warp_specialized_rewriter.cc 51.9 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "arith/ir_visitor_with_analyzer.h"
7
#include "tir/analysis/var_use_def_analysis.h"
8
#include <tvm/ffi/reflection/registry.h>
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"
16
#include "./common/collector.h"
17
18
19
20
21

namespace tvm {
namespace tl {

using namespace tir;
22
using arith::IRVisitorWithAnalyzer;
23
24
25

enum class Role { kConsumer, kProducer, kBoth };

26
class ProducerBufferDetector : public StmtExprVisitor {
27
public:
28
29
30
31
32
  ProducerBufferDetector(
      std::unordered_set<const BufferNode *> cur_producer_buffers)
      : cur_producer_buffers_(cur_producer_buffers) {}

  void clear() { has_producer_buffer_ = false; }
33
34

  void VisitExpr_(const CallNode *call) final {
35
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
36
      has_producer_buffer_ = true;
37
    }
38
    StmtExprVisitor::VisitExpr_(call);
39
40
  }

41
42
43
44
45
46
47
48
49
  void VisitExpr_(const BufferLoadNode *op) final {
    if (cur_producer_buffers_.count(op->buffer.get())) {
      has_producer_buffer_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_producer_buffer_ = false;
  std::unordered_set<const BufferNode *> cur_producer_buffers_;
50
51
52
53
54
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
  auto FindProducerusedBuffer(Stmt stmt) {
55
56
57
58
59
60
61
62
63
64
    producer_buffers_.clear();
    std::unordered_set<const BufferNode *> last_producer_buffers_;
    for (;;) {
      VisitStmt(stmt);
      if (producer_buffers_ == last_producer_buffers_) {
        break;
      }
      last_producer_buffers_ = producer_buffers_;
    }
    return producer_buffers_;
65
66
67
68
69
70
71
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
72
      producer_buffers_.insert(buffer.first);
73
74
75
76
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
77
78
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->then_case);
79
    if (op->else_case.defined()) {
80
      producer_buffer_detector(op->else_case.value());
81
    }
82
    if (producer_buffer_detector.has_producer_buffer_) {
83
84
85
86
87
88
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
89
90
91
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->body);
    if (producer_buffer_detector.has_producer_buffer_) {
92
93
94
95
96
97
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

98
99
100
101
102
103
104
  void VisitStmt_(const BufferStoreNode *op) final {
    if (producer_buffers_.count(op->buffer.get())) {
      InsertBuffer(op->value);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

105
106
107
108
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
109
          producer_buffers_.insert(buffer_load->buffer.get());
110
111
112
113
114
        }
      }
    }
  }

115
private:
116
  std::unordered_set<const BufferNode *> producer_buffers_;
117
118
};

119
class WarpSpecializedRoleMarker : public StmtVisitor {
120
public:
121
122
123
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

124
125
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
126
    producer_buffers_ = finder.FindProducerusedBuffer(stmt);
127
128
  }

129
  Role GetRole(const StmtNode *stmt) const {
130
131
132
133
134
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

135
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
136

137
  void VisitStmt_(const EvaluateNode *op) final {
138
139
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
140
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
141
142
143
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
144
145
146
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
147
148
149
150
    }
    SetRole(op, role);
  }

151
152
153
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
154
    if (producer_buffers_.count(op->buffer.get())) {
155
156
157
      SetRole(op, Role::kBoth);
      return;
    }
158
159
160
161
162
163
164
165
166
167
168
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
169
170
    if (reads.empty())
      role = Role::kConsumer;
171
172
173
174
175
176
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
177
178
    if (role == Role::kProducer)
      has_simt_copy_ = true;
179
180
181
    SetRole(op, role);
  }

182
  void VisitStmt_(const SeqStmtNode *op) final {
183
184
185
186
187
188
189
190
191
192
193
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

194
  void VisitStmt_(const IfThenElseNode *op) final {
195
196
197
198
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
199
200
      if (role != role_else)
        role = Role::kBoth;
201
202
203
204
    }
    SetRole(op, role);
  }

