warp_specialized_rewriter.cc 45.9 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
#include <tvm/ffi/reflection/registry.h>
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
16
#include "./common/collector.h"
17
18
19
20
21

namespace tvm {
namespace tl {

using namespace tir;
22
using arith::IRVisitorWithAnalyzer;
23
24
25

enum class Role { kConsumer, kProducer, kBoth };

26
class ProducerBufferDetector : public StmtExprVisitor {
27
public:
28
29
30
31
32
  ProducerBufferDetector(
      std::unordered_set<const BufferNode *> cur_producer_buffers)
      : cur_producer_buffers_(cur_producer_buffers) {}

  void clear() { has_producer_buffer_ = false; }
33
34

  void VisitExpr_(const CallNode *call) final {
35
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
36
      has_producer_buffer_ = true;
37
    }
38
    StmtExprVisitor::VisitExpr_(call);
39
40
  }

41
42
43
44
45
46
47
48
49
  void VisitExpr_(const BufferLoadNode *op) final {
    if (cur_producer_buffers_.count(op->buffer.get())) {
      has_producer_buffer_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_producer_buffer_ = false;
  std::unordered_set<const BufferNode *> cur_producer_buffers_;
50
51
52
53
54
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
55
56
57
58
59
60
61
62
63
64
    producer_buffers_.clear();
    std::unordered_set<const BufferNode *> last_producer_buffers_;
    for (;;) {
      VisitStmt(stmt);
      if (producer_buffers_ == last_producer_buffers_) {
        break;
      }
      last_producer_buffers_ = producer_buffers_;
    }
    return producer_buffers_;
65
66
67
68
69
70
71
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
72
      producer_buffers_.insert(buffer.first);
73
74
75
76
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
77
78
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->then_case);
79
    if (op->else_case.defined()) {
80
      producer_buffer_detector(op->else_case.value());
81
    }
82
    if (producer_buffer_detector.has_producer_buffer_) {
83
84
85
86
87
88
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
89
90
91
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->body);
    if (producer_buffer_detector.has_producer_buffer_) {
92
93
94
95
96
97
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

98
99
100
101
102
103
104
  void VisitStmt_(const BufferStoreNode *op) final {
    if (producer_buffers_.count(op->buffer.get())) {
      InsertBuffer(op->value);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

105
106
107
108
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
109
          producer_buffers_.insert(buffer_load->buffer.get());
110
111
112
113
114
        }
      }
    }
  }

115
private:
116
  std::unordered_set<const BufferNode *> producer_buffers_;
117
118
};

119
class WarpSpecializedRoleMarker : public StmtVisitor {
120
public:
121
122
123
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

124
125
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
126
    producer_buffers_ = finder.FindProducerusedBuffer(stmt);
127
128
  }

129
  Role GetRole(const StmtNode *stmt) const {
130
131
132
133
134
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

135
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
136

137
  void VisitStmt_(const EvaluateNode *op) final {
138
139
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
140
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
141
142
143
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
144
145
146
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
147
148
149
150
    }
    SetRole(op, role);
  }

151
152
153
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
154
    if (producer_buffers_.count(op->buffer.get())) {
155
156
157
      SetRole(op, Role::kBoth);
      return;
    }
158
159
160
161
162
163
164
165
166
167
168
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
169
170
    if (reads.empty())
      role = Role::kConsumer;
171
172
173
174
175
176
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
177
178
    if (role == Role::kProducer)
      has_simt_copy_ = true;
179
180
181
    SetRole(op, role);
  }

182
  void VisitStmt_(const SeqStmtNode *op) final {
183
184
185
186
187
188
189
190
191
192
193
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

194
  void VisitStmt_(const IfThenElseNode *op) final {
195
196
197
198
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
199
200
      if (role != role_else)
        role = Role::kBoth;
201
202
203
204
    }
    SetRole(op, role);
  }

205
  void VisitStmt_(const BlockRealizeNode *op) final {
206
207
208
209
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

210
211
212
213
214
215
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

216
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
217
218
219
220
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

221
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
222
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
223
224
225
226
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
227
228
229
230
231

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

232
233
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
234
  Map<Var, Buffer> buffer_data_to_buffer_;
235
  std::unordered_map<const StmtNode *, Role> map_;
236
237
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
238
  std::unordered_set<const BufferNode *> producer_buffers_;
239
240
241
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
242
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
243
244
}

245
246
247
248
249
250
251
252
253
static Stmt makeArriveBarrier(PrimExpr barrier_id, int cta_id = -1,
                              PrimExpr pred = 1) {
  Array<PrimExpr> args = {makeGetBarrier(barrier_id)};
  if (cta_id != -1) {
    args.push_back(cta_id);
    args.push_back(pred);
  }
  return Evaluate(
      Call(DataType::Handle(), builtin::ptx_arrive_barrier(), args));
254
255
256
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
257
258
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
259
260
261
262
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
263
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
264
                   {makeGetBarrier(barrier_id), parity});
265
266
267
268
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
269
public:
270
271
  ProducerTraitsCollector() { Clear(); }

