warp_specialized_rewriter.cc 44.3 KB
Newer Older
1
/*!
2
 * \file warp_specialized_rewriter.cc
3
4
5
 * \brief Warp specialized Pipeline for cuda GPU (sm90+)
 */

6
#include "warp_specialized_rewriter.h"
7
8
9
10
11

namespace tvm {
namespace tl {

using namespace tir;
12
using namespace runtime;
13
using arith::IRVisitorWithAnalyzer;
14

15
16
17
18
19
20
struct LoopInfo {
  Var loop_var;
  PrimExpr extent;
  PrimExpr min;
};

21
enum class Role : uint8_t { kConsumer, kProducer, kBoth };
22

23
class ProducerBufferDetector : public StmtExprVisitor {
24
public:
25
26
  ProducerBufferDetector(
      std::unordered_set<const BufferNode *> cur_producer_buffers)
27
      : cur_producer_buffers_(std::move(cur_producer_buffers)) {}
28
29

  void clear() { has_producer_buffer_ = false; }
30
31

  void VisitExpr_(const CallNode *call) final {
32
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
33
      has_producer_buffer_ = true;
34
    }
35
    StmtExprVisitor::VisitExpr_(call);
36
37
  }

38
39
40
41
42
43
44
45
46
  void VisitExpr_(const BufferLoadNode *op) final {
    if (cur_producer_buffers_.count(op->buffer.get())) {
      has_producer_buffer_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  bool has_producer_buffer_ = false;
  std::unordered_set<const BufferNode *> cur_producer_buffers_;
47
48
49
50
};

class ProducerUsedBufferFinder : public StmtExprVisitor {
public:
51
  auto FindProducerusedBuffer(const Stmt &stmt) {
52
53
54
55
56
57
58
59
60
61
    producer_buffers_.clear();
    std::unordered_set<const BufferNode *> last_producer_buffers_;
    for (;;) {
      VisitStmt(stmt);
      if (producer_buffers_ == last_producer_buffers_) {
        break;
      }
      last_producer_buffers_ = producer_buffers_;
    }
    return producer_buffers_;
62
63
64
65
66
67
68
  }

  void InsertBuffer(const PrimExpr &expr) {
    // Find the buffer that is used in the condition
    VarUseDefAnalyzer usage(Array<Var>{});
    usage(expr);
    for (const auto &buffer : usage.buffer_use_count_) {
69
      producer_buffers_.insert(buffer.first);
70
71
72
73
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final {
74
75
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->then_case);
76
    if (op->else_case.defined()) {
77
      producer_buffer_detector(op->else_case.value());
78
    }
79
    if (producer_buffer_detector.has_producer_buffer_) {
80
81
82
83
84
85
      InsertBuffer(op->condition);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *op) final {
86
87
88
    ProducerBufferDetector producer_buffer_detector(producer_buffers_);
    producer_buffer_detector(op->body);
    if (producer_buffer_detector.has_producer_buffer_) {
89
90
91
92
93
94
      InsertBuffer(op->min);
      InsertBuffer(op->extent);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

95
96
97
98
99
100
101
  void VisitStmt_(const BufferStoreNode *op) final {
    if (producer_buffers_.count(op->buffer.get())) {
      InsertBuffer(op->value);
    }
    StmtExprVisitor::VisitStmt_(op);
  }

102
103
104
105
  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tma_load()) || op->op.same_as(tma_load_im2col())) {
      for (auto arg : op->args) {
        if (auto buffer_load = arg.as<BufferLoadNode>()) {
106
          producer_buffers_.insert(buffer_load->buffer.get());
107
108
109
110
111
        }
      }
    }
  }

112
private:
113
  std::unordered_set<const BufferNode *> producer_buffers_;
114
115
};

116
class WarpSpecializedRoleMarker : public StmtVisitor {
117
public:
118
  WarpSpecializedRoleMarker(Map<Var, Buffer> buffer_data_to_buffer)
119
      : buffer_data_to_buffer_(std::move(buffer_data_to_buffer)) {}
120

121
122
  void Prepare(const Stmt &stmt) {
    ProducerUsedBufferFinder finder;
123
    producer_buffers_ = finder.FindProducerusedBuffer(stmt);
124
125
  }

126
  Role GetRole(const StmtNode *stmt) const {
127
128
129
130
131
    auto it = map_.find(stmt);
    ICHECK(it != map_.end());
    return it->second;
  }

132
  Role GetRole(const Stmt &stmt) const { return GetRole(stmt.get()); }
133

134
  void VisitStmt_(const EvaluateNode *op) final {
135
136
    Role role = Role::kConsumer;
    if (auto call = op->value.as<CallNode>()) {
137
      if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
138
139
140
        role = Role::kProducer;
        has_bulk_copy_ = true;
      }
141
142
143
      if (call->op.same_as(loop_break())) {
        role = Role::kBoth;
      }
144
145
146
147
    }
    SetRole(op, role);
  }

148
  void VisitStmt_(const BufferStoreNode *op) final {
149
150
    auto scope = StorageScope::Create(GetPtrStorageScope(op->buffer->data));
    bool is_shared_store = scope.rank == StorageRank::kShared;
151
    if (producer_buffers_.count(op->buffer.get())) {
152
153
154
      SetRole(op, Role::kBoth);
      return;
    }
155
156
157
158
159
160
161
162
163
164
165
    if (!is_shared_store) {
      SetRole(op, Role::kConsumer);
      return;
    }

    // Check reads from global
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
                /*body*/ GetRef<Stmt>(op));
    auto access = GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
    auto reads = access[0];
    Role role = Role::kProducer;
166
167
    if (reads.empty())
      role = Role::kConsumer;
168
169
170
171
172
173
    for (auto read : reads) {
      if (read->buffer.scope() != "global") {
        role = Role::kConsumer;
        break;
      }
    }
174
175
    if (role == Role::kProducer)
      has_simt_copy_ = true;
176
177
178
    SetRole(op, role);
  }

179
  void VisitStmt_(const SeqStmtNode *op) final {
180
181
182
183
184
185
186
187
188
189
190
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->seq[0]);
    for (auto stmt : op->seq) {
      if (role != GetRole(stmt)) {
        role = Role::kBoth;
        break;
      }
    }
    SetRole(op, role);
  }