205
  void VisitStmt_(const BlockRealizeNode *op) final {
206
207
208
209
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

210
211
212
213
214
215
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

216
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
217
218
219
220
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

221
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
222
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
223
224
225
226
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
227
228
229
230
231

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

232
233
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
234
  Map<Var, Buffer> buffer_data_to_buffer_;
235
  std::unordered_map<const StmtNode *, Role> map_;
236
237
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
238
  std::unordered_set<const BufferNode *> producer_buffers_;
239
240
241
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
242
  return Call(DataType::Handle(), get_mbarrier(), {barrier_id});
243
244
}

245
246
247
248
249
250
251
252
253
static Stmt makeArriveBarrier(PrimExpr barrier_id, int cta_id = -1,
                              PrimExpr pred = 1) {
  Array<PrimExpr> args = {makeGetBarrier(barrier_id)};
  if (cta_id != -1) {
    args.push_back(cta_id);
    args.push_back(pred);
  }
  return Evaluate(
      Call(DataType::Handle(), builtin::ptx_arrive_barrier(), args));
254
255
256
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
257
258
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
259
260
261
262
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
263
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
264
                   {makeGetBarrier(barrier_id), parity});
265
266
267
268
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
269
public:
270
271
  ProducerTraitsCollector() { Clear(); }

272
  void Clear() { has_simt_copy = false; }
273
274
275
276
277

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

278
private:
279
280
281
282
283
284
285
286
287
288
289
290
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

291
  void VisitExpr_(const BufferLoadNode *op) final {
292
293
294
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
295
296
297
298
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
299
  bool in_if_cond_ = false;
300
301
302
303
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
304
public:
305
306
307
308
309
310
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

311
312
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
313
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
314
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
315
316
317
318
319
320
321
322
323
324
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
325
public:
326
327
328
329
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced,
                      PrimExpr thread_extent, bool do_shuffle = false) {
    auto rewriter =
        ThreadIdxRewriter(thread_var, replaced, thread_extent, do_shuffle);
330
331
332
    return rewriter(stmt);
  }

333
private:
334
335
336
337
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced, PrimExpr thread_extent,
                    bool do_shuffle)
      : thread_var_(thread_var), replaced_(replaced),
        thread_extent_(thread_extent), do_shuffle_(do_shuffle) {}
338

339
  PrimExpr VisitExpr_(const VarNode *var) final {
340
341
342
343
344
345
346
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
      return parameter == thread_var_.get();
    };
    maybe_thread_opt_ = false;
    if (!op->else_case.defined() && op->condition.as<EQNode>() &&
        UsesVar(op->condition, f_uses_thread_index) &&
        !(UsesVar(op->then_case, f_uses_thread_index))) {
      auto eq_op = Downcast<EQ>(op->condition);
      if (eq_op->a.as<VarNode>() == thread_var_.get() ||
          eq_op->b.as<VarNode>() == thread_var_.get()) {
        maybe_thread_opt_ = true;
      }
      maybe_thread_opt_ = do_shuffle_ && maybe_thread_opt_;
    }
    if (maybe_thread_opt_)
      return IfThenElse(
          Call(DataType::Bool(), tl_shuffle_elect(), {thread_extent_}),
          StmtExprMutator::VisitStmt(op->then_case), std::nullopt);
    else
      return StmtExprMutator::VisitStmt_(op);
  }

370
371
  Var thread_var_;
  PrimExpr replaced_;
372
373
374
  PrimExpr thread_extent_;
  bool maybe_thread_opt_ = false;
  bool do_shuffle_;
375
376
};

377
378
379
380
381
382
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
383
384
385
386
387
388
389
390
391
392
393
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
394
395
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

412
  PipelineInfo(const PipelineInfo &other) {
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
475
476
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
477
478
479
480
481
482
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
483
public:
484
485
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

