warp_specialized_rewriter.cc 35.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file warp_specialized_pipeline.cc
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../op/builtin.h"

namespace tvm {
namespace tl {

using namespace tir;

enum class Role { kConsumer, kProducer, kBoth };

class WarpSpecializedRoleMarker : public StmtVisitor {
41
public:
42
43
44
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

45
  Role GetRole(const StmtNode *stmt) const {
46
47
48
49
50
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

51
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
52

53
  void VisitStmt_(const EvaluateNode *op) final {
54
55
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
56
57
      if (call->op.same_as(TMALoadOp()) ||
          call->op.same_as(TMALoadIm2ColOp())) {
58
59
60
61
62
63
64
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
    }
    SetRole(op, role);
  }

65
66
67
  void VisitStmt_(const BufferStoreNode *op) final {
    bool is_shared_store =
        op->buffer.scope() == "shared.dyn" || op->buffer.scope() == "shared";
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
85
86
    if (role == Role::kProducer)
      has_simt_copy_ = true;
87
88
89
    SetRole(op, role);
  }

90
  void VisitStmt_(const SeqStmtNode *op) final {
91
92
93
94
95
96
97
98
99
100
101
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

102
  void VisitStmt_(const IfThenElseNode *op) final {
103
104
105
106
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
107
108
      if (role != role_else)
        role = Role::kBoth;
109
110
111
112
    }
    SetRole(op, role);
  }

113
  void VisitStmt_(const BlockRealizeNode *op) final {
114
115
116
117
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

118
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
119
120
121
122
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

123
124
125
126
127
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
128
129
130
131
132

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

133
134
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
135
  Map<Var, Buffer> buffer_data_to_buffer_;
136
  std::unordered_map<const StmtNode *, Role> map_;
137
138
139
140
141
142
143
144
145
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
  return Call(DataType::Handle(), GetMBarrierOp(), {barrier_id});
}

static Stmt makeExpectTX(PrimExpr barrier_id, PrimExpr bytes) {
146
147
  auto call = Call(DataType::Handle(), MBarrierExpectTX(),
                   {makeGetBarrier(barrier_id), bytes});
148
149
150
151
  return Evaluate(call);
}

static Stmt makeArriveBarrier(PrimExpr barrier_id) {
152
153
  auto call = Call(DataType::Handle(), builtin::ptx_arrive_barrier(),
                   {makeGetBarrier(barrier_id)});
154
155
156
157
  return Evaluate(call);
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
158
159
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
                   {makeGetBarrier(barrier_id)});
160
161
162
163
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
164
165
  auto call = Call(DataType::Handle(), MBarrierWaitParity(),
                   {makeGetBarrier(barrier_id), parity});
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  return Evaluate(call);
}

// static bool isGemm(Stmt stmt) {
//   bool is_gemm = false;
//   if (stmt.as<EvaluateNode>()) {
//     auto call = Downcast<Evaluate>(stmt)->value.as<CallNode>();
//     if (call && call->op.same_as(Op::Get("tir.call_extern"))) {
//       if (call->args[0].as<StringImmNode>()) {
//         std::string name = Downcast<StringImm>(call->args[0])->value;
//         if (name.find("gemm") != std::string::npos) {
//           is_gemm = true;
//         }
//       }
//     }
//   }
//   return is_gemm;
// }

class ProducerTraitsCollector : public StmtExprVisitor {
186
public:
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  ProducerTraitsCollector() { Clear(); }

  void Clear() {
    bulk_copy_bytes = 0;
    loop_extents = 1;
    has_simt_copy = false;
  }

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  bool HasSimtCopy() { return has_simt_copy; }

  PrimExpr BulkCopyBytes() { return bulk_copy_bytes; }

201
202
private:
  void VisitExpr_(const CallNode *call) final {
203
204
205
206
207
208
209
210
211
    if (call->op.same_as(TMALoadOp()) || call->op.same_as(TMALoadIm2ColOp())) {
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      int type_bytes = access_ptr->args[0]->dtype.bytes();
      bulk_copy_bytes += access_ptr->args[3] * loop_extents * type_bytes;
    }
    StmtExprVisitor::VisitExpr_(call);
  }

