server.rs 102 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
use crate::validation::ValidationError;
Nicolas Patry's avatar
Nicolas Patry committed
11
12
use crate::vertex::vertex_compatibility;
use crate::ChatTokenizeResponse;
13
use crate::{
14
15
16
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
Nicolas Patry's avatar
Nicolas Patry committed
17
18
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse,
    TextMessage, Token, TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
19
20
21
22
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
23
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
Nicolas Patry's avatar
Nicolas Patry committed
24
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool,
25
};
drbh's avatar
drbh committed
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
drbh's avatar
drbh committed
27
use crate::{ModelInfo, ModelsInfo};
28
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
30
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
31
use axum::response::sse::{Event, KeepAlive, Sse};
32
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use axum::routing::{get, post};
34
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
35
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
36
use futures::stream::StreamExt;
37
use futures::stream::{FuturesOrdered, FuturesUnordered};
38
use futures::Stream;
drbh's avatar
drbh committed
39
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
40
41
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
42
use http::header::AUTHORIZATION;
43
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
Nicolas Patry's avatar
Nicolas Patry committed
44
use pyo3::types::IntoPyDict;
45
use regex::Regex;
drbh's avatar
drbh committed
46
use serde_json::Value;
47
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
48
49
50
51
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
52
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
53
use tokenizers::Tokenizer;
54
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
55
use tokio::signal;
56
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
57
use tokio::time::Instant;
58
use tower_http::cors::{AllowOrigin, CorsLayer};
59
use tracing::{info_span, instrument, Instrument};
60
61
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
62

63
64
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
84
)]
85
#[instrument(skip(infer, req))]
86
async fn compat_generate(
87
    Extension(default_return_full_text): Extension<bool>,
88
    infer: Extension<Infer>,
89
    compute_type: Extension<ComputeType>,
90
    Json(mut req): Json<CompatGenerateRequest>,
91
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
92
93
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
94
        req.parameters.return_full_text = Some(default_return_full_text)
95
96
    }

97
98
    // switch on stream
    if req.stream {
99
        Ok(generate_stream(infer, compute_type, Json(req.into()))
100
101
102
            .await
            .into_response())
    } else {
103
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
104
        // wrap generation inside a Vec to match api-inference
105
        Ok((headers, Json(vec![generation])).into_response())
106
107
108
    }
}

109
110
/// Text Generation Inference endpoint info
#[utoipa::path(
111
112
113
114
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
115
116
)]
#[instrument]
117
118
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
119
120
}

drbh's avatar
drbh committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/v1/models",
responses(
(status = 200, description = "Served model info", body = ModelInfo),
(status = 404, description = "Model not found", body = ErrorResponse),
)
)]
#[instrument(skip(info))]
/// Get model info
async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
    Json(ModelsInfo {
        data: vec![ModelInfo {
            id: info.0.model_id.clone(),
            object: "model".to_string(),
            created: 0, // TODO: determine how to get this
            owned_by: info.0.model_id.clone(),
        }],
        ..Default::default()
    })
}

144
145
146
147
148
149
150
151
152
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
Nicolas Patry's avatar
Nicolas Patry committed
153
    Json(chat): Json<ChatRequest>,
154
155
156
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

Nicolas Patry's avatar
Nicolas Patry committed
157
    let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0;
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

196
#[utoipa::path(
197
198
199
200
201
202
203
204
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
205
)]
Nicolas Patry's avatar
Nicolas Patry committed
206
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
207
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
208
209
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
210
211
212
213
214
215
216
217
218
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
219
220
}

221
222
/// Generate tokens
#[utoipa::path(
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
238
)]
239
#[instrument(
240
241
skip_all,
fields(
242
parameters = ? req.parameters,
243
244
245
246
247
248
249
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
250
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
251
async fn generate(
252
    infer: Extension<Infer>,
253
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
254
    Json(req): Json<GenerateRequest>,
255
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
256
    let span = tracing::Span::current();
257
258
259
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

260
pub(crate) async fn generate_internal(
261
262
263
264
265
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
266
    let start_time = Instant::now();
267
    metrics::counter!("tgi_request_count").increment(1);
268

269
    // Do not long ultra long inputs, like image payloads.
270
271
272
273
    tracing::debug!(
        "Input: {}",
        &req.inputs.chars().take(1000).collect::<String>()
    );
274

