          }
551
552
553
554
555
556
557
558
559
560
561
562
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
563
564
        }
      }
565
    } else { // consumer case
566
567
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
568
569
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
570
        for (int pattern_idx : map.acquire[i]) {
571
          PrimExpr acquire_barrier_id =
572
573
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
574
575
                                ? bitwise_xor(parity_, 1)
                                : parity_;
576
577
578
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
579
580
581
582
583
584
585
586
587
588
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
589
590
          }
        }
591
592
593
594
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
595
596
597
598
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
599
600
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

624
  Stmt VisitStmt_(const ForNode *op) final {
625
626
627
628
629
630
631
632
633
634
635
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
    if (num_stages_anno.defined()) {
      ICHECK(num_stages_anno.as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno.as<IntImmNode>()->value);
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
636

637
638
639
640
641
642
643
644
645
646
647
648
649
    auto group_anno = op->annotations.Get("tl_pipeline_group");
    if (group_anno.defined()) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno);
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
    if (order_anno.defined()) {
      order_info_array = Downcast<Array<Integer>>(order_anno);
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
    if (stage_anno.defined()) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno);
    }

650
651
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
652
    if (pipeline_info.op_infos.size() > 0) {
653
654
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
655
656
657
658
659
660
661
662
663
664
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
    stage_ = FloorMod(op->loop_var - op->min, num_stages);
665
666
667
    parity_ = FloorMod(parity_before * op->extent +
                           FloorDiv(op->loop_var - op->min, num_stages),
                       2);
668
669
670
671

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
672
673
    if (result.as<ForNode>() && group_anno.defined() &&
        group_info_array.size() > 0 && !is_emitting_producer_) {
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
693
694
      if (is_emitting_producer_ || !group_anno.defined() ||
          group_info_array.size() == 0) {
695
696
697
698
699
700
701
        return for_node;
      }
      return grouped_for_node;
    }
    return result;
  }

702
703
704
705
706
707
708
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
709
710
711
    ICHECK(0);
    return Stmt();
  }
712
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
713
714
715
716
717
718
719
720
721
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
722
723
724
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
725
    std::vector<SyncPattern> patterns;
726
727
728
729
730
731
732
733
734
735

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
736
737
738
    }
  };

739
740
741
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
742
    const int n = seq_stmt.size();
743
    std::vector<std::set<const BufferNode *>> reads, writes;
744
745
746
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
747
748
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
749
750
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
751
752
753
754
755
      std::set<const BufferNode *> read_set, write_set;
      for (auto region : access[0])
        read_set.insert(region->buffer.get());
      for (auto region : access[1])
        write_set.insert(region->buffer.get());
756
757
758
759
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

760
761
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
762
      for (auto ptr : lhs)
763
764
        if (rhs.count(ptr))
          return true;
765
766
767
768
769
770
771
772
773
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
774
775
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
776
777
778
779
780
781
782
783
784
785
786
787
788
789
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
790
791
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
792
793
794
795
796
797
798
799
800
801
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

802
803
804
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
837
838
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
839
840
841
842
843
844
845
846
847
848
849
850
851

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
852
853
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
854
855

    // for (auto pattern : sync_patterns) {
856
857
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
858
859
860
    // }

    SyncPatternMap map;
861
    map.resize(num_stmts);
862
    map.patterns = sync_patterns;
863

864
    for (size_t i = 0; i < sync_patterns.size(); i++) {
865
866
867
868
869
870
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
871
872
    }

873
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
874
875
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
876
877
878
879
880
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
881
        } else {
882
883
884
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
885
886
        }
      } else {
887
888
889
890
891
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
892
        } else {
893
894
895
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
896
897
898
899
900
901
902
903
904
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
905
  const WarpSpecializedRoleMarker &marker_;
906
907
908
909
910
911

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
  Var thread_var_;
912
  bool mbarrier_only_ = false;
913
914
915
916
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
};

917
918
919
920
921
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
922
923
924
925
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
926
927
928
929
930
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
931
      if (call->op.same_as(set_max_nreg())) {
932
933
934
935
936
937
938
939
940
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
941
      } else if (call->op.same_as(no_set_max_nreg())) {
942
        has_no_set_max_nreg_ = true;
943
944
945
946
947
948
949
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
950
  bool has_no_set_max_nreg_ = false;
951
952
};