212
  void VisitStmt_(const ForNode *op) final {
213
214
215
216
217
218
    PrimExpr old_loop_evtents = loop_extents;
    loop_extents *= op->extent;
    StmtExprVisitor::VisitStmt_(op);
    loop_extents = old_loop_evtents;
  }

219
  void VisitExpr_(const BufferLoadNode *op) final {
220
221
222
223
224
225
226
227
228
229
230
    has_simt_copy = true;
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_simt_copy;
  PrimExpr bulk_copy_bytes;
  PrimExpr loop_extents;
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
231
public:
232
233
234
235
236
237
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
    rewriter.producer_barrier_idx_ = barrier_id;
    return rewriter(stmt);
  }

238
239
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
240
241
242
243
244
245
246
247
248
249
250
251
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
    if (call->op.same_as(TMALoadOp()) || call->op.same_as(TMALoadIm2ColOp())) {
      Call access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
      call.CopyOnWrite()->args.Set(1, makeGetBarrier(producer_barrier_idx_));
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
252
public:
253
254
255
256
257
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced) {
    auto rewriter = ThreadIdxRewriter(thread_var, replaced);
    return rewriter(stmt);
  }

258
private:
259
260
261
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced)
      : thread_var_(thread_var), replaced_(replaced) {}

262
  PrimExpr VisitExpr_(const VarNode *var) final {
263
264
265
266
267
268
269
270
271
272
273
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

  Var thread_var_;
  PrimExpr replaced_;
};

274
275
276
277
278
279
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
280
281
282
283
284
285
286
287
288
289
290
  return block;
}

struct OpInfo {
  int group_size, order, stage;
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
291
292
  PipelineInfo(Array<Array<Integer>> group_info, Array<Integer> order_info,
               Array<Integer> stage_info) {
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

309
  PipelineInfo(const PipelineInfo &other) {
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    for (auto op_info : other.op_infos) {
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
    std::cout << "Print op_infos:" << std::endl;
    for (size_t i = 0; i < op_infos.size(); i++) {
372
373
      std::cout << i << " " << op_infos[i].group_size << " "
                << op_infos[i].order << " " << op_infos[i].stage << std::endl;
374
375
376
377
378
379
    }
    std::cout << "End of print" << std::endl;
  }
};

class GroupOpRewriter : public StmtExprMutator {
380
public:
381
382
  GroupOpRewriter(PipelineInfo pipeline_info) : pipeline_info_(pipeline_info) {}

383
384
private:
  Stmt VisitStmt_(const ForNode *op) final {
385
386
387
388
389
390
391
392
393
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
394
395
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
396
      Array<Stmt> block_stmt;
397
398
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
399
        // ICHECK(group_info_[i][j].as<IntImmNode>());
400
401
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
402
403
404
405
406
407
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
408
409
410
411
      new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                            ? block_stmt[0]
                                            : SeqStmt(std::move(block_stmt)),
                                        annotations));
412
413
414
415
416
417
418
419
420
421
422
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
    for (auto op_info : pipeline_info_.op_infos) {
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
    Map<String, ObjectRef> for_annotations = op->annotations;
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
423
424
425
426
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
427
428
429
430
431
432
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
class WSCodeEmitter : public StmtMutator {
433
public:
434
  WSCodeEmitter(bool is_emitting_producer, IterVar thread_iv,
435
436
                Map<Var, Buffer> buffer_data_to_buffer,
                const WarpSpecializedRoleMarker &marker)
437
      : is_emitting_producer_(is_emitting_producer),
438
        buffer_data_to_buffer_(buffer_data_to_buffer), marker_(marker),
439
440
        thread_var_(thread_iv->var) {}

441
442
private:
  template <typename NodeType> Stmt FilterByRole(const NodeType *op) {
443
444
445
446
447
448
449
450
451
452
    Role role = marker_.GetRole(op);
    if (role == Role::kBoth)
      return StmtMutator::VisitStmt_(op);
    else if ((role == Role::kProducer) == is_emitting_producer_)
      return GetRef<Stmt>(op);
    else
      return Evaluate(0);
  }