275
    let compute_characters = req.inputs.chars().count();
276
    let mut add_prompt = None;
277
278
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
279
280
    }

Nicolas Patry's avatar
Nicolas Patry committed
281
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
282
283

    // Inference
284
    let (response, best_of_responses) = match req.parameters.best_of {
285
        Some(best_of) if best_of > 1 => {
286
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
287
288
            (response, Some(best_of_responses))
        }
289
        _ => (infer.generate(req).await?, None),
290
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
291

OlivierDehaene's avatar
OlivierDehaene committed
292
    // Token details
293
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
294
    let details = match details {
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
309
                            finish_reason: response.generated_text.finish_reason,
310
311
312
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
313
                            top_tokens: response.top_tokens,
314
315
316
317
318
319
320
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
321
                finish_reason: response.generated_text.finish_reason,
322
323
324
325
326
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
327
                top_tokens: response.top_tokens,
328
329
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
330
331
332
        false => None,
    };

333
334
335
336
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
337
338
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
339

340
341
342
343
344
345
346
347
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

348
349
    // Headers
    let mut headers = HeaderMap::new();
350
    headers.insert("x-compute-type", compute_type.parse().unwrap());
351
352
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
353
        total_time.as_secs_f64().to_string().parse().unwrap(),
354
355
356
357
358
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
359
360
361
362
363
364
365
366
367
368
369
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
370
    );
371
372
373
374
375
376
377
378
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
379
380
381
382
383
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
384

385
    // Metrics
386
387
388
389
390
391
392
393
394
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
395

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
396
    // Send response
397
398
399
400
401
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

402
403
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
404

405
    let response = GenerateResponse {
406
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
407
        details,
408
    };
409
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
410
411
}

Yannic Kilcher's avatar
Yannic Kilcher committed
412
/// Generate a stream of token using Server-Sent Events
413
#[utoipa::path(
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
434
)]
435
#[instrument(
436
437
skip_all,
fields(
438
parameters = ? req.parameters,
439
440
441
442
443
444
445
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
446
447
)]
async fn generate_stream(
448
    Extension(infer): Extension<Infer>,
449
    Extension(compute_type): Extension<ComputeType>,
450
    Json(req): Json<GenerateRequest>,
451
452
453
454
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
455
    let span = tracing::Span::current();
456
    let (headers, response_stream) =
457
458
459
460
461
462
463
464
465
466
467
468
469
        generate_stream_internal(infer, compute_type, Json(req), span).await;

    let response_stream = async_stream::stream! {
        let mut response_stream = Box::pin(response_stream);
        while let Some(raw_event) = response_stream.next().await {
            yield Ok(raw_event.map_or_else(Event::from, |token| {
                Event::default()
                    .json_data(token)
                    .unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into())
            }));
        }
    };

470
471
472
473
474
475
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
476
    ComputeType(compute_type): ComputeType,
477
    Json(req): Json<GenerateRequest>,
478
    span: tracing::Span,
479
480
481
482
) -> (
    HeaderMap,
    impl Stream<Item = Result<StreamResponse, InferError>>,
) {
483
    let start_time = Instant::now();
484
    metrics::counter!("tgi_request_count").increment(1);
485

486
    tracing::debug!("Input: {}", req.inputs);
487

488
    let compute_characters = req.inputs.chars().count();
489
490

    let mut headers = HeaderMap::new();
491
    headers.insert("x-compute-type", compute_type.parse().unwrap());
492
493
494
495
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
496
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
497

498
499
500
501
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
502
503

        let mut add_prompt = None;
504
505
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
506
        }
507
        let details = req.parameters.details;
508

509
        let best_of = req.parameters.best_of.unwrap_or(1);
510
511
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
512
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
513
            tracing::error!("{err}");
514
            yield Err(err);
515
        } else if req.parameters.decoder_input_details {
516
            let err = InferError::from(ValidationError::PrefillDetailsStream);
517
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
518
            tracing::error!("{err}");
519
            yield Err(err);
520
        } else {
521
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
522
                // Keep permit as long as generate_stream lives
523
                Ok((_permit, input_length, response_stream)) => {
524
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
525
                    let mut response_stream = Box::pin(response_stream);
526
527
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
528
                        index += 1;
529
530
531
532
533
534
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
535
536
537
538
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
539
540
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