191
  void VisitStmt_(const IfThenElseNode *op) final {
192
193
194
195
    StmtVisitor::VisitStmt_(op);
    auto role = GetRole(op->then_case);
    if (op->else_case.defined()) {
      auto role_else = GetRole(op->else_case.value());
196
197
      if (role != role_else)
        role = Role::kBoth;
198
199
200
201
    }
    SetRole(op, role);
  }

202
  void VisitStmt_(const BlockRealizeNode *op) final {
203
204
205
206
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->block));
  }

207
208
209
210
211
212
  void VisitStmt_(const AllocateNode *op) final {
    StmtVisitor::VisitStmt_(op);
    Role role = Role::kConsumer;
    SetRole(op, role);
  }

213
  template <class NodeType> void HandleBodyStmt(const NodeType *op) {
214
215
216
217
    StmtVisitor::VisitStmt_(op);
    SetRole(op, GetRole(op->body));
  }

218
  void VisitStmt_(const ForNode *op) final { HandleBodyStmt(op); }
219
  void VisitStmt_(const WhileNode *op) final { HandleBodyStmt(op); }
220
221
222
223
  void VisitStmt_(const LetStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AttrStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const AssertStmtNode *op) final { HandleBodyStmt(op); }
  void VisitStmt_(const BlockNode *op) final { HandleBodyStmt(op); }
224
225
226
227
228

  bool HasProducer() { return has_simt_copy_ || has_bulk_copy_; }

  bool HasSimtCopy() { return has_simt_copy_; }

229
230
private:
  void SetRole(const StmtNode *stmt, Role role) { map_[stmt] = role; }
231
  Map<Var, Buffer> buffer_data_to_buffer_;
232
  std::unordered_map<const StmtNode *, Role> map_;
233
234
  bool has_simt_copy_ = false;
  bool has_bulk_copy_ = false;
235
  std::unordered_set<const BufferNode *> producer_buffers_;
236
237
238
};

static PrimExpr makeGetBarrier(PrimExpr barrier_id) {
239
  return Call(DataType::Handle(), get_mbarrier(), {std::move(barrier_id)});
240
241
}

242
static Stmt makeArriveBarrier(PrimExpr barrier_id, int cta_id = -1,
243
244
                              const PrimExpr &pred = 1) {
  Array<PrimExpr> args = {makeGetBarrier(std::move(barrier_id))};
245
246
247
248
249
250
  if (cta_id != -1) {
    args.push_back(cta_id);
    args.push_back(pred);
  }
  return Evaluate(
      Call(DataType::Handle(), builtin::ptx_arrive_barrier(), args));
251
252
253
}

static Stmt makeCpAsyncBarrier(PrimExpr barrier_id) {
254
  auto call = Call(DataType::Handle(), builtin::ptx_cp_async_barrier(),
255
                   {makeGetBarrier(std::move(barrier_id))});
256
257
258
259
  return Evaluate(call);
}

static Stmt makeParityWait(PrimExpr barrier_id, PrimExpr parity) {
260
  auto call = Call(DataType::Handle(), mbarrier_wait_parity(),
261
                   {makeGetBarrier(std::move(barrier_id)), std::move(parity)});
262
263
264
265
  return Evaluate(call);
}

class ProducerTraitsCollector : public StmtExprVisitor {
266
public:
267
268
  ProducerTraitsCollector() { Clear(); }

269
  void Clear() { has_simt_copy = false; }
270

271
  void Collect(const Stmt &stmt) { VisitStmt(stmt); }
272
273
274

  bool HasSimtCopy() { return has_simt_copy; }

275
private:
276
277
278
279
280
281
282
283
284
285
286
287
  void VisitStmt_(const IfThenElseNode *op) final {
    bool old_in_if_cond = in_if_cond_;
    in_if_cond_ = true;
    VisitExpr(op->condition);
    in_if_cond_ = old_in_if_cond;

    VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      VisitStmt(op->else_case.value());
    }
  }

288
  void VisitExpr_(const BufferLoadNode *op) final {
289
290
291
    if (!in_if_cond_) {
      has_simt_copy = true;
    }
292
293
294
    StmtExprVisitor::VisitExpr_(op);
  }

295
  bool has_simt_copy{};
296
  bool in_if_cond_ = false;
297
298
299
300
};

// Rewrite the producer Stmt to use the correct barrier index
class MbarrierRewriter : public StmtExprMutator {
301
public:
302
303
  static Stmt Rewrite(Stmt stmt, PrimExpr barrier_id) {
    MbarrierRewriter rewriter;
304
305
    rewriter.producer_barrier_idx_ = std::move(barrier_id);
    return rewriter(std::move(stmt));
306
307
  }

308
309
private:
  PrimExpr VisitExpr_(const CallNode *op) final {
310
    auto call = Downcast<Call>(StmtExprMutator::VisitExpr_(op));
311
    if (call->op.same_as(tma_load()) || call->op.same_as(tma_load_im2col())) {
312
313
314
315
316
317
318
319
320
321
322
323
324
      auto mbar = makeGetBarrier(producer_barrier_idx_);
      auto arg0 = call->args[0].as<Call>();
      // Check if this is a 1D TMA load
      auto is_1d_tma_load =
          arg0 && !arg0.value()->op.same_as(create_tma_descriptor()) &&
          call->op.same_as(tma_load());
      if (is_1d_tma_load) {
        call.CopyOnWrite()->args.Set(2, mbar);
      } else {
        Call access_ptr = Downcast<Call>(call->args[2]);
        ICHECK(access_ptr->op.same_as(builtin::tvm_access_ptr()));
        call.CopyOnWrite()->args.Set(1, mbar);
      }
325
326
327
328
329
330
331
    }
    return call;
  }
  PrimExpr producer_barrier_idx_;
};

class ThreadIdxRewriter : public StmtExprMutator {
332
public:
333
334
335
  static Stmt Rewrite(Stmt stmt, Var thread_var, PrimExpr replaced,
                      PrimExpr thread_extent, bool do_shuffle = false) {
    auto rewriter =
336
337
338
        ThreadIdxRewriter(std::move(thread_var), std::move(replaced),
                          std::move(thread_extent), do_shuffle);
    return rewriter(std::move(stmt));
339
340
  }

341
private:
342
343
  ThreadIdxRewriter(Var thread_var, PrimExpr replaced, PrimExpr thread_extent,
                    bool do_shuffle)
344
345
      : thread_var_(std::move(thread_var)), replaced_(std::move(replaced)),
        thread_extent_(std::move(thread_extent)), do_shuffle_(do_shuffle) {}
346