  // TODO: only need to add block for ops in the loop
453
  Stmt VisitStmt_(const SeqStmtNode *op) final {
454
455
456
457
458
459
460
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
461
462
463
464
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
465

466
467
    auto seq_transformed =
        op->seq.Map([&](Stmt stmt) { return VisitStmt(stmt); });
468
469
470
471

    auto map = ExtractSyncPattern(op->seq);
    // std::cout << "Print ExtractSyncPattern" << std::endl;
    // for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
472
473
    //   std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
    //   << map.release_after[i] << std::endl;
474
475
476
    // }
    // std::cout << "Print sync pattern" << std::endl;
    // for (auto pattern : map.patterns) {
477
478
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
479
480
481
482
483
484
485
    // }
    // std::cout << "End of ExtractSyncPattern" << std::endl;
    // pipeline_info_.PrintPipelineInfo();
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

486
    if (is_emitting_producer_) { // producer case
487
488
489
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
490
491
        if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
          continue;
492
493
        if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
          block_stmt.push_back(seq_transformed[i]);
494
495
496
497
          new_body.push_back(MakeGroupBlock(
              block_stmt.size() == 1 ? block_stmt[0]
                                     : SeqStmt(std::move(block_stmt)),
              annotations));
498
499
500
          continue;
        }
        if (map.acquire[i] != -1) {
501
502
503
504
505
          PrimExpr acquire_barrier_id =
              stage_ + num_barriers_ + num_stages_ * map.acquire[i];
          PrimExpr parity = map.is_loop_dependency(map.acquire[i])
                                ? bitwise_xor(parity_, 1)
                                : parity_;
506
507
508
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        ICHECK(map.release[i] >= 0);
509
510
511
512
        PrimExpr release_barrier_id =
            stage_ + num_barriers_ + num_stages_ * map.release[i];
        auto stmt =
            MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
513
514
        collector.Collect(stmt);
        if (!is_zero(collector.BulkCopyBytes())) {
515
516
517
          auto expect_tx = IfThenElse(
              EQ(thread_var_, 0),
              makeExpectTX(release_barrier_id, collector.BulkCopyBytes()));
518
519
520
521
522
523
524
525
526
          block_stmt.push_back(expect_tx);
        }
        block_stmt.push_back(stmt);
        if (collector.HasSimtCopy() > 0) {
          block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
        }
        if (map.release_after[i]) {
          block_stmt.push_back(makeArriveBarrier(release_barrier_id));
          for (int j = 0; j < num_stages_; j++) {
527
528
            released_barrier_.insert(j + num_barriers_ +
                                     num_stages_ * map.release[i]);
529
530
531
          }
        }
        collector.Clear();
532
533
534
535
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
536
      }
537
    } else { // consumer case
538
539
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
540
541
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
542
        if (map.acquire[i] != -1) {
543
544
545
546
547
          PrimExpr acquire_barrier_id =
              stage_ + num_barriers_ + num_stages_ * map.acquire[i];
          PrimExpr parity = map.is_loop_dependency(map.acquire[i])
                                ? bitwise_xor(parity_, 1)
                                : parity_;
548
549
550
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
551
552
        // new_body.push_back(MakeGroupBlock(block_stmt.size() == 1 ?
        // block_stmt[0] : SeqStmt(std::move(block_stmt)), annotations));
553
        if (map.release_after[i]) {
554
555
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * map.release[i];
556
557
          block_stmt.push_back(makeArriveBarrier(release_barrier_id));
          for (int j = 0; j < num_stages_; j++) {
558
559
            released_barrier_.insert(j + num_barriers_ +
                                     num_stages_ * map.release[i]);
560
561
562
563
          }
          // Update the pipeline info
          // Todo: handle sync
        }
564
565
566
567
        new_body.push_back(MakeGroupBlock(block_stmt.size() == 1
                                              ? block_stmt[0]
                                              : SeqStmt(std::move(block_stmt)),
                                          annotations));
568
569
570
571
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
572
573
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