541
542
                                        // StreamResponse
                                        let stream_token = StreamResponse {
543
                                            index,
544
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
545
                                            top_tokens,
546
547
548
                                            generated_text: None,
                                            details: None,
                                        };
549
                                        yield Ok(stream_token);
550
                                    }
551
552
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
553
                                        token,
554
555
556
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
557
                                        top_tokens,
558
559
560
561
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
562
                                                finish_reason: generated_text.finish_reason,
563
564
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
565
                                                input_length,
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
586
587
588
589
590
591
592
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
593
594
595
596
597
598
599
600
601

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

602
603
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
604

605
                                        let stream_token = StreamResponse {
606
                                            index,
607
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
608
                                            top_tokens,
609
610
611
612
                                            generated_text: Some(output_text),
                                            details
                                        };

613
                                        yield Ok(stream_token);
614
615
                                        break;
                                    }
616
617
                                }
                            }
618
619
620
                            // yield error
                            Err(err) => {
                                error = true;
621
                                yield Err(err);
622
623
                                break;
                            }
624
625
                        }
                    }
626
627
628
629
                },
                // yield error
                Err(err) => {
                    error = true;
630
                    yield Err(err);
631
                }
632
633
634
635
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
636
                let err = InferError::IncompleteGenerationStream;
637
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
638
                tracing::error!("{err}");
639
                yield Err(err);
640
641
642
643
            }
        }
    };

644
645
646
    (headers, stream)
}

647
648
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
649
650
651
652
653
654
655
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
656
657
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
658
659
660
661
662
663
664
665
666
667
668
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
669
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
670
671
672
673
674
675
676
677
678
679
680
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
681
682
683
684
685
686
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
687
    let span = tracing::Span::current();
688
    metrics::counter!("tgi_request_count").increment(1);
689

690
    let CompletionRequest {
691
        model,
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
707
708
709

    // if suffix is present throw an error
    if req.suffix.is_some() {
710
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
711
712
713
714
715
716
717
718
719
720
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

721
    if req.prompt.0.len() > info.max_client_batch_size {
722
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
737
        .0
738
739
740
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
741
            add_special_tokens: true,
742
743
            parameters: GenerateParameters {
                best_of: None,
744
                temperature,
745
746
747
748
749
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
750
                do_sample,
751
752
                max_new_tokens,
                return_full_text: None,
753
                stop: stop.clone(),
754
755
756
757
758
759
760
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
761
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
762
763
764
765
766
767
768
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
769
770

    if stream {
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
786
                    let (headers, response_stream) = generate_stream_internal(
787
788
789
790
791
792
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        span_clone.clone(),
                    )
                    .await;
793

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
                    let response_stream = async_stream::stream! {
                        let mut response_stream = Box::pin(response_stream);

                        while let Some(stream_token) = response_stream.next().await {
                            match stream_token {
                                Ok(stream_token) => {
                                    let event = Event::default();

                                    let current_time = std::time::SystemTime::now()
                                        .duration_since(std::time::UNIX_EPOCH)
                                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                        .as_secs();

                                    let message = match stream_token.details {
                                        Some(details) => {
                                            let completion_tokens = details.generated_tokens;
                                            let prompt_tokens = details.input_length;
                                            let total_tokens = prompt_tokens + completion_tokens;

                                            Completion::Final(CompletionFinal {
                                                id: String::new(),
                                                created: current_time,
                                                model: model_id.clone(),
                                                system_fingerprint: system_fingerprint.clone(),
                                                choices: vec![CompletionComplete {
                                                    finish_reason: details.finish_reason.to_string(),
                                                    index: index as u32,
                                                    logprobs: None,
                                                    text: stream_token.token.text,
                                                }],
                                                usage: Usage {
                                                    prompt_tokens,
                                                    completion_tokens,
                                                    total_tokens,
                                                },
                                            })
                                        }
                                        None => Completion::Chunk(Chunk {
                                            id: String::new(),
                                            created: current_time,
                                            choices: vec![CompletionComplete {
                                                finish_reason: String::new(),
                                                index: index as u32,
                                                logprobs: None,
                                                text: stream_token.token.text,
                                            }],
                                            model: model_id.clone(),
                                            system_fingerprint: system_fingerprint.clone(),
                                        }),
                                    };

                                    let event = event
                                        .json_data(message)
                                        .unwrap_or_else(|_e| Event::default());

                                    yield Ok(event);
                                }
                                Err(err) => yield Ok(Event::from(err)),
                            }
                        }
                    };

856
                    // send and dont wait for response
857
                    let _ = header_tx.send(headers);
858

