warp_specialized_rewriter.cc 45.9 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
#include <tvm/ffi/reflection/registry.h>
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
16
#include "./common/collector.h"
17
18
19
20
21

namespace tvm {
namespace tl {

using namespace tir;
22
using arith::IRVisitorWithAnalyzer;
23
24
25

enum class Role { kConsumer, kProducer, kBoth };

26
class ProducerBufferDetector : public StmtExprVisitor {
27
public:
28
29
30
31
32
  ProducerBufferDetector(
      std::unordered_set<const BufferNode *> cur_producer_buffers)
      : cur_producer_buffers_(cur_producer_buffers) {}

  void clear() { has_producer_buffer_ = false; }
33
34

  void VisitExpr_(const CallNode *call) final {
35
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
36
      has_producer_buffer_ = true;
37
    }
38
    StmtExprVisitor::VisitExpr_(call);
39
40
  }

41
42
43
44
45
46
47
48
49
  void VisitExpr_(const BufferLoadNode *op) final {
    if (cur_producer_buffers_.count(op->buffer.get())) {
      has_producer_buffer_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_producer_buffer_ = false;
  std::unordered_set<const BufferNode *> cur_producer_buffers_;
50
51
52
53
54
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
55
56
57
58
59
60
61
62
63
64
    producer_buffers_.clear();
    std::unordered_set<const BufferNode *> last_producer_buffers_;
    for (;;) {
      VisitStmt(stmt);
      if (producer_buffers_ == last_producer_buffers_) {
        break;
      }
      last_producer_buffers_ = producer_buffers_;
    }
    return producer_buffers_;
65
66
67
68
69
70
71
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
72
      producer_buffers_.insert(buffer.first);
73
74
75
76
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
77
78
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->then_case);
79
    if (op->else_case.defined()) {
80
      producer_buffer_detector(op->else_case.value());
81
    }
82
    if (producer_buffer_detector.has_producer_buffer_) {
83
84
85
86
87
88
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
89
90
91
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->body);
    if (producer_buffer_detector.has_producer_buffer_) {
92
93
94
95
96
97
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

98
99
100
101
102
103
104
  void VisitStmt_(const BufferStoreNode *op) final {
    if (producer_buffers_.count(op->buffer.get())) {
      InsertBuffer(op->value);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

105
106
107
108
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
109
          producer_buffers_.insert(buffer_load->buffer.get());
110
111
112
113
114
        }
      }
    }
  }

115
private:
116
  std::unordered_set<const BufferNode *> producer_buffers_;
117
118
};

119
class WarpSpecializedRoleMarker : public StmtVisitor {
120
public:
121
122
123
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

124
125
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
126
    producer_buffers_ = finder.FindProducerusedBuffer(stmt);
127
128
  }

129
  Role GetRole(const StmtNode *stmt) const {
130
131
132
133
134
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

135
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
136

137
  void VisitStmt_(const EvaluateNode *op) final {
138
139
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
140
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
141
142
143
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
144
145
146
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
147
148
149
150
    }
    SetRole(op, role);
  }

151
152
153
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
154
    if (producer_buffers_.count(op->buffer.get())) {
155
156
157
      SetRole(op, Role::kBoth);
      return;
    }
158
159
160
161
162
163
164
165
166
167
168
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
169
170
    if (reads.empty())
      role = Role::kConsumer;
171
172
173
174
175
176
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
177
178
    if (role == Role::kProducer)
      has_simt_copy_ = true;
179
180
181
    SetRole(op, role);
  }

182
  void VisitStmt_(const SeqStmtNode *op) final {
183
184
185
186
187
188
189
190
191
192
193
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

194
  void VisitStmt_(const IfThenElseNode *op) final {
195
196
197
198
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
199
200
      if (role != role_else)
        role = Role::kBoth;
201
202
203
204
    }
    SetRole(op, role);
  }

205
  void VisitStmt_(const BlockRealizeNode *op) final {
206
207
208
209
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

210
211
212
213
214
215
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

216
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
217
218
219
220
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

221
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
222
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
223
224
225
226
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
227
228
229
230
231

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

232
233
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
234
  Map<Var, Buffer> buffer_data_to_buffer_;
235
  std::unordered_map<const StmtNode *, Role> map_;
236
237
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
238
  std::unordered_set<const BufferNode *> producer_buffers_;
239
240
241
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
242
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
243
244
}

245
246
247
248
249
250
251
252
253
static Stmt makeArriveBarrier(PrimExpr barrier_id, int cta_id = -1,
                              PrimExpr pred = 1) {
  Array<PrimExpr> args = {makeGetBarrier(barrier_id)};
  if (cta_id != -1) {
    args.push_back(cta_id);
    args.push_back(pred);
  }
  return Evaluate(
      Call(DataType::Handle(), builtin::ptx_arrive_barrier(), args));
254
255
256
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
257
258
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
259
260
261
262
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
263
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
264
                   {makeGetBarrier(barrier_id), parity});
265
266
267
268
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
269
public:
270
271
  ProducerTraitsCollector() { Clear(); }