    ICHECK(new_body.size() > 0);
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

597
  Stmt VisitStmt_(const ForNode *op) final {
598
599
600
601
602
603
604
605
606
607
608
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
    if (num_stages_anno.defined()) {
      ICHECK(num_stages_anno.as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno.as<IntImmNode>()->value);
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
609

610
611
612
613
614
615
616
617
618
619
620
621
622
    auto group_anno = op->annotations.Get("tl_pipeline_group");
    if (group_anno.defined()) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno);
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
    if (order_anno.defined()) {
      order_info_array = Downcast<Array<Integer>>(order_anno);
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
    if (stage_anno.defined()) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno);
    }

623
624
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
625
    if (pipeline_info.op_infos.size() > 0) {
626
627
      ICHECK(pipeline_info_.op_infos.size() == 0)
          << "Nested pipeline not supported.";
628
629
630
631
632
633
634
635
636
637
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
    stage_ = FloorMod(op->loop_var - op->min, num_stages);
638
639
640
    parity_ = FloorMod(parity_before * op->extent +
                           FloorDiv(op->loop_var - op->min, num_stages),
                       2);
641
642
643
644

    auto result = FilterByRole(op);

    Stmt grouped_for_node;
645
646
    if (result.as<ForNode>() && group_anno.defined() &&
        group_info_array.size() > 0 && !is_emitting_producer_) {
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
      if (is_emitting_producer_ || group_info_array.size() == 0) {
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
666
667
      if (is_emitting_producer_ || !group_anno.defined() ||
          group_info_array.size() == 0) {
668
669
670
671
672
673
674
        return for_node;
      }
      return grouped_for_node;
    }
    return result;
  }

675
676
677
678
679
680
681
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockNode *op) final {
682
683
684
    ICHECK(0);
    return Stmt();
  }
685
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    ICHECK(0);
    return Stmt();
  }

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
    std::vector<int> acquire;
    std::vector<int> release;
    std::vector<bool> release_after;
    std::vector<SyncPattern> patterns;
    bool is_loop_dependency(int i) {
      // return if the acquire is based on release in the previous iteration
      return patterns[i].release_idx > patterns[i].acquire_idx;
    }
  };

705
706
707
  std::vector<SyncPattern>
  CreateBaseSyncPairs(Array<Stmt> seq_stmt,
                      const std::vector<bool> &is_producer) {
708
    const int n = seq_stmt.size();
709
    std::vector<std::set<const BufferNode *>> reads, writes;
710
711
712
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
713
714
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
715
716
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
717
718
719
720
721
      std::set<const BufferNode *> read_set, write_set;
      for (auto region : access[0])
        read_set.insert(region->buffer.get());
      for (auto region : access[1])
        write_set.insert(region->buffer.get());
722
723
724
725
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

726
727
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
728
      for (auto ptr : lhs)
729
730
        if (rhs.count(ptr))
          return true;
731
732
733
734
735
736
737
738
739
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
740
741
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
742
743
744
745
746
747
748
749
750
751
752
753
754
755
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
756
757
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
758
759
760
761
762
763
764
765
766
767
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

768
769
770
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
803
804
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
805
806
807
808
809
810
811
812
813
814
815
816
817

    return sync_pattern_cleaned;
  }

  SyncPatternMap ExtractSyncPattern(Array<Stmt> seq_stmt) {
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
818
819
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
820
821

    // for (auto pattern : sync_patterns) {
822
823
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    // }

    SyncPatternMap map;
    map.patterns = sync_patterns;
    map.acquire.resize(num_stmts, -1);
    map.release.resize(num_stmts, -1);
    map.release_after.resize(num_stmts, false);
    for (size_t i = 0; i < sync_patterns.size(); i++) {
      map.acquire[sync_patterns[i].acquire_idx] = i;
      map.release[sync_patterns[i].release_idx] = i;
      map.release_after[sync_patterns[i].release_idx] = true;
    }

    int cur_consumer_barrier = -1, cur_producer_barrier = -1;
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
        if (map.release[i] == -1) {
          map.release[i] = cur_producer_barrier;
        } else {
          cur_producer_barrier = map.release[i];
        }
      } else {
        if (map.release[i] == -1) {
          map.release[i] = cur_consumer_barrier;
        } else {
          cur_consumer_barrier = map.release[i];
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
859
  const WarpSpecializedRoleMarker &marker_;
860
861
862
863
864
865
866
867
868
869