347
  PrimExpr VisitExpr_(const VarNode *var) final {
348
349
350
351
352
353
354
    if (var == thread_var_.get()) {
      return replaced_;
    } else {
      return StmtExprMutator::VisitExpr_(var);
    }
  }

355
356
357
358
359
360
361
362
363
364
365
366
367
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
      return parameter == thread_var_.get();
    };
    maybe_thread_opt_ = false;
    if (!op->else_case.defined() && op->condition.as<EQNode>() &&
        UsesVar(op->condition, f_uses_thread_index) &&
        !(UsesVar(op->then_case, f_uses_thread_index))) {
      auto eq_op = Downcast<EQ>(op->condition);
      if (eq_op->a.as<VarNode>() == thread_var_.get() ||
          eq_op->b.as<VarNode>() == thread_var_.get()) {
        maybe_thread_opt_ = true;
      }
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      auto then_case = StmtExprMutator::VisitStmt(op->then_case);
      maybe_thread_opt_ = do_shuffle_ && maybe_thread_opt_ && has_tma_op_;
      has_tma_op_ = false;
      if (maybe_thread_opt_) {
        return IfThenElse(
            Call(DataType::Bool(), tl_shuffle_elect(), {thread_extent_}),
            StmtExprMutator::VisitStmt(op->then_case), std::nullopt);
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl::tma_load()) ||
        op->op.same_as(tl::tma_load_im2col()) ||
        op->op.same_as(tl::tma_store())) {
      has_tma_op_ = true;
385
    }
386
    return StmtExprMutator::VisitExpr_(op);
387
388
  }

389
390
  Var thread_var_;
  PrimExpr replaced_;
391
392
393
  PrimExpr thread_extent_;
  bool maybe_thread_opt_ = false;
  bool do_shuffle_;
394
  bool has_tma_op_ = false;
395
396
};

397
398
399
400
401
402
Block MakeGroupBlock(const Stmt &stmt,
                     const Map<String, ObjectRef> &annotations) {
  Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
              /*body*/ stmt,
              /*init=*/{}, /*alloc_buffers=*/{}, /*match_buffers=*/{},
              /*annotations=*/annotations);
403
404
405
406
  return block;
}

struct OpInfo {
407
  int group_size{}, order{}, stage{};
408
409
410
411
412
413
  std::vector<int> group;
};
struct PipelineInfo {
  std::vector<OpInfo> op_infos;

  PipelineInfo() = default;
414
415
416
  PipelineInfo(const Array<Array<Integer>> &group_info,
               const Array<Integer> &order_info,
               const Array<Integer> &stage_info) {
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    int n = static_cast<int>(group_info.size());
    ICHECK(n == static_cast<int>(order_info.size()));
    ICHECK(n == static_cast<int>(stage_info.size()));
    // int cur_id = 0;
    for (int i = 0; i < n; i++) {
      OpInfo op_info;
      op_info.group_size = group_info[i].size();
      for (int j = 0; j < op_info.group_size; j++) {
        op_info.group.push_back(group_info[i][j].as<IntImmNode>()->value);
      }
      op_info.order = order_info[i].as<IntImmNode>()->value;
      op_info.stage = stage_info[i].as<IntImmNode>()->value;
      op_infos.push_back(op_info);
    }
  }

433
  PipelineInfo(const PipelineInfo &other) {
434
    for (const auto &op_info : other.op_infos) {
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
      op_infos.push_back(op_info);
    }
  }

  std::pair<int, int> FindStmt(int stmt_idx) {
    for (size_t i = 0; i < op_infos.size(); i++) {
      for (size_t j = 0; j < op_infos[i].group.size(); j++) {
        if (op_infos[i].group[j] == stmt_idx) {
          return std::make_pair(i, j);
        }
      }
    }
    return std::make_pair(-1, -1);
  }

  void UpdateOrder(int order) {
    for (int i = 0; i < static_cast<int>(op_infos.size()); i++) {
      if (op_infos[i].order >= order && op_infos[i].order > 0) {
        op_infos[i].order++;
      }
    }
  }

  int SplitOp(int stmt_idx) {
    auto pair = FindStmt(stmt_idx);
    int op_idx = pair.first;
    int inner_idx = pair.second;
    ICHECK(op_idx != -1);
    ICHECK(inner_idx != -1);
    OpInfo half0;
    OpInfo half1;
    // The order to do sync
    int sync_order = op_infos[op_idx].order + 1;
    UpdateOrder(sync_order);

    half0.group_size = inner_idx + 1;
    half0.order = op_infos[op_idx].order;
    half0.stage = op_infos[op_idx].stage;
    for (int i = 0; i <= inner_idx; i++) {
      half0.group.push_back(op_infos[op_idx].group[i]);
    }
    half1.group_size = op_infos[op_idx].group_size - inner_idx - 1;
    half1.order = op_infos[op_idx].order + 2;
    half1.stage = op_infos[op_idx].stage;
    for (int i = inner_idx + 1; i < op_infos[op_idx].group_size; i++) {
      half1.group.push_back(op_infos[op_idx].group[i]);
    }
    op_infos.erase(op_infos.begin() + op_idx);
    if (half0.group_size > 0) {
      op_infos.insert(op_infos.begin() + op_idx, half0);
    }
    if (half1.group_size > 0) {
      UpdateOrder(half1.order);
      op_infos.insert(op_infos.begin() + op_idx + 1, half1);
    }
    return sync_order;
  }

  void PrintPipelineInfo() {
494
    std::cout << "Print op_infos:" << '\n';
495
    for (size_t i = 0; i < op_infos.size(); i++) {
496
      std::cout << i << " " << op_infos[i].group_size << " "
497
                << op_infos[i].order << " " << op_infos[i].stage << '\n';
498
    }
499
    std::cout << "End of print" << '\n';
500
501
502
503
  }
};

class GroupOpRewriter : public StmtExprMutator {
504
public:
505
506
  GroupOpRewriter(const PipelineInfo &pipeline_info)
      : pipeline_info_(pipeline_info) {}
507