272
  void Clear() { has_simt_copy = false; }
273
274
275
276
277

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

278
private:
279
280
281
282
283
284
285
286
287
288
289
290
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

291
  void VisitExpr_(const BufferLoadNode *op) final {
292
293
294
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
295
296
297
298
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
299
  bool in_if_cond_ = false;
300
301
302
303
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
304
public:
305
306
307
308
309
310
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

311
312
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
313
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
314
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
315
316
317
318
319
320
321
322
323
324
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
325
public:
326
327
328
329
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced,
                      PrimExpr thread_extent, bool do_shuffle = false) {
    auto rewriter =
        ThreadIdxRewriter(thread_var, replaced, thread_extent, do_shuffle);
330
331
332
    return rewriter(stmt);
  }

333
private:
334
335
336
337
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced, PrimExpr thread_extent,
                    bool do_shuffle)
      : thread_var_(thread_var), replaced_(replaced),
        thread_extent_(thread_extent), do_shuffle_(do_shuffle) {}
338

339
  PrimExpr VisitExpr_(const VarNode *var) final {
340
341
342
343
344
345
346
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
      return parameter == thread_var_.get();
    };
    maybe_thread_opt_ = false;
    if (!op->else_case.defined() && op->condition.as<EQNode>() &&
        UsesVar(op->condition, f_uses_thread_index) &&
        !(UsesVar(op->then_case, f_uses_thread_index))) {
      auto eq_op = Downcast<EQ>(op->condition);
      if (eq_op->a.as<VarNode>() == thread_var_.get() ||
          eq_op->b.as<VarNode>() == thread_var_.get()) {
        maybe_thread_opt_ = true;
      }
      maybe_thread_opt_ = do_shuffle_ && maybe_thread_opt_;
    }
    if (maybe_thread_opt_)
      return IfThenElse(
          Call(DataType::Bool(), tl_shuffle_elect(), {thread_extent_}),
          StmtExprMutator::VisitStmt(op->then_case), std::nullopt);
    else
      return StmtExprMutator::VisitStmt_(op);
  }

370
371
  Var thread_var_;
  PrimExpr replaced_;
372
373
374
  PrimExpr thread_extent_;
  bool maybe_thread_opt_ = false;
  bool do_shuffle_;
375
376
};

377
378
379
380
381
382
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
383
384
385
386
387
388
389
390
391
392
393
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
394
395
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

412
  PipelineInfo(const PipelineInfo &other) {
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
475
476
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
477
478
479
480
481
482
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
483
public:
484
485
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

486
487
private:
  Stmt VisitStmt_(const ForNode *op) final {
488
489
490
491
492
493
494
495
496
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
497
498
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
499
      Array<Stmt> block_stmt;
500
501
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
502
        // ICHECK(group_info_[i][j].as<IntImmNode>());
503
504
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
505
506
507
508
509
510
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
511
512
513
514
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
515
516
517
518
519
520
521
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
522
    Map<String, Any> for_annotations = op->annotations;
523
524
525
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
526
527
528
529
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
530
531
532
533
534
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

class WgMMACollector : public StmtExprVisitor {
public:
  WgMMACollector() = default;

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl_gemm()) || op->op.same_as(tl_gemm_sp())) {
      auto op_name = std::string(op->args[0].as<StringImmNode>()->value);
      if (has_wgmma_) {
        has_wgmma_ =
            op_name.find("false") == std::string::npos && !in_if_scope_;
      }
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    in_if_scope_ = true;
    StmtExprVisitor::VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      StmtExprVisitor::VisitStmt(op->else_case.value());
    }
    in_if_scope_ = false;
  }

  static bool HasWgMMA(Stmt stmt) {
    auto collector = WgMMACollector();
    collector(stmt);
    return collector.has_wgmma_;
  }

  bool has_wgmma_{true};
  bool in_if_scope_{false};
};

570
class WSCodeEmitter : public StmtMutator {
571
public:
572
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
573
                Map<Var, Buffer> buffer_data_to_buffer,
574
                const WarpSpecializedRoleMarker &marker,
575
                bool mbarrier_only = false, bool only_has_wgmma = false)
576
      : is_emitting_producer_(is_emitting_producer),
577
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
578
579
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only),
        only_has_wgmma_(only_has_wgmma) {}
580
581
582

  bool hasSimtCopy() const { return has_simt_copy_; }

583
584
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
585
    Role role = marker_.GetRole(op);
586
587
588
589
590
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
591
      return StmtMutator::VisitStmt_(op);
592
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
593
      return GetRef<Stmt>(op);
594
    } else {
595
      return Evaluate(0);
596
    }
597
598
599
  }