859
                    // pin an emit messages to the sse_tx
860
                    let mut sse = Box::pin(response_stream);
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
888
                )
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
907

908
909
910
911
912
913
914
915
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
916

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

941
942
943
944
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

945
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
946
947
948
949
950
951
952
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1047
                    finish_reason: details.finish_reason.format(true),
1048
1049
1050
1051
1052
1053
1054
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1055

1056
        let response = Completion::Final(CompletionFinal {
1057
1058
1059
1060
1061
1062
1063
1064
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1065
            choices,
1066
            usage: Usage {
1067
1068
1069
                prompt_tokens,
                completion_tokens,
                total_tokens,
1070
            },
1071
        });
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1089
1090
1091
1092
        Ok((headers, Json(response)).into_response())
    }
}

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
enum StreamState {
    Buffering,
    BufferTrailing,
    Content { skip_close_quote: bool },
}

/// Convert a StreamResponse into an Event to be sent over SSE
fn create_event_from_stream_token(
    stream_token: &StreamResponse,
    logprobs: bool,
    stream_options: Option<StreamOptions>,
    inner_using_tools: bool,
    system_fingerprint: String,
    model_id: String,
) -> Event {
    let event = Event::default();
    let current_time = std::time::SystemTime::now()
        .duration_since(std::time::UNIX_EPOCH)
        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
        .as_secs();

    let logprobs = logprobs.then(|| {
        ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens.clone()))
    });

    // replace the content with the tool calls if grammar is present
    let (content, tool_calls) = if inner_using_tools {
        (None, Some(vec![stream_token.token.text.clone()]))
    } else {
        let content = if !stream_token.token.special {
            Some(stream_token.token.text.clone())
        } else {
            None
        };

        (content, None)
    };

    let (usage, finish_reason) = match &stream_token.details {
        Some(details) => {
            let usage = if stream_options
                .as_ref()
                .map(|s| s.include_usage)
                .unwrap_or(false)
            {
                let completion_tokens = details.generated_tokens;
                let prompt_tokens = details.input_length;
                let total_tokens = prompt_tokens + completion_tokens;
                Some(Usage {
                    completion_tokens,
                    prompt_tokens,
                    total_tokens,
                })
            } else {
                None
            };
            (usage, Some(details.finish_reason.format(true)))
        }
        None => (None, None),
    };

    let chat_complete = CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
        model_id.clone(),
        system_fingerprint.clone(),
        content,
        tool_calls,
        current_time,
        logprobs,
        finish_reason,
        usage,
    ));

    event.json_data(chat_complete).unwrap_or_else(|e| {
        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
        Event::default()
    })
}

1171
1172
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1193
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1205
1206
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1207
    Extension(compute_type): Extension<ComputeType>,
1208
    Extension(info): Extension<Info>,
Nicolas Patry's avatar
Nicolas Patry committed
1209
    Json(chat): Json<ChatRequest>,
1210
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1211
    let span = tracing::Span::current();
1212
    metrics::counter!("tgi_request_count").increment(1);
1213
1214
    let ChatRequest {
        stream,
Nicolas Patry's avatar
Nicolas Patry committed
1215
        stream_options,
Nicolas Patry's avatar
Nicolas Patry committed
1216
        logprobs,
1217
        ..
Nicolas Patry's avatar
Nicolas Patry committed
1218
1219
1220
    } = chat.clone();
    let (generate_request, using_tools): (GenerateRequest, bool) =
        chat.try_into_generate(&infer)?;
1221

Nicolas Patry's avatar
Nicolas Patry committed
1222
    let logprobs = logprobs.unwrap_or_default();
1223
1224
1225
1226
1227
1228

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
    // switch on stream
    if stream {
1229
1230
        let (headers, response_stream) =
            generate_stream_internal(infer, compute_type, Json(generate_request), span).await;
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        // regex to match any function name
        let function_regex = match Regex::new(r#"\{"function":\{"_name":"([^"]+)""#) {
            Ok(regex) => regex,
            Err(e) => {
                return Err((
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: format!("Failed to compile regex: {}", e),
                        error_type: "regex".to_string(),
                    }),
                ))
            }
        };
1245