508
509
private:
  Stmt VisitStmt_(const ForNode *op) final {
510
511
512
513
514
515
516
517
518
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));
    auto original_node = (op->body).as<SeqStmtNode>();
    if (!original_node) {
      return GetRef<For>(op);
    }
    Array<Stmt> new_body;
    int cur_id = 0;
    for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size()); i++) {
519
520
      if (pipeline_info_.op_infos[i].group_size == 0)
        continue;
521
      Array<Stmt> block_stmt;
522
523
      for (int j = 0;
           j < static_cast<int>(pipeline_info_.op_infos[i].group_size); j++) {
524
        // ICHECK(group_info_[i][j].as<IntImmNode>());
525
526
        // int index =
        // static_cast<int>(group_info_[i][j].as<IntImmNode>()->value);
527
528
529
530
531
532
        ICHECK(original_node->seq[cur_id].as<BlockNode>());
        auto block = original_node->seq[cur_id].as<BlockNode>();
        // TODO: handle nested seqstmt
        block_stmt.push_back(block->body);
        cur_id++;
      }
533
534
535
536
537
      new_body.push_back(MakeGroupBlock(
          block_stmt.size() == 1 ? block_stmt[0]
                                 // NOLINTNEXTLINE(performance-move-const-arg)
                                 : SeqStmt(std::move(block_stmt)),
          annotations));
538
539
540
    }
    Array<Integer> order_anno;
    Array<Integer> stage_anno;
541
    for (const auto &op_info : pipeline_info_.op_infos) {
542
543
544
      order_anno.push_back(Integer(op_info.order));
      stage_anno.push_back(Integer(op_info.stage));
    }
545
    Map<String, Any> for_annotations = op->annotations;
546
547
548
    for_annotations.erase("tl_pipeline_group");
    for_annotations.Set("software_pipeline_order", order_anno);
    for_annotations.Set("software_pipeline_stage", stage_anno);
549
550
551
552
    For new_for =
        For(op->loop_var, op->min, op->extent, op->kind,
            new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body)),
            op->thread_binding, for_annotations);
553
554
555
556
557
    return new_for;
  }

  PipelineInfo pipeline_info_;
};
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

class WgMMACollector : public StmtExprVisitor {
public:
  WgMMACollector() = default;

  void VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(tl_gemm()) || op->op.same_as(tl_gemm_sp())) {
      auto op_name = std::string(op->args[0].as<StringImmNode>()->value);
      if (has_wgmma_) {
        has_wgmma_ =
            op_name.find("false") == std::string::npos && !in_if_scope_;
      }
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const IfThenElseNode *op) final {
    in_if_scope_ = true;
    StmtExprVisitor::VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      StmtExprVisitor::VisitStmt(op->else_case.value());
    }
    in_if_scope_ = false;
  }

583
  static bool HasWgMMA(const Stmt &stmt) {
584
585
586
587
588
589
590
591
592
    auto collector = WgMMACollector();
    collector(stmt);
    return collector.has_wgmma_;
  }

  bool has_wgmma_{true};
  bool in_if_scope_{false};
};

593
class WSCodeEmitter : public StmtMutator {
594
public:
595
  WSCodeEmitter(bool is_emitting_producer, const IterVar &thread_iv,
596
                Map<Var, Buffer> buffer_data_to_buffer,
597
                const WarpSpecializedRoleMarker &marker,
598
                bool mbarrier_only = false)
599
      : is_emitting_producer_(is_emitting_producer),
600
601
        buffer_data_to_buffer_(std::move(buffer_data_to_buffer)),
        marker_(marker), thread_var_(thread_iv->var),
602
        mbarrier_only_(mbarrier_only) {}
603

604
  /**
605
606
607
608
609
610
611
612
613
   * @brief Whether a SIMT-style bulk copy was detected.
   *
   * Returns true when a simulated SIMT (thread-parallel) copy pattern was
   * observed during analysis/emission, which can affect barrier insertion and
   * copy emission.
   *
   * @return true if a SIMT copy was detected; false otherwise.
   */
  bool hasSimtCopy() const { return has_simt_copy_; }
614

615
private:
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
  template <
      typename NodeType> /**
                          * @brief Filter a statement by its producer/consumer
                          * role for emission.
                          *
                          * Returns one of:
                          * - the original statement (unchanged) when this
                          * emitter should emit it,
                          * - the result of visiting the statement (to descend
                          * into it) when mbarrier-only mode requires full
                          * traversal for non-producer roles,
                          * - an empty evaluate (`Evaluate(0)`) when the
                          * statement should be omitted.
                          *
                          * The decision is based on the role of `op` as
                          * reported by `marker_`, the emitter mode
                          * (`is_emitting_producer_`), and the `mbarrier_only_`
                          * flag.
                          *
                          * @param op The statement node to filter; its role is
                          * queried via `marker_`.
                          * @return Stmt The statement to place into the emitted
                          * IR (possibly transformed or an empty evaluate).
                          */
  Stmt FilterByRole(const NodeType *op) {
641
    Role role = marker_.GetRole(op);
642
643
644
645
646
    if (mbarrier_only_) {
      if (role != Role::kProducer)
        return StmtMutator::VisitStmt_(op);
    }
    if (role == Role::kBoth) {
647
      return StmtMutator::VisitStmt_(op);
648
    } else if ((role == Role::kProducer) == is_emitting_producer_) {
649
      return GetRef<Stmt>(op);
650
    } else {
651
      return Evaluate(0);
652
    }
653
654
  }

655
  Stmt VisitStmt_(const SeqStmtNode *op) final {
656

657
658
659
660
661
662
663
    bool has_producer = false;
    for (auto stmt : op->seq) {
      if (marker_.GetRole(stmt) == Role::kProducer) {
        has_producer = true;
        break;
      }
    }
664
665
666
667
    bool need_producer_sync =
        has_producer && marker_.GetRole(op) == Role::kBoth;
    if (!need_producer_sync)
      return FilterByRole(op);
668

669
    auto seq_transformed =
670
        op->seq.Map([&](const Stmt &stmt) { return VisitStmt(stmt); });
671
672

    auto map = ExtractSyncPattern(op->seq);
673

674
675
676
677
678
679
680
681
682
683
684
685
686
687
    /*
      std::cout << "Print ExtractSyncPattern" << std::endl;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        std::cout << i << " " << map.acquire[i] << " " << map.release[i] << " "
        << map.release_after[i] << std::endl;
      }
      std::cout << "Print sync pattern" << std::endl;
      for (auto pattern : map.patterns) {
        std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
        std::endl;
      }
      std::cout << "End of ExtractSyncPattern" << std::endl;
      pipeline_info_.PrintPipelineInfo();
    */
688
689
690
691
    Array<Stmt> new_body;
    Map<String, ObjectRef> annotations;
    annotations.Set(String("stmt_group"), Integer(1));