486
487
private:
  Stmt VisitStmt_(const ForNode *op) final {
488
489
490
491
492
493
494
495
496
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
497
498
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
499
      Array<Stmt> block_stmt;
500
501
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
502
        // ICHECK(group_info_[i][j].as<IntImmNode>());
503
504
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
505
506
507
508
509
510
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
511
512
513
514
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
515
516
517
518
519
520
521
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
522
    Map<String, Any> for_annotations = op->annotations;
523
524
525
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
526
527
528
529
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
530
531
532
533
534
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

class WgMMACollector : public StmtExprVisitor {
public:
  WgMMACollector() = default;

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl_gemm()) || op->op.same_as(tl_gemm_sp())) {
      auto op_name = std::string(op->args[0].as<StringImmNode>()->value);
      if (has_wgmma_) {
        has_wgmma_ =
            op_name.find("false") == std::string::npos && !in_if_scope_;
      }
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    in_if_scope_ = true;
    StmtExprVisitor::VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      StmtExprVisitor::VisitStmt(op->else_case.value());
    }
    in_if_scope_ = false;
  }

  static bool HasWgMMA(Stmt stmt) {
    auto collector = WgMMACollector();
    collector(stmt);
    return collector.has_wgmma_;
  }

  bool has_wgmma_{true};
  bool in_if_scope_{false};
};

570
class WSCodeEmitter : public StmtMutator {
571
public:
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
  /**
         * @brief Construct a warp-specialized code emitter configured for producer or consumer emission.
         *
         * Initializes a WSCodeEmitter that will emit barrier-aware, role-filtered code for a single
         * warp-specialized block. The emitter is configured with the loop/thread iteration variable,
         * buffer mapping, role marker used to classify statements, and two flags that control emission
         * behavior:
         *
         * - `mbarrier_only`: when true, emission is restricted to barrier-related operations only.
         * - `only_has_wgmma`: when true, the emitter will account for the presence of WgMMA
         *   (workgroup MMA) operations when computing barrier/thread gating behavior.
         *
         * @param is_emitting_producer True to emit producer-side groups; false to emit consumer-side groups.
         * @param thread_iv IterVar representing the thread iteration variable (threadIdx.*) whose Var is used
         *                  for thread-index rewrites and gating.
         * @param buffer_data_to_buffer Map from buffer data Var to the corresponding Buffer (used to resolve
         *                              buffer references during emission).
         * @param marker Role marker that classifies statements as producer/consumer/both; used to filter
         *               which statements are emitted on this path.
         * @param mbarrier_only If true, restrict emission to mbarrier-related statements and helpers.
         * @param only_has_wgmma If true, adjust emission and barrier-thread-count logic for blocks that
         *                       contain WgMMA operations.
         */
        WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
596
                Map<Var, Buffer> buffer_data_to_buffer,
597
                const WarpSpecializedRoleMarker &marker,
598
                bool mbarrier_only = false, bool only_has_wgmma = false)
599
      : is_emitting_producer_(is_emitting_producer),
600
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
601
602
        thread_var_(thread_iv->var), mbarrier_only_(mbarrier_only),
        only_has_wgmma_(only_has_wgmma) {}
603

604
605
606
607
608
609
610
611
612
  /**
 * @brief Whether a SIMT-style bulk copy was detected.
 *
 * Returns true when a simulated SIMT (thread-parallel) copy pattern was observed
 * during analysis/emission, which can affect barrier insertion and copy emission.
 *
 * @return true if a SIMT copy was detected; false otherwise.
 */
bool hasSimtCopy() const { return has_simt_copy_; }
613

614
615
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
616
    Role role = marker_.GetRole(op);
617
618
619
620
621
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
622
      return StmtMutator::VisitStmt_(op);
623
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
624
      return GetRef<Stmt>(op);
625
    } else {
626
      return Evaluate(0);
627
    }
628
629
  }