272
  void Clear() { has_simt_copy = false; }
273
274
275
276
277

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

278
private:
279
280
281
282
283
284
285
286
287
288
289
290
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

291
  void VisitExpr_(const BufferLoadNode *op) final {
292
293
294
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
295
296
297
298
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
299
  bool in_if_cond_ = false;
300
301
302
303
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
304
public:
305
306
307
308
309
310
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

311
312
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
313
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
314
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
315
316
317
318
319
320
321
322
323
324
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
325
public:
326
327
328
329
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced,
                      PrimExpr thread_extent, bool do_shuffle = false) {
    auto rewriter =
        ThreadIdxRewriter(thread_var, replaced, thread_extent, do_shuffle);
330
331
332
    return rewriter(stmt);
  }

333
private:
334
335
336
337
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced, PrimExpr thread_extent,
                    bool do_shuffle)
      : thread_var_(thread_var), replaced_(replaced),
        thread_extent_(thread_extent), do_shuffle_(do_shuffle) {}
338

339
  PrimExpr VisitExpr_(const VarNode *var) final {
340
341
342
343
344
345
346
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
      return parameter == thread_var_.get();
    };
    maybe_thread_opt_ = false;
    if (!op->else_case.defined() && op->condition.as<EQNode>() &&
        UsesVar(op->condition, f_uses_thread_index) &&
        !(UsesVar(op->then_case, f_uses_thread_index))) {
      auto eq_op = Downcast<EQ>(op->condition);
      if (eq_op->a.as<VarNode>() == thread_var_.get() ||
          eq_op->b.as<VarNode>() == thread_var_.get()) {
        maybe_thread_opt_ = true;
      }
      maybe_thread_opt_ = do_shuffle_ && maybe_thread_opt_;
    }
    if (maybe_thread_opt_)
      return IfThenElse(
          Call(DataType::Bool(), tl_shuffle_elect(), {thread_extent_}),
          StmtExprMutator::VisitStmt(op->then_case), std::nullopt);
    else
      return StmtExprMutator::VisitStmt_(op);
  }

370
371
  Var thread_var_;
  PrimExpr replaced_;
372
373
374
  PrimExpr thread_extent_;
  bool maybe_thread_opt_ = false;
  bool do_shuffle_;
375
376
};

377
378
379
380
381
382
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
383
384
385
386
387
388
389
390
391
392
393
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
394
395
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

412
  PipelineInfo(const PipelineInfo &other) {
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
475
476
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
477
478
479
480
481
482
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
483
public:
484
485
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

486
487
private:
  Stmt VisitStmt_(const ForNode *op) final {
488
489
490
491
492
493
494
495
496
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
497
498
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
499
      Array<Stmt> block_stmt;
500
501
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
502
        // ICHECK(group_info_[i][j].as<IntImmNode>());
503
504
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
505
506
507
508
509
510
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
511
512
513
514
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
515
516
517
518
519
520
521
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
522
    Map<String, Any> for_annotations = op->annotations;
523
524
525
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
526
527
528
529
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
530
531
532
533
534
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

class WgMMACollector : public StmtExprVisitor {
public:
  WgMMACollector() = default;

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl_gemm()) || op->op.same_as(tl_gemm_sp())) {
      auto op_name = std::string(op->args[0].as<StringImmNode>()->value);
      if (has_wgmma_) {
        has_wgmma_ =
            op_name.find("false") == std::string::npos && !in_if_scope_;
      }
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    in_if_scope_ = true;
    StmtExprVisitor::VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      StmtExprVisitor::VisitStmt(op->else_case.value());
    }
    in_if_scope_ = false;
  }

  static bool HasWgMMA(Stmt stmt) {
    auto collector = WgMMACollector();
    collector(stmt);
    return collector.has_wgmma_;
  }

  bool has_wgmma_{true};
  bool in_if_scope_{false};
};

570
class WSCodeEmitter : public StmtMutator {
571
public:
572
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
573
                Map<Var, Buffer> buffer_data_to_buffer,
574
575
                const WarpSpecializedRoleMarker &marker,
                bool mbarrier_only = false)
576
      : is_emitting_producer_(is_emitting_producer),
577
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
578
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only) {}
579

580
581
582
583
  bool onlyHasWgMMA() const { return only_has_wgmma_; }

  bool hasSimtCopy() const { return has_simt_copy_; }

584
585
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
586
    Role role = marker_.GetRole(op);
587
588
589
590
591
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
592
      return StmtMutator::VisitStmt_(op);
593
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
594
      return GetRef<Stmt>(op);
595
    } else {
596
      return Evaluate(0);
597
    }
598
599
600
  }