  // TODO: only need to add block for ops in the loop
600
  Stmt VisitStmt_(const SeqStmtNode *op) final {
601

602
603
604
605
606
607
608
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
609
610
611
612
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
613

614
615
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
616
617

    auto map = ExtractSyncPattern(op->seq);
618

619
620
621
622
623
624
625
626
627
628
629
630
631
632
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
633
634
635
636
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

637
    if (is_emitting_producer_) { // producer case
638
639
640
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
641
642
643
644
645
646
647
648
649
650
651
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
652
        }
653

654
        for (int pattern_idx : map.acquire[i]) {
655
          PrimExpr acquire_barrier_id =
656
657
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
658
659
                                ? bitwise_xor(parity_, 1)
                                : parity_;
660
661
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
662
663
664
665
666
667
668
669
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
670
          block_stmt.push_back(stmt);
671
          if (collector.HasSimtCopy()) {
672
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
673
            has_simt_copy_ = true;
674
          }
675
676
677
678
679
680
681
682
683
684
685
686
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
687
688
        }
      }
689
    } else { // consumer case
690
691
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
692
693
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
694
        for (int pattern_idx : map.acquire[i]) {
695
          PrimExpr acquire_barrier_id =
696
697
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
698
699
                                ? bitwise_xor(parity_, 1)
                                : parity_;
700
701
702
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
703
704
705
706
707
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
708
709
710
711
712
            if (only_has_wgmma_)
              block_stmt.push_back(makeArriveBarrier(
                  release_barrier_id, 0, EQ(FloorMod(thread_var_, 128), 0)));
            else
              block_stmt.push_back(makeArriveBarrier(release_barrier_id));
713
714
715
716
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
717
718
          }
        }
719
720
721
722
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
723
724
725
726
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
727
728
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

752
  Stmt VisitStmt_(const ForNode *op) final {
753
754
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
755
756
757
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
758
759
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
760
    loop_stack_.emplace_back(op->loop_var, op->extent);
761
762
763
764

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
765

766
    auto group_anno = op->annotations.Get("tl_pipeline_group");
767
768
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
769
770
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
771
772
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
773
774
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
775
776
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
777
778
    }

779
780
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
781
    if (pipeline_info.op_infos.size() > 0) {
782
783
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
784
785
786
787
788
789
790
791
792
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
793
794
795
796
797
798
799
800
    PrimExpr linear_index = loop_stack_[0].first;
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
      linear_index =
          linear_index * loop_stack_[i].second + loop_stack_[i].first;
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
801
802
803
804

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
805
806
    if (result.as<ForNode>() && group_anno && group_info_array.size() > 0 &&
        !is_emitting_producer_) {
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
826
      if (is_emitting_producer_ || !group_anno ||
827
          group_info_array.size() == 0) {
828
        loop_stack_.pop_back();
829
830
        return for_node;
      }
831
      loop_stack_.pop_back();
832
833
      return grouped_for_node;
    }
834
    loop_stack_.pop_back();
835
836
837
    return result;
  }

838
839
840
841
842
843
844
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
845
846
847
    ICHECK(0);
    return Stmt();
  }
848
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
849
850
851
852
853
854
855
856
857
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
858
859
860
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
861
    std::vector<SyncPattern> patterns;
862
863
864
865
866
867
868
869
870
871

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
872
873
874
    }
  };

875
876
877
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
878
    const int n = seq_stmt.size();
879
    std::vector<std::set<const BufferNode *>> reads, writes;
880
881
882
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
883
884
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
885
886
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
887
      std::set<const BufferNode *> read_set, write_set;
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
904
905
906
907
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

908
909
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
910
      for (auto ptr : lhs)
911
912
        if (rhs.count(ptr))
          return true;
913
914
915
916
917
918
919
920
921
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
922
923
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
924
925
926
927
928
929
930
931
932
933
934
935
936
937
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
938
939
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
940
941
942
943
944
945
946
947
948
949
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

950
951
952
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
985
986
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
987
988
989
990
991
992
993
994
995
996
997
998
999

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
1000
1001
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
1002
1003

    // for (auto pattern : sync_patterns) {
1004
1005
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
1006
1007
1008
    // }

    SyncPatternMap map;
1009
    map.resize(num_stmts);
1010
    map.patterns = sync_patterns;
1011

1012
    for (size_t i = 0; i < sync_patterns.size(); i++) {
1013
1014
1015
1016
1017
1018
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
1019
1020
    }

1021
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
1022
1023
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
1024
1025
1026
1027
1028
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1029
        } else {
1030
1031
1032
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
1033
1034
        }
      } else {
1035
1036
1037
1038
1039
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1040
        } else {
1041
1042
1043
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
1044
1045
1046
1047
1048
1049
1050
1051
1052
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
1053
  const WarpSpecializedRoleMarker &marker_;
1054
1055
1056
1057
1058