692
    if (is_emitting_producer_) { // producer case
693
694
695
      ProducerTraitsCollector collector;
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
696
697
698
699
700
        if (!mbarrier_only_) {
          if (marker_.GetRole(op->seq[i]) == Role::kConsumer)
            continue;
          if (marker_.GetRole(op->seq[i]) == Role::kBoth) {
            block_stmt.push_back(seq_transformed[i]);
701
702
703
704
705
706
            new_body.push_back(
                MakeGroupBlock(block_stmt.size() == 1
                                   ? block_stmt[0]
                                   // NOLINTNEXTLINE(performance-move-const-arg)
                                   : SeqStmt(std::move(block_stmt)),
                               annotations));
707
708
            continue;
          }
709
        }
710

711
        for (int pattern_idx : map.acquire[i]) {
712
          PrimExpr acquire_barrier_id =
713
714
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
715
716
                                ? bitwise_xor(parity_, 1)
                                : parity_;
717
718
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
719
        ICHECK(!map.release[i].empty());
720
721
722
723
724
725
726
        for (size_t j = 0; j < map.release[i].size(); j++) {
          int pattern_idx = map.release[i][j];
          PrimExpr release_barrier_id =
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          auto stmt =
              MbarrierRewriter::Rewrite(seq_transformed[i], release_barrier_id);
          collector.Collect(stmt);
727
          block_stmt.push_back(stmt);
728
          if (collector.HasSimtCopy()) {
729
            block_stmt.push_back(makeCpAsyncBarrier(release_barrier_id));
730
            has_simt_copy_ = true;
731
          }
732
733
734
735
736
737
738
739
          if (map.release_after[i][j]) {
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
          }
          collector.Clear();
740
741
742
743
744
745
          new_body.push_back(
              MakeGroupBlock(block_stmt.size() == 1
                                 ? block_stmt[0]
                                 // NOLINTNEXTLINE(performance-move-const-arg)
                                 : SeqStmt(std::move(block_stmt)),
                             annotations));
746
747
        }
      }
748
    } else { // consumer case
749
750
      for (int i = 0; i < static_cast<int>(op->seq.size()); i++) {
        Array<Stmt> block_stmt = {};
751
752
        if (marker_.GetRole(op->seq[i]) == Role::kProducer)
          continue;
753
        for (int pattern_idx : map.acquire[i]) {
754
          PrimExpr acquire_barrier_id =
755
756
              stage_ + num_barriers_ + num_stages_ * pattern_idx;
          PrimExpr parity = map.is_loop_dependency(pattern_idx)
757
758
                                ? bitwise_xor(parity_, 1)
                                : parity_;
759
760
761
          block_stmt.push_back(makeParityWait(acquire_barrier_id, parity));
        }
        block_stmt.push_back(seq_transformed[i]);
762
763
764
765
766
        for (size_t j = 0; j < map.release[i].size(); j++) {
          if (map.release_after[i][j]) {
            int pattern_idx = map.release[i][j];
            PrimExpr release_barrier_id =
                stage_ + num_barriers_ + num_stages_ * pattern_idx;
767
            block_stmt.push_back(makeArriveBarrier(release_barrier_id));
768
769
770
771
            for (int s = 0; s < num_stages_; s++) {
              released_barrier_.insert(s + num_barriers_ +
                                       num_stages_ * pattern_idx);
            }
772
773
          }
        }
774
775
776
777
778
        new_body.push_back(MakeGroupBlock(
            block_stmt.size() == 1 ? block_stmt[0]
                                   // NOLINTNEXTLINE(performance-move-const-arg)
                                   : SeqStmt(std::move(block_stmt)),
            annotations));
779
780
781
782
      }
      // Filter out the producer stmts
      int cur_id = 0;
      PipelineInfo new_pipeline_info;
783
784
      for (int i = 0; i < static_cast<int>(pipeline_info_.op_infos.size());
           i++) {
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        auto op_info = pipeline_info_.op_infos[i];
        bool is_producer = false;
        for (int j = 0; j < op_info.group_size; j++) {
          if (marker_.GetRole(op->seq[cur_id]) == Role::kProducer) {
            is_producer = true;
          }
          cur_id++;
        }
        if (is_producer) {
          ICHECK(op_info.group_size == 1);
        } else {
          new_pipeline_info.op_infos.push_back(op_info);
        }
      }
      pipeline_info_ = new_pipeline_info;
    }

    num_barriers_ += map.patterns.size() * num_stages_;

804
    ICHECK(!new_body.empty());
805
806
807
    return new_body.size() == 1 ? new_body[0] : SeqStmt(std::move(new_body));
  }

808
  Stmt VisitStmt_(const ForNode *op) final {
809
810
    int num_stages = 1;
    auto num_stages_anno = op->annotations.Get("num_stages");
811
812
813
    if (num_stages_anno) {
      ICHECK(num_stages_anno->as<IntImmNode>());
      num_stages = static_cast<int>(num_stages_anno->as<IntImmNode>()->value);
814
815
      ICHECK(num_stages_ == 1) << "Nested pipeline not supported.";
    }
816
    loop_stack_.emplace_back(LoopInfo{op->loop_var, op->extent, op->min});
817
818
819
820

    Array<Array<Integer>> group_info_array;
    Array<Integer> order_info_array;
    Array<Integer> stage_info_array;
821

822
    auto group_anno = op->annotations.Get("tl_pipeline_group");
823
824
    if (group_anno) {
      group_info_array = Downcast<Array<Array<Integer>>>(group_anno.value());
825
826
    }
    auto order_anno = op->annotations.Get("tl_pipeline_order");
827
828
    if (order_anno) {
      order_info_array = Downcast<Array<Integer>>(order_anno.value());
829
830
    }
    auto stage_anno = op->annotations.Get("tl_pipeline_stage");
831
832
    if (stage_anno) {
      stage_info_array = Downcast<Array<Integer>>(stage_anno.value());
833
834
    }

835
836
    PipelineInfo pipeline_info(group_info_array, order_info_array,
                               stage_info_array);
837
838
    if (!pipeline_info.op_infos.empty()) {
      ICHECK(pipeline_info_.op_infos.empty())
839
          << "Nested pipeline not supported.";
840
841
842
843
844
845
846
847
848
    }