  // TODO: only need to add block for ops in the loop
601
  Stmt VisitStmt_(const SeqStmtNode *op) final {
602

603
604
605
606
607
608
609
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
610
611
612
613
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
614

615
616
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
617
618

    auto map = ExtractSyncPattern(op->seq);
619
620
621

    only_has_wgmma_ = WgMMACollector::HasWgMMA(SeqStmt(op->seq));

622
623
624
625
626
627
628
629
630
631
632
633
634
635
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
636
637
638
639
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

640
    if (is_emitting_producer_) { // producer case
641
642
643
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
644
645
646
647
648
649
650
651
652
653
654
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
655
        }
656

657
        for (int pattern_idx : map.acquire[i]) {
658
          PrimExpr acquire_barrier_id =
659
660
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
661
662
                                ? bitwise_xor(parity_, 1)
                                : parity_;
663
664
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
665
666
667
668
669
670
671
672
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
673
          block_stmt.push_back(stmt);
674
          if (collector.HasSimtCopy()) {
675
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
676
            has_simt_copy_ = true;
677
          }
678
679
680
681
682
683
684
685
686
687
688
689
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
690
691
        }
      }
692
    } else { // consumer case
693
694
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
695
696
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
697
        for (int pattern_idx : map.acquire[i]) {
698
          PrimExpr acquire_barrier_id =
699
700
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
701
702
                                ? bitwise_xor(parity_, 1)
                                : parity_;
703
704
705
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
706
707
708
709
710
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
711
712
713
714
715
            if (only_has_wgmma_)
              block_stmt.push_back(makeArriveBarrier(
                  release_barrier_id, 0, EQ(FloorMod(thread_var_, 128), 0)));
            else
              block_stmt.push_back(makeArriveBarrier(release_barrier_id));
716
717
718
719
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
720
721
          }
        }
722
723
724
725
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
726
727
728
729
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
730
731
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

755
  Stmt VisitStmt_(const ForNode *op) final {
756
757
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
758
759
760
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
761
762
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
763
    loop_stack_.emplace_back(op->loop_var, op->extent);
764
765
766
767

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
768

769
    auto group_anno = op->annotations.Get("tl_pipeline_group");
770
771
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
772
773
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
774
775
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
776
777
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
778
779
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
780
781
    }

782
783
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
784
    if (pipeline_info.op_infos.size() > 0) {
785
786
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
787
788
789
790
791
792
793
794
795
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
796
797
798
799
800
801
802
803
    PrimExpr linear_index = loop_stack_[0].first;
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
      linear_index =
          linear_index * loop_stack_[i].second + loop_stack_[i].first;
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
804
805
806
807

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
808
809
    if (result.as<ForNode>() && group_anno && group_info_array.size() > 0 &&
        !is_emitting_producer_) {
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
829
      if (is_emitting_producer_ || !group_anno ||
830
          group_info_array.size() == 0) {
831
        loop_stack_.pop_back();
832
833
        return for_node;
      }
834
      loop_stack_.pop_back();
835
836
      return grouped_for_node;
    }
837
    loop_stack_.pop_back();
838
839
840
    return result;
  }

841
842
843
844
845
846
847
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
848
849
850
    ICHECK(0);
    return Stmt();
  }
851
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
852
853
854
855
856
857
858
859
860
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
861
862
863
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
864
    std::vector<SyncPattern> patterns;
865
866
867
868
869
870
871
872
873
874

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
875
876
877
    }
  };

878
879
880
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
881
    const int n = seq_stmt.size();
882
    std::vector<std::set<const BufferNode *>> reads, writes;
883
884
885
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
886
887
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
888
889
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
890
      std::set<const BufferNode *> read_set, write_set;
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
907
908
909
910
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

911
912
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
913
      for (auto ptr : lhs)
914
915
        if (rhs.count(ptr))
          return true;
916
917
918
919
920
921
922
923
924
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
925
926
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
927
928
929
930
931
932
933
934
935
936
937
938
939
940
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
941
942
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
943
944
945
946
947
948
949
950
951
952
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

953
954
955
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
988
989
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
1003
1004
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
1005
1006

    // for (auto pattern : sync_patterns) {
1007
1008
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
1009
1010
1011
    // }

    SyncPatternMap map;
1012
    map.resize(num_stmts);
1013
    map.patterns = sync_patterns;
1014

1015
    for (size_t i = 0; i < sync_patterns.size(); i++) {
1016
1017
1018
1019
1020
1021
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
1022
1023
    }