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
  Var thread_var_;
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
};

870
871
872
873
874
875
876
877
878
879
880
class ThreadTagChecker : public StmtExprVisitor {
public:
  static bool HasOnlyThreadIdxX(const PrimFunc &f) {
    ThreadTagChecker checker;
    checker(f->body);
    return checker.is_valid_;
  }

private:
  void VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
881
882
883
884
885
886
      IterVar iter_var = Downcast<IterVar>(op->node);
      String thread_tag = iter_var->thread_tag;
      bool is_y_or_z =
          thread_tag == "threadIdx.y" || thread_tag == "threadIdx.z";

      if (!thread_tag.empty() && is_y_or_z && !is_one(iter_var->dom->extent)) {
887
888
889
890
891
892
893
894
895
896
        is_valid_ = false;
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
    if (op->kind == ForKind::kThreadBinding) {
      ICHECK(op->thread_binding.defined());
      String thread_tag = op->thread_binding.value()->thread_tag;
897
898
899
900
901
902
903
904
      bool is_y_or_z =
          thread_tag == "threadIdx.y" || thread_tag == "threadIdx.z";
      if (!thread_tag.empty() && is_y_or_z) {
        auto iter_var = Downcast<IterVar>(op->thread_binding);
        if (iter_var.defined() && iter_var->dom.defined() &&
            !is_one(iter_var->dom->extent)) {
          is_valid_ = false;
        }
905
906
907
908
909
910
911
912
      }
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  bool is_valid_ = true;
};

913
class WarpSpecializedRewriter : public StmtExprMutator {
914
public:
915
  static PrimFunc Substitute(PrimFunc f) {
916
917
918
919
920
921
922
923
924
925
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
                      "uses thread tags other than threadIdx.x\n"
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

926
927
    auto T = WarpSpecializedRewriter();
    T.buffer_lca_ = DetectBufferAccessLCA(f);
928
929
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
930
931
932
933
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

934
935
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

953
954
955
956
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
957
958
959
960
961
962
963
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
964
965
      Stmt new_body =
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_);
966
967
968
969
970
      return new_body;
    }
    return for_node;
  }

971
972
973
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker);
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);

    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
994
995
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
996
997

    // TODO: estimate the correct reg usage.
998
999
1000
1001
    auto inc_reg_stmt =
        Evaluate(Call(DataType::Handle(), SetMaxNReg(), {240, 1}));
    auto dec_reg_stmt =
        Evaluate(Call(DataType::Handle(), SetMaxNReg(), {24, 0}));
1002
1003
1004
1005

    producer_code = SeqStmt({dec_reg_stmt, producer_code});
    consumer_code = SeqStmt({inc_reg_stmt, consumer_code});

1006
1007
1008
    producer_code =
        ThreadIdxRewriter::Rewrite(producer_code, thread_iv_->var,
                                   thread_iv_->var - consumer_thread_extent);
1009
1010
1011
1012
1013
1014
1015
1016
1017
    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1018
1019
1020
      PrimExpr arrive_thread_count = producer.released_barrier_.count(i)
                                         ? producer_thread_extent
                                         : consumer_thread_extent;
1021
1022
1023
      barrier_num_threads.push_back(arrive_thread_count);
    }

1024
1025
1026
1027
    Stmt init_barrier = Evaluate(Call(
        DataType::Handle(), CreateListofMBarrierOp(), barrier_num_threads));
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1028
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
    body = AttrStmt(ws_partition, "kWarpSpecializationScope", 0, body);

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
};

using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return WarpSpecializedRewriter::Substitute(f);
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1057
1058
TVM_REGISTER_GLOBAL("tl.transform.WarpSpecialized")
    .set_body_typed(WarpSpecialized);
1059

1060
1061
} // namespace tl
} // namespace tvm