    PrimExpr parity_before = std::move(parity_);
    PrimExpr stage_before = std::move(stage_);
    int num_stages_before = num_stages_;
    PipelineInfo pipeline_info_before = pipeline_info_;

    num_stages_ = num_stages;
    pipeline_info_ = pipeline_info;
849
    PrimExpr linear_index = loop_stack_[0].loop_var - loop_stack_[0].min;
850
    for (size_t i = 1; i < loop_stack_.size(); ++i) {
851
852
      linear_index = linear_index * loop_stack_[i].extent +
                     (loop_stack_[i].loop_var - loop_stack_[i].min);
853
854
855
856
    }
    stage_ = FloorMod(linear_index, num_stages);
    parity_ = FloorMod(
        parity_before * op->extent + FloorDiv(linear_index, num_stages), 2);
857
858
859
    auto result = FilterByRole(op);

    Stmt grouped_for_node;
860
    if (result.as<ForNode>() && group_anno && !group_info_array.empty() &&
861
        !is_emitting_producer_) {
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
      GroupOpRewriter group_op_rewriter(pipeline_info_);
      auto for_node = Downcast<For>(result);
      grouped_for_node = group_op_rewriter(for_node);
    }

    parity_ = std::move(parity_before);
    stage_ = std::move(stage_before);
    num_stages_ = num_stages_before;
    pipeline_info_ = pipeline_info_before;

    // remove pipeline annotation
    auto for_node = result.as<For>();
    if (result.as<ForNode>()) {
      auto for_node = Downcast<For>(result);
      for_node.CopyOnWrite()->annotations.erase("num_stages");
877
      if (is_emitting_producer_ || group_info_array.empty()) {
878
879
880
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_order");
        for_node.CopyOnWrite()->annotations.erase("tl_pipeline_stage");
      }
881
      if (is_emitting_producer_ || !group_anno || group_info_array.empty()) {
882
        loop_stack_.pop_back();
883
884
        return for_node;
      }
885
      loop_stack_.pop_back();
886
887
      return grouped_for_node;
    }
888
    loop_stack_.pop_back();
889
890
891
    return result;
  }

892
893
894
895
896
897
  Stmt VisitStmt_(const IfThenElseNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const EvaluateNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AttrStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BufferStoreNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const LetStmtNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const AssertStmtNode *op) final { return FilterByRole(op); }
898
899
  Stmt VisitStmt_(const BlockNode *op) final { return FilterByRole(op); }
  Stmt VisitStmt_(const BlockRealizeNode *op) final { return FilterByRole(op); }
900
901
902
903
904
905

  struct SyncPattern {
    int release_idx, acquire_idx;
  };

  struct SyncPatternMap {
906
907
908
    std::vector<std::vector<int>> acquire;
    std::vector<std::vector<int>> release;
    std::vector<std::vector<bool>> release_after;
909
    std::vector<SyncPattern> patterns;
910
911
912
913
914
915
916
917
918
919

    void resize(size_t n) {
      acquire.resize(n);
      release.resize(n);
      release_after.resize(n);
    }

    bool is_loop_dependency(int pattern_idx) {
      return patterns[pattern_idx].release_idx >
             patterns[pattern_idx].acquire_idx;
920
921
922
    }
  };

923
  std::vector<SyncPattern>
924
  CreateBaseSyncPairs(const Array<Stmt> &seq_stmt,
925
                      const std::vector<bool> &is_producer) {
926
    const int n = seq_stmt.size();
927
    std::vector<std::set<const BufferNode *>> reads, writes;
928
929
930
    reads.reserve(n);
    writes.reserve(n);
    for (int i = 0; i < n; i++) {
931
932
      Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
                  /*name_hint=*/"",
933
934
                  /*body*/ seq_stmt[i]);
      auto access = GetBlockAccessRegion(block, buffer_data_to_buffer_);
935
      std::set<const BufferNode *> read_set, write_set;
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
      for (auto region : access[0]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          read_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          read_set.insert(region->buffer.get());
        }
      }
      for (auto region : access[1]) {
        auto var = region->buffer->data;
        if (buffer_data_to_buffer_.count(var)) {
          write_set.insert(buffer_data_to_buffer_[var].get());
        } else {
          write_set.insert(region->buffer.get());
        }
      }
952
953
954
955
      reads.push_back(std::move(read_set));
      writes.push_back(std::move(write_set));
    }

956
957
    auto intersect_fn = [](const std::set<const BufferNode *> &lhs,
                           const std::set<const BufferNode *> &rhs) {
958
      for (auto ptr : lhs)
959
960
        if (rhs.count(ptr))
          return true;
961
962
963
964
965
966
967
968
969
      return false;
    };

    std::vector<SyncPattern> sync_patterns;
    // producer_release consumer_acquire,
    // inject before the first consumer stmt for each producer
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if (is_producer[i] != is_producer[j] &&
970
971
            (intersect_fn(writes[i], reads[j]) ||
             intersect_fn(reads[i], writes[j]))) {
972
973
974
975
976
977
978
979
980
981
982
983
984
985
          sync_patterns.push_back({i, j});
          break;
        }
      }
    }

    // consumer_release producer_acquire
    // valid when is_loop is true
    // inject before the earliest producer stmt for each consumer
    bool in_loop = !is_zero(parity_);
    if (in_loop) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
          if (is_producer[i] != is_producer[j] &&
986
987
              (intersect_fn(writes[i], reads[j]) ||
               intersect_fn(reads[i], writes[j]))) {
988
989
990
991
992
993
994
995
996
997
            sync_patterns.push_back({i, j});
            break;
          }
        }
      }
    }

    return sync_patterns;
  }

998
999
1000
  static std::vector<SyncPattern>
  RemoveUnusedSyncPatterns(const std::vector<SyncPattern> &sync_patterns,
                           const std::vector<bool> &is_producer) {
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    /*
      Simplify multiple release-acquire pairs into one
      ------------------
        Produce(A)
        Produce(B)
        Consume(A, B)
      ------------------
      [(0, 2), (1, 2), (2, 0)] -> [(1, 2), (2, 0)]