1024
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
1025
1026
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
1027
1028
1029
1030
1031
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1032
        } else {
1033
1034
1035
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
1036
1037
        }
      } else {
1038
1039
1040
1041
1042
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1043
        } else {
1044
1045
1046
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
1047
1048
1049
1050
1051
1052
1053
1054
1055
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
1056
  const WarpSpecializedRoleMarker &marker_;
1057
1058
1059
1060
1061

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
1062
  std::vector<std::pair<Var, PrimExpr>> loop_stack_;
1063
  Var thread_var_;
1064
  bool mbarrier_only_ = false;
1065
1066
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
1067
1068
  bool only_has_wgmma_ = false;
  bool has_simt_copy_ = false;
1069
1070
};

1071
1072
1073
1074
1075
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
1076
1077
1078
1079
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
1080
1081
1082
1083
1084
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1085
      if (call->op.same_as(set_max_nreg())) {
1086
1087
1088
1089
1090
1091
1092
1093
1094
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
1095
      } else if (call->op.same_as(no_set_max_nreg())) {
1096
        has_no_set_max_nreg_ = true;
1097
1098
1099
1100
1101
1102
1103
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
1104
  bool has_no_set_max_nreg_ = false;
1105
1106
};

1107
class WarpSpecializedRewriter : public StmtExprMutator {
1108
public:
1109
1110
1111
1112
1113
1114
  WarpSpecializedRewriter(bool disable_warp_specialized,
                          bool disable_shuffle_elect)
      : disable_warp_specialized_(disable_warp_specialized),
        disable_shuffle_elect_(disable_shuffle_elect) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized,
                             bool disable_shuffle_elect) {
1115
1116
1117
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1118
                      "uses thread tags other than threadIdx.x."
1119
1120
1121
1122
1123
1124
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1125
1126
    auto T = WarpSpecializedRewriter(disable_warp_specialized,
                                     disable_shuffle_elect);
1127
    T.nreg_ = SetMaxNRegCollector::Collect(f);
1128
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1129
1130
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1131
1132
1133
1134
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1135
1136
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1154
1155
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1156
1157
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1158
1159
1160
1161
1162
1163
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1164
1165
1166
1167
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1168
1169
1170
1171
1172
1173
1174
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1175
      Stmt new_body =
1176
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_, 0);
1177
1178
1179
1180
1181
      return new_body;
    }
    return for_node;
  }

1182
1183
1184
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1185
1186
1187
1188
1189
1190
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1191
    marker.Prepare(block);
1192
1193
1194
1195
1196
1197
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1210
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1211
1212
1213
1214
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1215
1216
1217
1218
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
1219
    bool only_has_wgmma = consumer.onlyHasWgMMA();
1220
1221
1222
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1223
1224
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1225
1226

    // TODO: estimate the correct reg usage.
1227
1228
1229
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1230
1231
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
1232
    if (dec_reg >= 0 && inc_reg >= 0 && !marker.HasSimtCopy()) {
1233
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1234
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1235
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1236
1237
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1238
1239
1240
1241
1242

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
1243
1244
1245
1246
1247
1248
1249
1250

    producer_code = ThreadIdxRewriter::Rewrite(
        producer_code, thread_iv_->var,
        thread_iv_->var - consumer_thread_extent, producer_thread_extent,
        !disable_shuffle_elect_);
    consumer_code = ThreadIdxRewriter::Rewrite(
        consumer_code, thread_iv_->var, thread_iv_->var, consumer_thread_extent,
        !disable_shuffle_elect_);
1251
1252
1253
1254
1255
1256
1257
1258
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1259
1260
1261
1262
1263
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i)
              ? (producer.hasSimtCopy() ? producer_thread_extent : 1)
              : (only_has_wgmma ? FloorDiv(consumer_thread_extent, 128)
                                : consumer_thread_extent);
1264
1265
1266
      barrier_num_threads.push_back(arrive_thread_count);
    }

1267
    Stmt init_barrier = Evaluate(Call(
1268
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1269
1270
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1271
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1289
  bool disable_warp_specialized_ = false;
1290
  bool disable_shuffle_elect_ = false;
1291
  Array<IntImm> nreg_;
1292
1293
};

1294
1295
1296
1297
1298
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1299
1300
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1301
1302
1303
1304
1305
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1306
    has_warp_specialization_ = false;
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1330
  void VisitStmt_(const AttrStmtNode *op) final {
1331
1332
1333
1334
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1345
  bool has_tma_op_{false};
1346
  IterVar thread_var_;
1347
  bool has_mbarrier_op_{false};
1348
  bool has_warp_specialization_{false};
1349
1350
};

1351
1352
1353
1354
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1355
1356
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1357
1358
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
1359
1360
1361
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
1362
1363
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized,
                                                 disable_shuffle_elect);
1364
1365
    }
    return f;
1366
1367
1368
1369
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1370
1371
1372
1373
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1374

1375
1376
} // namespace tl
} // namespace tvm