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
  /**
   * @brief Visit and transform a SeqStmt node, emitting grouped blocks with barrier
   * synchronization according to producer/consumer roles.
   *
   * This method examines the sequence to determine whether producer-side
   * synchronization is required (based on marker_ roles). If no producer sync is
   * needed it delegates to FilterByRole. Otherwise it:
   * - Recursively visits and transforms each child statement.
   * - Extracts an acquire/release sync pattern for the sequence via
   *   ExtractSyncPattern.
   * - For producer emission (is_emitting_producer_ == true):
   *   - Skips consumer-only statements unless marker_ marks a statement as Both,
   *     in which case the statement is emitted as its own group.
   *   - For each statement, inserts parity waits for acquire patterns, rewrites
   *     release statements with MbarrierRewriter using a computed barrier id,
   *     collects SimT-copy presence (setting has_simt_copy_ and inserting
   *     cp.async barriers when found), optionally emits arrive barriers for
   *     release-after events, and emits each resulting set of statements as a
   *     group block annotated with "stmt_group".
   * - For consumer emission (is_emitting_producer_ == false):
   *   - Skips producer-only statements.
   *   - Inserts parity waits for acquire patterns, appends the transformed
   *     statement, and emits arrive barriers for release-after events. When
   *     only_has_wgmma_ is set, the arrive barrier uses a per-thread predicate
   *     (FloorMod(thread_var_,128)==0) with CTA=0; otherwise a full arrive is
   *     emitted.
   *   - Recomputes pipeline_info_ to drop producer-only ops.
   *
   * Side effects / state updates:
   * - Increments num_barriers_ by (number of extracted patterns * num_stages_).
   * - May set has_simt_copy_ when a SimT copy is detected in producer rewrites.
   * - Inserts barrier ids into released_barrier_ for release-after events.
   * - Updates pipeline_info_ for the consumer path to remove producer ops.
   *
   * The resulting statements are emitted as grouped blocks (via MakeGroupBlock)
   * with the annotation "stmt_group" and returned as either a single Stmt (if
   * there's only one group) or a SeqStmt containing the grouped blocks.
   *
   * @return Stmt The transformed statement (either a single group block or a
   * SeqStmt of group blocks).
   */
671
  Stmt VisitStmt_(const SeqStmtNode *op) final {
672

673
674
675
676
677
678
679
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
680
681
682
683
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
684

685
686
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
687
688

    auto map = ExtractSyncPattern(op->seq);
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
704
705
706
707
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

708
    if (is_emitting_producer_) { // producer case
709
710
711
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
712
713
714
715
716
717
718
719
720
721
722
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
            new_body.push_back(MakeGroupBlock(
                block_stmt.size() == 1 ? block_stmt[0]
                                       : SeqStmt(std::move(block_stmt)),
                annotations));
            continue;
          }
723
        }
724

725
        for (int pattern_idx : map.acquire[i]) {
726
          PrimExpr acquire_barrier_id =
727
728
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
729
730
                                ? bitwise_xor(parity_, 1)
                                : parity_;
731
732
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
733
734
735
736
737
738
739
740
        ICHECK(map.release[i].size() > 0);
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
741
          block_stmt.push_back(stmt);
742
          if (collector.HasSimtCopy()) {
743
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
744
            has_simt_copy_ = true;
745
          }
746
747
748
749
750
751
752
753
754
755
756
757
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
758
759
        }
      }
760
    } else { // consumer case
761
762
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
763
764
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
765
        for (int pattern_idx : map.acquire[i]) {
766
          PrimExpr acquire_barrier_id =
767
768
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
769
770
                                ? bitwise_xor(parity_, 1)
                                : parity_;
771
772
773
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
774
775
776
777
778
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
779
780
781
782
783
            if (only_has_wgmma_)
              block_stmt.push_back(makeArriveBarrier(
                  release_barrier_id, 0, EQ(FloorMod(thread_var_, 128), 0)));
            else
              block_stmt.push_back(makeArriveBarrier(release_barrier_id));
784
785
786
787
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
788
789
          }
        }
790
791
792
793
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
794
795
796
797
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
798
799
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

823
  Stmt VisitStmt_(const ForNode *op) final {
824
825
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
826
827
828
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
829
830
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
831
    loop_stack_.emplace_back(op->loop_var, op->extent);
832
833
834
835