1246
1247
1248
1249
1250
1251
        let response_stream = async_stream::stream! {
            let mut response_stream = Box::pin(response_stream);
            let mut buffer = Vec::new();
            let mut json_buffer = String::new();
            let mut state = if using_tools {
                StreamState::Buffering
drbh's avatar
drbh committed
1252
            } else {
1253
1254
1255
                StreamState::Content {
                    skip_close_quote: false,
                }
drbh's avatar
drbh committed
1256
            };
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
            let mut response_as_tool = using_tools;
            while let Some(result) = response_stream.next().await {
                if let Ok(stream_token) = result {
                    let token_text = &stream_token.token.text.clone();
                    match state {
                        StreamState::Buffering => {
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            buffer.push(stream_token);
                            if let Some(captures) = function_regex.captures(&json_buffer) {
                                let function_name = captures[1].to_string();
                                if function_name == "no_tool" {
                                    state = StreamState::BufferTrailing;
                                    response_as_tool = false;
                                    buffer.clear();
                                    json_buffer.clear();
                                } else {
                                    state = StreamState::Content {
                                        skip_close_quote: false,
                                    };
                                    // send all the buffered messages
                                    for stream_token in &buffer {
                                        let event = create_event_from_stream_token(
                                            stream_token,
                                            logprobs,
                                            stream_options.clone(),
                                            response_as_tool,
                                            system_fingerprint.clone(),
                                            model_id.clone(),
                                        );
                                        yield Ok::<Event, Infallible>(event);
                                    }
                                }
                            }
                        }
                        // if we skipped sending the buffer we need to avoid sending the following json key and quotes
                        StreamState::BufferTrailing => {
                            let infix_text = "\"content\":\"";
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            // keep capturing until we find the infix text
                            match json_buffer.find(infix_text) {
                                Some(content_key_index) => {
                                    json_buffer =
                                        json_buffer[content_key_index + infix_text.len()..].to_string();
                                }
                                None => {
                                    continue;
                                }
                            }
                            // if there is leftover text after removing the infix text, we need to send it
                            if !json_buffer.is_empty() {
                                let event = Event::default();
                                let current_time = std::time::SystemTime::now()
                                    .duration_since(std::time::UNIX_EPOCH)
                                    .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                    .as_secs();
                                let chat_complete =
                                    CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
                                        model_id.clone(),
                                        system_fingerprint.clone(),
                                        Some(json_buffer.clone()),
                                        None,
                                        current_time,
                                        None,
                                        None,
                                        None,
                                    ));
                                yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
                                    InferError::StreamSerializationError(e.to_string()).into()
                                }));
                            }
                            // cleanup the buffers
                            buffer.clear();
                            json_buffer.clear();
                            state = StreamState::Content {
                                skip_close_quote: true,
                            };
                        }
                        StreamState::Content { skip_close_quote } => {
                            if skip_close_quote && token_text.contains('"') {
                                break;
                            }
drbh's avatar
drbh committed
1338

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
                            // send the content
                            let event = create_event_from_stream_token(
                                &stream_token,
                                logprobs,
                                stream_options.clone(),
                                response_as_tool,
                                system_fingerprint.clone(),
                                model_id.clone(),
                            );

                            yield Ok::<Event, Infallible>(event);
                        }
                    }
Nicolas Patry's avatar
Nicolas Patry committed
1352
                }
1353
1354
            }
            yield Ok::<Event, Infallible>(Event::default().data("[DONE]"));
1355
1356
1357
1358
1359
        };

        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1360
1361
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1362
1363
1364
1365
1366
1367

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1368
        let (tool_calls, output) = if using_tools {
1369
1370
1371
1372
1373
1374
1375
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
            match name.as_str() {
                "no_tool" => {
                    // parse the content message
                    let content_message = arguments
                        .get("content")
                        .and_then(Value::as_str)
                        .ok_or_else(|| {
                            InferError::ToolError(
                                "No `content` found in generated text".to_string(),
                            )
                        })?
                        .to_string();
                    (None, Some(content_message))
                }
                _ => {
                    let tool_calls = vec![ToolCall {
                        id: "0".to_string(),
                        r#type: "function".to_string(),
                        function: FunctionDefinition {
                            description: None,
                            name,
                            arguments,
                        },
                    }];
                    (Some(tool_calls), None)
                }
            }
drbh's avatar
drbh committed
1419
1420
1421
        } else {
            (None, Some(generation.generated_text))
        };
1422
        // build the complete response object with the full text
1423
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1424
1425
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1426
            output,
1427
1428
1429
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1430
            tool_calls,
1431
        ));
1432
1433
1434
1435