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
1059
  std::vector<std::pair<Var, PrimExpr>> loop_stack_;
1060
  Var thread_var_;
1061
  bool mbarrier_only_ = false;
1062
1063
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
1064
1065
  bool only_has_wgmma_ = false;
  bool has_simt_copy_ = false;
1066
1067
};

1068
1069
1070
1071
1072
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
1073
1074
1075
1076
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
1077
1078
1079
1080
1081
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1082
      if (call->op.same_as(set_max_nreg())) {
1083
1084
1085
1086
1087
1088
1089
1090
1091
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
1092
      } else if (call->op.same_as(no_set_max_nreg())) {
1093
        has_no_set_max_nreg_ = true;
1094
1095
1096
1097
1098
1099
1100
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
1101
  bool has_no_set_max_nreg_ = false;
1102
1103
};

1104
class WarpSpecializedRewriter : public StmtExprMutator {
1105
public:
1106
1107
1108
1109
1110
1111
  WarpSpecializedRewriter(bool disable_warp_specialized,
                          bool disable_shuffle_elect)
      : disable_warp_specialized_(disable_warp_specialized),
        disable_shuffle_elect_(disable_shuffle_elect) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized,
                             bool disable_shuffle_elect) {
1112
1113
1114
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1115
                      "uses thread tags other than threadIdx.x."
1116
1117
1118
1119
1120
1121
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1122
1123
    auto T = WarpSpecializedRewriter(disable_warp_specialized,
                                     disable_shuffle_elect);
1124
    T.nreg_ = SetMaxNRegCollector::Collect(f);
1125
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1126
1127
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1128
1129
1130
1131
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1132
1133
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1151
1152
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1153
1154
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1155
1156
1157
1158
1159
1160
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1161
1162
1163
1164
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1165
1166
1167
1168
1169
1170
1171
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1172
      Stmt new_body =
1173
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_, 0);
1174
1175
1176
1177
1178
      return new_body;
    }
    return for_node;
  }

1179
1180
1181
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1182
1183
1184
1185
1186
1187
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1188
    marker.Prepare(block);
1189
1190
1191
1192
1193
1194
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1207
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1208
1209
1210
1211
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1212
    only_has_wgmma_ = WgMMACollector::HasWgMMA(block->body);
1213
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
1214
1215
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker,
                           false, only_has_wgmma_);
1216
1217
1218
1219
1220
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1221
1222
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1223
1224

    // TODO: estimate the correct reg usage.
1225
1226
1227
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1228
1229
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
1230
    if (dec_reg >= 0 && inc_reg >= 0 && !marker.HasSimtCopy()) {
1231
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1232
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1233
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1234
1235
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1236
1237
1238
1239
1240

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
1241
1242
1243
1244
1245
1246
1247
1248

    producer_code = ThreadIdxRewriter::Rewrite(
        producer_code, thread_iv_->var,
        thread_iv_->var - consumer_thread_extent, producer_thread_extent,
        !disable_shuffle_elect_);
    consumer_code = ThreadIdxRewriter::Rewrite(
        consumer_code, thread_iv_->var, thread_iv_->var, consumer_thread_extent,
        !disable_shuffle_elect_);
1249
1250
1251
1252
1253
1254
1255
1256
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1257
1258
1259
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i)
              ? (producer.hasSimtCopy() ? producer_thread_extent : 1)
1260
1261
              : (only_has_wgmma_ ? FloorDiv(consumer_thread_extent, 128)
                                 : consumer_thread_extent);
1262
1263
1264
      barrier_num_threads.push_back(arrive_thread_count);
    }

1265
    Stmt init_barrier = Evaluate(Call(
1266
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1267
1268
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1269
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1287
  bool disable_warp_specialized_ = false;
1288
  bool disable_shuffle_elect_ = false;
1289
  Array<IntImm> nreg_;
1290
  bool only_has_wgmma_ = false;
1291
1292
};

1293
1294
1295
1296
1297
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1298
1299
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1300
1301
1302
1303
1304
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1305
    has_warp_specialization_ = false;
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1329
  void VisitStmt_(const AttrStmtNode *op) final {
1330
1331
1332
1333
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1344
  bool has_tma_op_{false};
1345
  IterVar thread_var_;
1346
  bool has_mbarrier_op_{false};
1347
  bool has_warp_specialization_{false};
1348
1349
};

1350
1351
1352
1353
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1354
1355
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1356
1357
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
1358
1359
1360
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
1361
1362
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized,
                                                 disable_shuffle_elect);
1363
1364
    }
    return f;
1365
1366
1367
1368
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1369
1370
1371
1372
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1373

1374
1375
} // namespace tl
} // namespace tvm