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
836

837
    auto group_anno = op->annotations.Get("tl_pipeline_group");
838
839
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
840
841
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
842
843
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
844
845
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
846
847
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
848
849
    }

850
851
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
852
    if (pipeline_info.op_infos.size() > 0) {
853
854
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
855
856
857
858
859
860
861
862
863
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
864
865
866
867
868
869
870
871
    PrimExpr linear_index = loop_stack_[0].first;
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
      linear_index =
          linear_index * loop_stack_[i].second + loop_stack_[i].first;
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
872
873
874
875

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
876
877
    if (result.as<ForNode>() && group_anno && group_info_array.size() > 0 &&
        !is_emitting_producer_) {
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
897
      if (is_emitting_producer_ || !group_anno ||
898
          group_info_array.size() == 0) {
899
        loop_stack_.pop_back();
900
901
        return for_node;
      }
902
      loop_stack_.pop_back();
903
904
      return grouped_for_node;
    }
905
    loop_stack_.pop_back();
906
907
908
    return result;
  }

909
910
911
912
913
914
915
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
916
917
918
    ICHECK(0);
    return Stmt();
  }
919
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
920
921
922
923
924
925
926
927
928
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
929
930
931
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
932
    std::vector<SyncPattern> patterns;
933
934
935
936
937
938
939
940
941
942

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
943
944
945
    }
  };

946
947
948
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
949
    const int n = seq_stmt.size();
950
    std::vector<std::set<const BufferNode *>> reads, writes;
951
952
953
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
954
955
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
956
957
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
958
      std::set<const BufferNode *> read_set, write_set;
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
975
976
977
978
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

979
980
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
981
      for (auto ptr : lhs)
982
983
        if (rhs.count(ptr))
          return true;
984
985
986
987
988
989
990
991
992
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
993
994
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
1009
1010
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

1021
1022
1023
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
1056
1057
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
1071
1072
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
1073
1074

    // for (auto pattern : sync_patterns) {
1075
1076
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
1077
1078
1079
    // }

    SyncPatternMap map;
1080
    map.resize(num_stmts);
1081
    map.patterns = sync_patterns;
1082

1083
    for (size_t i = 0; i < sync_patterns.size(); i++) {
1084
1085
1086
1087
1088
1089
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
1090
1091
    }

1092
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
1093
1094
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
1095
1096
1097
1098
1099
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1100
        } else {
1101
1102
1103
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
1104
1105
        }
      } else {
1106
1107
1108
1109
1110
        if (map.release[i].size() == 0) {
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1111
        } else {
1112
1113
1114
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
1115
1116
1117
1118
1119
1120
1121
1122
1123
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
1124
  const WarpSpecializedRoleMarker &marker_;
1125
1126
1127
1128
1129

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
1130
  std::vector<std::pair<Var, PrimExpr>> loop_stack_;
1131
  Var thread_var_;
1132
  bool mbarrier_only_ = false;
1133
1134
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
1135
1136
  bool only_has_wgmma_ = false;
  bool has_simt_copy_ = false;
1137
1138
};

1139
1140
1141
1142
1143
class SetMaxNRegCollector : public StmtExprVisitor {
public:
  static Array<IntImm> Collect(const PrimFunc &f) {
    SetMaxNRegCollector collector;
    collector(f->body);
1144
1145
1146
1147
    return collector.has_no_set_max_nreg_
               ? Array<IntImm>({IntImm(DataType::Int(32), -1),
                                IntImm(DataType::Int(32), -1)})
               : collector.nreg_;
1148
1149
1150
1151
1152
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1153
      if (call->op.same_as(set_max_nreg())) {
1154
1155
1156
1157
1158
1159
1160
1161
1162
        int reg_hint = call->args[0].as<IntImmNode>()->value;
        int is_inc = call->args[1].as<IntImmNode>()->value;
        ICHECK(reg_hint <= 240 && reg_hint >= 24)
            << "Invalid reg hint: " << reg_hint;
        ICHECK(is_inc == 0 || is_inc == 1) << "Invalid is_inc: " << is_inc;