      Or
      ------------------
        Produce(A, B)
        Consume(A)
        Consume(B)
      ------------------
      [(0, 1), (1, 0), (2, 0)] -> [(0, 1), (2, 0)]
    */
    int M = sync_patterns.size();
    std::vector<bool> removed(M, false);
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < M; j++) {
        if (is_producer[sync_patterns[i].acquire_idx] ==
                is_producer[sync_patterns[j].acquire_idx] &&
            sync_patterns[i].acquire_idx >= sync_patterns[j].acquire_idx &&
            sync_patterns[i].release_idx < sync_patterns[j].release_idx)
          removed[i] = true;
      }
    }

    std::vector<SyncPattern> sync_pattern_cleaned;
    sync_pattern_cleaned.reserve(M);
    for (int i = 0; i < M; i++)
1033
1034
      if (!removed[i])
        sync_pattern_cleaned.push_back(sync_patterns[i]);
1035
1036
1037
1038

    return sync_pattern_cleaned;
  }

1039
  SyncPatternMap ExtractSyncPattern(const Array<Stmt> &seq_stmt) {
1040
1041
1042
1043
1044
1045
1046
1047
    size_t num_stmts = seq_stmt.size();
    std::vector<bool> is_producer;
    is_producer.reserve(num_stmts);
    for (auto stmt : seq_stmt) {
      is_producer.push_back(marker_.GetRole(stmt) == Role::kProducer);
    }

    auto sync_patterns_base = CreateBaseSyncPairs(seq_stmt, is_producer);
1048
1049
    auto sync_patterns =
        RemoveUnusedSyncPatterns(sync_patterns_base, is_producer);
1050
1051

    // for (auto pattern : sync_patterns) {
1052
1053
    //   std::cout << pattern.release_idx << " " << pattern.acquire_idx <<
    //   std::endl;
1054
1055
1056
    // }

    SyncPatternMap map;
1057
    map.resize(num_stmts);
1058
    map.patterns = sync_patterns;
1059

1060
    for (size_t i = 0; i < sync_patterns.size(); i++) {
1061
1062
1063
1064
1065
1066
      int acquire_idx = sync_patterns[i].acquire_idx;
      int release_idx = sync_patterns[i].release_idx;

      map.acquire[acquire_idx].push_back(i);
      map.release[release_idx].push_back(i);
      map.release_after[release_idx].push_back(true);
1067
1068
    }

1069
    std::vector<int> cur_consumer_barrier, cur_producer_barrier;
1070
1071
    for (int i = num_stmts - 1; i >= 0; i--) {
      if (is_producer[i]) {
1072
        if (map.release[i].empty()) {
1073
1074
1075
1076
          for (auto pattern_idx : cur_producer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1077
        } else {
1078
1079
1080
          for (auto pattern_idx : map.release[i]) {
            cur_producer_barrier.push_back(pattern_idx);
          }
1081
1082
        }
      } else {
1083
        if (map.release[i].empty()) {
1084
1085
1086
1087
          for (auto pattern_idx : cur_consumer_barrier) {
            map.release[i].push_back(pattern_idx);
            map.release_after[i].push_back(false);
          }
1088
        } else {
1089
1090
1091
          for (auto pattern_idx : map.release[i]) {
            cur_consumer_barrier.push_back(pattern_idx);
          }
1092
1093
1094
1095
1096
1097
1098
1099
1100
        }
      }
    }
    return map;
  }

  const bool is_emitting_producer_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  std::unordered_set<int> released_barrier_;
1101
  const WarpSpecializedRoleMarker &marker_;
1102
1103
1104
1105
1106

  int num_barriers_ = 0;
  PrimExpr parity_ = 0;
  PrimExpr stage_ = 0;
  int num_stages_ = 1;
1107
  std::vector<LoopInfo> loop_stack_;
1108
  Var thread_var_;
1109
  bool mbarrier_only_ = false;
1110
1111
  PipelineInfo pipeline_info_;
  friend class WarpSpecializedRewriter;
1112
  bool has_simt_copy_ = false;
1113
1114
1115
};

class WarpSpecializedRewriter : public StmtExprMutator {
1116
public:
1117
1118
1119
1120
1121
1122
  WarpSpecializedRewriter(bool disable_warp_specialized,
                          bool disable_shuffle_elect)
      : disable_warp_specialized_(disable_warp_specialized),
        disable_shuffle_elect_(disable_shuffle_elect) {}
  static PrimFunc Substitute(PrimFunc f, bool disable_warp_specialized,
                             bool disable_shuffle_elect) {
1123
1124
1125
    // Check if function only uses threadIdx.x before proceeding
    if (!ThreadTagChecker::HasOnlyThreadIdxX(f)) {
      LOG(WARNING) << "WarpSpecialize will be disabled because the program "
1126
                      "uses thread tags other than threadIdx.x."
1127
1128
1129
1130
1131
1132
                   << "If you want to use warp specialization, please refactor "
                      "your program to use threadIdx.x only";
      // Return original function unchanged if other thread tags are found
      return f;
    }

1133
1134
    auto T = WarpSpecializedRewriter(disable_warp_specialized,
                                     disable_shuffle_elect);
1135
    T.buffer_lca_ = DetectBufferAccessLCA(f);
1136
1137
    for (auto [buffer, _] : T.buffer_lca_)
      T.buffer_data_to_buffer_.Set(buffer->data, buffer);
1138
1139
1140
1141
    f.CopyOnWrite()->body = T(f->body);
    return f;
  }

1142
1143
private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
    if (op->attr_key == tir::attr::thread_extent &&
        Downcast<IterVar>(op->node)->thread_tag == "threadIdx.x") {
      thread_iv_ = Downcast<IterVar>(op->node);
      need_update_thread_extent_ = false;
      AttrStmt attr_stmt = Downcast<AttrStmt>(StmtExprMutator::VisitStmt_(op));
      if (need_update_thread_extent_) {
        thread_iv_.CopyOnWrite()->dom = {0, updated_thread_extent_.value()};
        attr_stmt.CopyOnWrite()->node = thread_iv_;
        attr_stmt.CopyOnWrite()->value = updated_thread_extent_.value();
      }
      thread_iv_ = {};
      return attr_stmt;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