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1436
1437
}

1438
1439
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1450
1451
1452
1453
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1454
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1455
1456
1457
1458
1459
1460
1461
1462
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1463
1464
1465
1466
1467
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
1468
1469
1470
1471
1472
1473
1474
1475
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1476
        Ok(Json(TokenizeResponse(tokens)))
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1488
1489
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1490
1491
1492
1493
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1494
1495
1496
1497
1498
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1499
1500
1501
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
drbh's avatar
drbh committed
1515
openai_get_model_info,
Nicolas Patry's avatar
Nicolas Patry committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
Nicolas Patry's avatar
Nicolas Patry committed
1561
StreamOptions,
Nicolas Patry's avatar
Nicolas Patry committed
1562
1563
1564
1565
1566
1567
1568
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
drbh's avatar
drbh committed
1569
ModelInfo,
Nicolas Patry's avatar
Nicolas Patry committed
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1589
1590
1591
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1592
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1593
    max_concurrent_requests: usize,
1594
    max_best_of: usize,
1595
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1596
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1597
    max_input_tokens: usize,
1598
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1599
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1600
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1601
1602
1603
1604
1605
1606
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1607
    ngrok: bool,
1608
1609
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1610
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1611
    disable_grammar_support: bool,
1612
    max_client_batch_size: usize,
1613
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1614
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1625

Nicolas Patry's avatar
Nicolas Patry committed
1626
1627
1628
1629
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1630

Nicolas Patry's avatar
Nicolas Patry committed
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1673
                }
Nicolas Patry's avatar
Nicolas Patry committed
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1712

Nicolas Patry's avatar
Nicolas Patry committed
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
Nicolas Patry's avatar
Nicolas Patry committed
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
        use pyo3::prelude::*;
        let convert = pyo3::Python::with_gil(|py| -> PyResult<()> {
            let transformers = py.import_bound("transformers")?;
            let auto = transformers.getattr("AutoTokenizer")?;
            let from_pretrained = auto.getattr("from_pretrained")?;
            let args = (tokenizer_name.to_string(),);
            let kwargs = [(
                "revision",
                revision.clone().unwrap_or_else(|| "main".to_string()),
            )]
            .into_py_dict_bound(py);
            let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
            let save = tokenizer.getattr("save_pretrained")?;
            let args = ("out".to_string(),);
            save.call1(args)?;
            Ok(())
        })
        .inspect_err(|err| {
            tracing::error!("Failed to import python tokenizer {err}");
        });
        let filename = if convert.is_ok() {
            // If we have correctly loaded and resaved with transformers
            // We might have modified the tokenizer.json according to transformers
            "out/tokenizer.json".into()
        } else {
            filename
        };
        Tokenizer::from_file(filename).ok()
Nicolas Patry's avatar
Nicolas Patry committed
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1818

Nicolas Patry's avatar
Nicolas Patry committed
1819
1820
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                messages_api_enabled,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1900
            }
Nicolas Patry's avatar
Nicolas Patry committed
1901
            Err(e) => {
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1914
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1915
1916
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1963
1964
    };

Nicolas Patry's avatar
Nicolas Patry committed
1965
    // Create state
1966
1967
1968
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1969
        config,
1970
        preprocessor_config,
1971
        max_best_of,
1972
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1973
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1974
        max_input_tokens,
1975
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1976
        disable_grammar_support,
1977
    );
OlivierDehaene's avatar
OlivierDehaene committed
1978

1979
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1980
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1981
        validation,
1982
        max_concurrent_requests,
1983
        tokenizer_config,
drbh's avatar
drbh committed
1984
        processor_config,
1985
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1986

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
2001
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
2015
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
2016
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
2017
2018
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
2019

2020
    // Prometheus handler
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
2032
2033
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
2034
2035
2036
2037
2038
2039
    // See: https://github.com/metrics-rs/metrics/issues/467#issuecomment-2022755151
    let (recorder, _) = builder
        .build()
        .expect("failed to build prometheus recorder");
    let prom_handle = recorder.handle();
    metrics::set_global_recorder(recorder).expect("Failed to set global recorder");
2040

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
2099
2100
2101
2102
2103
    metrics::describe_gauge!(
        "tgi_batch_total_tokens",
        metrics::Unit::Count,
        "Maximum amount of tokens in total."
    );
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );

2160
2161
2162
2163
2164
2165
2166
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