953
class WarpSpecializedRewriter : public StmtExprMutator {
954
public:
955
956
957
  WarpSpecializedRewriter(bool disable_warp_specialized)
      : disable_warp_specialized_(disable_warp_specialized) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized) {
958
959
960
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
961
                      "uses thread tags other than threadIdx.x."
962
963
964
965
966
967
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

968
    auto T = WarpSpecializedRewriter(disable_warp_specialized);
969
    T.nreg_ = SetMaxNRegCollector::Collect(f);
970
    T.buffer_lca_ = DetectBufferAccessLCA(f);
971
972
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
973
974
975
976
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

977
978
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

996
997
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
998
999
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1000
1001
1002
1003
1004
1005
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1006
1007
1008
1009
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1010
1011
1012
1013
1014
1015
1016
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1017
1018
      Stmt new_body =
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_);
1019
1020
1021
1022
1023
      return new_body;
    }
    return for_node;
  }

1024
1025
1026
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1027
1028
1029
1030
1031
1032
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1033
    marker.Prepare(block);
1034
1035
1036
1037
1038
1039
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1052
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1053
1054
1055
1056
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1057
1058
1059
1060
1061
1062
1063
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1064
1065
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1066
1067

    // TODO: estimate the correct reg usage.
1068
1069
1070
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1071
1072
1073
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
    if (dec_reg >= 0 && inc_reg >= 0) {
1074
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1075
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1076
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1077
1078
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1079
1080
1081
1082

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

1083
1084
1085
    producer_code =
        ThreadIdxRewriter::Rewrite(producer_code, thread_iv_->var,
                                   thread_iv_->var - consumer_thread_extent);
1086
1087
1088
1089
1090
1091
1092
1093
1094
    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1095
1096
1097
      PrimExpr arrive_thread_count = producer.released_barrier_.count(i)
                                         ? producer_thread_extent
                                         : consumer_thread_extent;
1098
1099
1100
      barrier_num_threads.push_back(arrive_thread_count);
    }

1101
    Stmt init_barrier = Evaluate(Call(
1102
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1103
1104
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1105
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1123
  bool disable_warp_specialized_ = false;
1124
  Array<IntImm> nreg_;
1125
1126
};

1127
1128
1129
1130
1131
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1132
1133
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1134
1135
1136
1137
1138
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1139
    has_warp_specialization_ = false;
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
  void VisitStmt_(const IfThenElseNode *op) final {
    // do not visit the body of the if-then-else statement
    // because we only care about the condition
    auto cond = op->condition;
    // assert cond is a binary expression
    PostOrderVisit(cond, [this](const ObjectRef &node) {
      bool is_cmp_op = false;
      if (const auto *lt = node.as<LTNode>()) {
        is_cmp_op = true;
      } else if (const auto *le = node.as<LENode>()) {
        is_cmp_op = true;
      } else if (const auto *gt = node.as<GTNode>()) {
        is_cmp_op = true;
      } else if (const auto *ge = node.as<GENode>()) {
        is_cmp_op = true;
      }

      if (is_cmp_op) {
        bool has_thread_var = false;
        bool has_warp_group_size = false;
        // check if has thread_var_ in lt->a or lt->b
        PostOrderVisit(node, [this, &has_thread_var,
                              &has_warp_group_size](const ObjectRef &node_) {
          if (node_.as<VarNode>() == thread_var_->var.get()) {
            has_thread_var = true;
          } else if (const auto *imm = node_.as<IntImmNode>()) {
            // 128 is the warp group size of nvidia gpus
            has_warp_group_size = imm->value % 128 == 0;
          }
        });
        if (has_thread_var && has_warp_group_size) {
          has_warp_specialization_ = true;
        }
      }
    });
  }

  void VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1211
  bool has_tma_op_{false};
1212
  IterVar thread_var_;
1213
  bool has_mbarrier_op_{false};
1214
  bool has_warp_specialization_{false};
1215
1216
};

1217
1218
1219
1220
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1221
1222
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1223
1224
1225
1226
1227
1228
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized);
    }
    return f;
1229
1230
1231
1232
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1233
1234
TVM_REGISTER_GLOBAL("tl.transform.WarpSpecialized")
    .set_body_typed(WarpSpecialized);
1235

1236
1237
} // namespace tl
} // namespace tvm