1161
1162
1163
1164
  // If users define a thread binding, we will replace the thread binding with
  // threadIdx.x We require the thread binding is threadIdx.x, and the extent is
  // the same as the thread extent
  Stmt VisitStmt_(const ForNode *op) final {
1165
1166
1167
1168
1169
1170
1171
    ICHECK(thread_iv_.defined());
    For for_node = Downcast<For>(StmtExprMutator::VisitStmt_(op));
    if (for_node->kind == ForKind::kThreadBinding) {
      ICHECK(for_node->thread_binding.defined());
      String thread_tag = for_node->thread_binding.value()->thread_tag;
      ICHECK(thread_tag == "threadIdx.x") << "Only support threadIdx.x";
      Var thread_iv = Downcast<Var>(for_node->loop_var);
1172
      Stmt new_body =
1173
          ThreadIdxRewriter::Rewrite(for_node->body, thread_iv, thread_iv_, 0);
1174
1175
1176
1177
1178
      return new_body;
    }
    return for_node;
  }

1179
1180
1181
  Stmt VisitStmt_(const BlockRealizeNode *op) final {
    BlockRealize block_realize =
        Downcast<BlockRealize>(StmtExprMutator::VisitStmt_(op));
1182
1183
1184
1185
1186
1187
    if (!thread_iv_.defined()) {
      return block_realize;
    }

    Block block = block_realize->block;
    WarpSpecializedRoleMarker marker(buffer_data_to_buffer_);
1188
    marker.Prepare(block);
1189
1190
1191
1192
1193
1194
    marker(block);
    if (!marker.HasProducer()) {
      // Cannot detect any producer here, directly return.
      return block_realize;
    }

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    if (disable_warp_specialized_) {
      WSCodeEmitter mbarrier_emitter(true, thread_iv_, buffer_data_to_buffer_,
                                     marker, true);
      auto code = mbarrier_emitter(block->body);
      int num_barriers = mbarrier_emitter.num_barriers_;
      Array<PrimExpr> barrier_num_threads;
      barrier_num_threads.reserve(num_barriers);
      PrimExpr arrive_thread_count = thread_iv_->dom->extent;
      for (int i = 0; i < num_barriers; i++) {
        barrier_num_threads.push_back(arrive_thread_count);
      }
      Stmt init_barrier = Evaluate(Call(
1207
          DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1208
1209
1210
1211
      block.CopyOnWrite()->body = SeqStmt({init_barrier, code});
      block_realize.CopyOnWrite()->block = block;
      return block_realize;
    }
1212
    WSCodeEmitter producer(true, thread_iv_, buffer_data_to_buffer_, marker);
1213
    WSCodeEmitter consumer(false, thread_iv_, buffer_data_to_buffer_, marker,
1214
                           false);
1215
1216
1217
1218
1219
    Stmt producer_code = producer(block->body);
    Stmt consumer_code = consumer(block->body);
    PrimExpr consumer_thread_extent = thread_iv_->dom->extent;
    PrimExpr producer_thread_extent = thread_iv_->dom->extent;
    // Need one warp-group for bulk-copy only case
1220
1221
    if (!marker.HasSimtCopy())
      producer_thread_extent = 128;
1222
1223

    updated_thread_extent_ = consumer_thread_extent + producer_thread_extent;
1224
1225
1226
1227
1228
1229
1230
1231

    producer_code = ThreadIdxRewriter::Rewrite(
        producer_code, thread_iv_->var,
        thread_iv_->var - consumer_thread_extent, producer_thread_extent,
        !disable_shuffle_elect_);
    consumer_code = ThreadIdxRewriter::Rewrite(
        consumer_code, thread_iv_->var, thread_iv_->var, consumer_thread_extent,
        !disable_shuffle_elect_);
1232
1233
1234
1235
1236
1237
1238
1239
    need_update_thread_extent_ = true;

    ICHECK(producer.num_barriers_ == consumer.num_barriers_)
        << producer.num_barriers_ << " " << consumer.num_barriers_;
    int num_barriers = consumer.num_barriers_;
    Array<PrimExpr> barrier_num_threads;
    barrier_num_threads.reserve(num_barriers);
    for (int i = 0; i < num_barriers; i++) {
1240
1241
1242
      PrimExpr arrive_thread_count =
          producer.released_barrier_.count(i)
              ? (producer.hasSimtCopy() ? producer_thread_extent : 1)
1243
              : consumer_thread_extent;
1244
1245
1246
      barrier_num_threads.push_back(arrive_thread_count);
    }

1247
    Stmt init_barrier = Evaluate(Call(
1248
        DataType::Handle(), create_list_of_mbarrier(), barrier_num_threads));
1249
1250
    Stmt body = IfThenElse(GE(thread_iv_->var, consumer_thread_extent),
                           producer_code, consumer_code);
1251
    // Add an attr here to handle the partial thread count in ThreadSync pass.
1252
1253
    Array<IntImm> ws_partition = {Downcast<IntImm>(producer_thread_extent),
                                  Downcast<IntImm>(consumer_thread_extent)};
1254
    body = AttrStmt(ws_partition, attr::kWarpSpecializationScope, 0, body);
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

    block.CopyOnWrite()->body = SeqStmt({init_barrier, body});
    block_realize.CopyOnWrite()->block = block;
    return block_realize;
  }

  WarpSpecializedRewriter() = default;

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Optional<Stmt>> buffer_lca_;
  Map<Buffer, Buffer> buffer_remap_;
  IterVar thread_iv_;
  Optional<PrimExpr> updated_thread_extent_;
  bool need_update_thread_extent_ = false;
1269
  bool disable_warp_specialized_ = false;
1270
  bool disable_shuffle_elect_ = false;
1271
1272
1273
1274
1275
};

using namespace tir::transform;

tvm::transform::Pass WarpSpecialized() {
1276
  auto pass_func = [=](PrimFunc f, const IRModule &m, PassContext ctx) {
1277
1278
    bool disable_warp_specialized =
        ctx->GetConfig<Bool>(kDisableWarpSpecialized, Bool(false)).value();
1279
1280
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
1281
1282
1283
    bool warp_specialized = WarpSpecializedDetector::Detect(f->body);

    if (!warp_specialized) {
1284
1285
      return WarpSpecializedRewriter::Substitute(f, disable_warp_specialized,
                                                 disable_shuffle_elect);
1286
1287
1288
1289
1290
    } else {
      ObjectRef node = String("default");
      f.CopyOnWrite()->body =
          AttrStmt(node, attr::kCustomWarpSpecialization, 1, f->body);
      return f;
1291
    }
1292
1293
1294
1295
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.WarpSpecialized", {});
}

1296
1297
1298
1299
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.WarpSpecialized", WarpSpecialized);
});
1300

1301
1302
} // namespace tl
} // namespace tvm