2167
2168
2169
2170
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
2171
2172
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
2173
2174
2175
2176
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
2177
        max_input_tokens,
2178
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2179
2180
2181
2182
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2183
        validation_workers,
2184
        max_client_batch_size,
2185
        router: env!("CARGO_PKG_NAME"),
2186
2187
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2188
        docker_label: option_env!("DOCKER_LABEL"),
2189
2190
    };

2191
2192
2193
2194
2195
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
2196
2197
        use crate::vertex::__path_vertex_compatibility;
        use crate::vertex::{VertexInstance, VertexRequest, VertexResponse};
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2229
                kserve_model_infer,
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2244

2245
    // Configure Swagger UI
drbh's avatar
drbh committed
2246
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2247
2248

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2249
    let mut base_routes = Router::new()
2250
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2251
        .route("/generate", post(generate))
2252
        .route("/generate_stream", post(generate_stream))
2253
        .route("/v1/chat/completions", post(chat_completions))
2254
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2255
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2284
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2285
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2286
        .route("/health", get(health))
2287
        .route("/ping", get(health))
drbh's avatar
drbh committed
2288
2289
        .route("/metrics", get(metrics))
        .route("/v1/models", get(openai_get_model_info));
2290
2291

    // Conditional AWS Sagemaker route
2292
    let aws_sagemaker_route = if messages_api_enabled {
2293
2294
2295
2296
2297
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2298
2299
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2300

2301
    // Combine routes and layers
drbh's avatar
drbh committed
2302
    let mut app = Router::new()
2303
2304
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2305
        .merge(info_routes)
drbh's avatar
drbh committed
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2343
2344
    // add layers after routes
    app = app
2345
        .layer(Extension(info))
2346
2347
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2348
        .layer(Extension(compute_type))
2349
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2350
        .layer(OtelAxumLayer::default())
2351
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2352

OlivierDehaene's avatar
OlivierDehaene committed
2353
2354
    tracing::info!("Connected");

2355
2356
2357
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2358
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2373
2374
2375

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2376
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2377
2378
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2379
    }
2380
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2381
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2382

Nicolas Patry's avatar
Nicolas Patry committed
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2470
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2471
}
2472
2473
2474
2475
2476
2477
2478
2479
2480

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2481
            InferError::IncompleteGenerationStream => StatusCode::INTERNAL_SERVER_ERROR,
2482
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2483
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2484
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2485
            InferError::StreamSerializationError(_) => StatusCode::INTERNAL_SERVER_ERROR,
2486
2487
2488
2489
2490
2491
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2492
                error_type: err.error_type().to_string(),
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2503
                error_type: err.error_type().to_string(),
2504
2505
2506
2507
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2508
2509
2510
2511
2512
2513

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2514

drbh's avatar
drbh committed
2515
type PreparedInput = (String, Option<GrammarType>, bool);
2516

Nicolas Patry's avatar
Nicolas Patry committed
2517
pub(crate) fn prepare_chat_input(
2518
2519
2520
2521
2522
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
2523
    guideline: Option<String>,
2524
2525
2526
2527
2528
2529
2530
2531
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

drbh's avatar
drbh committed
2532
    // when response_format is set, tools are not included when applying the chat template to generate inputs
2533
    if let Some(format) = response_format {
2534
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
drbh's avatar
drbh committed
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
        return Ok((inputs, Some(format), false));
    }

    // when no response_format is set and tools are included, apply the chat template with the tools
    // to generate inputs
    if let Some(tools) = tools {
        let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;

        let grammar = tool_schema
            .as_ref()
            .map(|t| GrammarType::Json(serde_json::json!(t)));

        let inputs: String = infer.apply_chat_template(
            guideline,
            messages,
            Some((updated_tools, tool_prompt.into())),
        )?;
        return Ok((inputs, grammar, tool_schema.is_some()));
2553
2554
    }

drbh's avatar
drbh committed
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
    // if no response_format or tools are set simply apply the chat template to generate inputs
    let inputs = infer.apply_chat_template(guideline, messages, None)?;
    Ok((inputs, None, false))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ChatTemplateVersions;
    use crate::HubTokenizerConfig;
    use crate::TokenizerConfigToken;
    use crate::Tool;

    use serde_json::json;