        // producer should decrease register hint while consumer should increase
        // register hint
        nreg_.Set(is_inc, IntImm(DataType::Int(32), reg_hint));
1163
      } else if (call->op.same_as(no_set_max_nreg())) {
1164
        has_no_set_max_nreg_ = true;
1165
1166
1167
1168
1169
1170
1171
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  Array<IntImm> nreg_{IntImm(DataType::Int(32), 0),
                      IntImm(DataType::Int(32), 0)};
1172
  bool has_no_set_max_nreg_ = false;
1173
1174
};

1175
class WarpSpecializedRewriter : public StmtExprMutator {
1176
public:
1177
1178
1179
1180
1181
1182
  WarpSpecializedRewriter(bool disable_warp_specialized,
                          bool disable_shuffle_elect)
      : disable_warp_specialized_(disable_warp_specialized),
        disable_shuffle_elect_(disable_shuffle_elect) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized,
                             bool disable_shuffle_elect) {
1183
1184
1185
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1186
                      "uses thread tags other than threadIdx.x."
1187
1188
1189
1190
1191
1192
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1193
1194
    auto T = WarpSpecializedRewriter(disable_warp_specialized,
                                     disable_shuffle_elect);
1195
    T.nreg_ = SetMaxNRegCollector::Collect(f);
1196
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1197
1198
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1199
1200
1201
1202
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1203
1204
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1222
1223
  Stmt VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
1224
1225
      if (call->op.same_as(set_max_nreg()) ||
          call->op.same_as(no_set_max_nreg())) {
1226
1227
1228
1229
1230
1231
        return Evaluate(0);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

1232
1233
1234
1235
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1236
1237
1238
1239
1240
1241
1242
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1243
      Stmt new_body =
1244
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_, 0);
1245
1246
1247
1248
1249
      return new_body;
    }
    return for_node;
  }

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
  /**
   * @brief Rewrite a BlockRealize for warp specialization, inserting barriers and
   *        emitting producer/consumer bodies.
   *
   * This visitor handles BlockRealize nodes when a thread IterVar (thread_iv_)
   * is defined and warp-specialization is applicable. It:
   * - Determines producer/consumer roles via WarpSpecializedRoleMarker and
   *   returns the original block if no producer is detected.
   * - If warp specialization is disabled, emits only mbarrier initialization and
   *   the mbarrier-only transformed body.
   * - Otherwise, detects WgMMA usage for the block body and constructs separate
   *   WSCodeEmitter instances for producer and consumer paths (propagating the
   *   WgMMA flag to the consumer emitter).
   * - Generates producer/consumer code, applies register hint calls (set_max_nreg)
   *   when available, and rewrites thread indices with ThreadIdxRewriter to
   *   partition threads between producer and consumer roles.
   * - Computes and initializes a list of mbarrier handles with per-barrier
   *   arrive thread counts (taking SIMT-copy and WgMMA cases into account).
   * - Wraps the transformed body in an IfThenElse that dispatches producer vs
   *   consumer based on thread index, and annotates the region with the
   *   "kWarpSpecializationScope" attribute that contains producer/consumer
   *   thread extents.
   *
   * Side effects:
   * - May update member state: only_has_wgmma_, updated_thread_extent_,
   *   need_update_thread_extent_.
   * - May abort via ICHECK if invariants (e.g., matching barrier counts) are
   *   violated.
   *
   * @return The possibly rewritten BlockRealize statement (original when no
   *         warp-specialization is applied or thread_iv_ is undefined).
   */
1282
1283
1284
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1285
1286
1287
1288
1289
1290
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1291
    marker.Prepare(block);
1292
1293
1294
1295
1296
1297
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1310
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1311
1312
1313
1314
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1315
    only_has_wgmma_ = WgMMACollector::HasWgMMA(block->body);
1316
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
1317
1318
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker,
                           false, only_has_wgmma_);
1319
1320
1321
1322
1323
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1324
1325
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1326
1327