    #[test]
    fn test_prepare_chat_input() {
        // Mock Backend to avoid network requests
        struct MockBackend;

        impl Backend for MockBackend {
            fn schedule(
                &self,
                _request: crate::validation::ValidGenerateRequest,
            ) -> Result<
                tokio_stream::wrappers::UnboundedReceiverStream<
                    Result<InferStreamResponse, InferError>,
                >,
                InferError,
            > {
                unimplemented!("Never called in this test");
            }
            fn health<'a, 'async_trait>(
                &'a self,
                _current_health: bool,
            ) -> core::pin::Pin<
                Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
            >
            where
                'a: 'async_trait,
                Self: 'async_trait,
            {
                unimplemented!("Never called in this test");
            }
        }

        let backend = MockBackend {};

        let mut tokenizer_config = HubTokenizerConfig::default();

        // mock tokenizer config values
        tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
        tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
        tokenizer_config.chat_template = Some(
            ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n    {%- set system_message = messages[0][\"content\"] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n    {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n        {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n            {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n        {%- endif %}\n        {%- set ns.index = ns.index + 1 %}\n    {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n    {%- if message[\"role\"] == \"user\" %}\n        {%- if tools is not none and (message == user_messages[-1]) %}\n            {{- \"[AVAILABLE_TOOLS] [\" }}\n            {%- for tool in tools %}\n                {%- set tool = tool.function %}\n                {{- '{\"type\": \"function\", \"function\": {' }}\n                {%- for key, val in tool.items() if key != \"return\" %}\n                    {%- if val is string %}\n                        {{- '\"' + key + '\": \"' + val + '\"' }}\n                    {%- else %}\n                        {{- '\"' + key + '\": ' + val|tojson }}\n                    {%- endif %}\n                    {%- if not loop.last %}\n                        {{- \", \" }}\n                    {%- endif %}\n                {%- endfor %}\n                {{- \"}}\" }}\n                {%- if not loop.last %}\n                    {{- \", \" }}\n                {%- else %}\n                    {{- \"]\" }}\n                {%- endif %}\n            {%- endfor %}\n            {{- \"[/AVAILABLE_TOOLS]\" }}\n            {%- endif %}\n        {%- if loop.last and system_message is defined %}\n            {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n        {%- else %}\n            {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n        {%- endif %}\n    {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n        {{- \"[TOOL_CALLS] [\" }}\n        {%- for tool_call in message.tool_calls %}\n            {%- set out = tool_call.function|tojson %}\n            {{- out[:-1] }}\n            {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n                {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n            {%- endif %}\n            {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n            {%- if not loop.last %}\n                {{- \", \" }}\n            {%- else %}\n                {{- \"]\" + eos_token }}\n            {%- endif %}\n        {%- endfor %}\n    {%- elif message[\"role\"] == \"assistant\" %}\n        {{- \" \" + message[\"content\"]|trim + eos_token}}\n    {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n        {%- if message.content is defined and message.content.content is defined %}\n            {%- set content = message.content.content %}\n        {%- else %}\n            {%- set content = message.content %}\n        {%- endif %}\n        {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n        {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n            {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n        {%- endif %}\n        {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n    {%- else %}\n        {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n    {%- endif %}\n{%- endfor %}\n".to_string())
        );

        let infer = Infer::new(
            backend,
            Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
            1,
            tokenizer_config,
            HubProcessorConfig::default(),
        );
        let response_format = None;
        let tools = Some(vec![Tool {
            r#type: "function".to_string(),
            function: FunctionDefinition {
                name: "get_current_weather".to_string(),
                description: Some("Get the current weather".to_string()),
                arguments: json!({
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }),
            },
        }]);
        let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
        let guideline = None;
        let messages = vec![Message {
            name: None,
            role: "user".to_string(),
            content: MessageContent::SingleText(
                "What is the weather like in New York?".to_string(),
            ),
        }];

        let result = prepare_chat_input(
            &infer,
            response_format,
            tools,
            ToolChoice(None),
            tool_prompt,
            guideline,
            messages,
        );

        assert!(result.is_ok());
2663
        let (inputs, _grammar, using_tools) = result.expect("Failed to prepare chat input");
drbh's avatar
drbh committed
2664
        assert_eq!(using_tools, true);
2665
        assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"content\":{\"description\":\"The response content\",\"type\":\"string\"}},\"required\":[\"content\"],\"type\":\"object\"}, \"description\": \"Open ened response with no specific tool selected\", \"name\": \"no_tool\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
drbh's avatar
drbh committed
2666
    }
2667
}