    // TODO: estimate the correct reg usage.
1328
1329
1330
    int dec_reg = nreg_[0].as<IntImmNode>()->value;
    int inc_reg = nreg_[1].as<IntImmNode>()->value;

1331
1332
    auto inc_reg_stmt = Evaluate(0);
    auto dec_reg_stmt = Evaluate(0);
1333
    if (dec_reg >= 0 && inc_reg >= 0 && !marker.HasSimtCopy()) {
1334
      inc_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1335
                                   {inc_reg == 0 ? 240 : inc_reg, 1}));
1336
      dec_reg_stmt = Evaluate(Call(DataType::Handle(), set_max_nreg(),
1337
1338
                                   {dec_reg == 0 ? 24 : dec_reg, 0}));
    }
1339
1340
1341
1342
1343

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
1344
1345
1346
1347
1348
1349
1350
1351

    producer_code = ThreadIdxRewriter::Rewrite(
        producer_code, thread_iv_->var,
        thread_iv_->var - consumer_thread_extent, producer_thread_extent,
        !disable_shuffle_elect_);
    consumer_code = ThreadIdxRewriter::Rewrite(
        consumer_code, thread_iv_->var, thread_iv_->var, consumer_thread_extent,
        !disable_shuffle_elect_);
1352
1353
1354
1355
1356
1357
1358
1359
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1360
1361
1362
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i)
              ? (producer.hasSimtCopy() ? producer_thread_extent : 1)
1363
1364
              : (only_has_wgmma_ ? FloorDiv(consumer_thread_extent, 128)
                                 : consumer_thread_extent);
1365
1366
1367
      barrier_num_threads.push_back(arrive_thread_count);
    }

1368
    Stmt init_barrier = Evaluate(Call(
1369
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1370
1371
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1372
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1390
  bool disable_warp_specialized_ = false;
1391
  bool disable_shuffle_elect_ = false;
1392
  Array<IntImm> nreg_;
1393
  bool only_has_wgmma_ = false;
1394
1395
};

1396
1397
1398
1399
1400
class WarpSpecializedDetector : public IRVisitorWithAnalyzer {
public:
  static bool Detect(Stmt stmt, bool skip_thread_partition = false) {
    WarpSpecializedDetector detector;
    detector.VisitStmt(stmt);
1401
1402
    return detector.has_warp_specialization_ ||
           (detector.has_tma_op_ && detector.has_mbarrier_op_);
1403
1404
1405
1406
1407
  }

  WarpSpecializedDetector() {
    has_tma_op_ = false;
    has_mbarrier_op_ = false;
1408
    has_warp_specialization_ = false;
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
  }

private:
  void VisitStmt_(const EvaluateNode *op) final {
    if (const CallNode *call = op->value.as<CallNode>()) {
      if (call->op.same_as(create_list_of_mbarrier()) ||
          call->op.same_as(mbarrier_wait_parity()) ||
          call->op.same_as(builtin::ptx_arrive_barrier()) ||
          call->op.same_as(builtin::ptx_cp_async_barrier())) {
        has_mbarrier_op_ = true;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col()) ||
        op->op.same_as(set_max_nreg())) {
      has_tma_op_ = true;
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

1432
  void VisitStmt_(const AttrStmtNode *op) final {
1433
1434
1435
1436
    if (op->attr_key == "warp_specialize" &&
        op->value.as<IntImmNode>()->value == 1) {
      has_warp_specialization_ = true;
    }
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

1447
  bool has_tma_op_{false};
1448
  IterVar thread_var_;
1449
  bool has_mbarrier_op_{false};
1450
  bool has_warp_specialization_{false};
1451
1452
};

1453
1454
1455
1456
using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
1457
1458
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1459
1460
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
1461
1462
1463
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
1464
1465
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized,
                                                 disable_shuffle_elect);
1466
1467
    }
    return f;
1468
1469
1470
1471
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1472
1473
1474
1475
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1476

1477
1478
} // namespace tl
} // namespace tvm