main.rs 34.6 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
3
use std::env;
4
use std::ffi::OsString;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
6
7
8
9
10
11
12
13
14
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
15
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
mod env_runtime;

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
    Bitsandbytes,
    Gptq,
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
            Quantization::Gptq => {
                write!(f, "gptq")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
39
40
41
42
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
43
44
45
46
47
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
48
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
49
    model_id: String,
50
51
52

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
53
    #[clap(long, env)]
54
    revision: Option<String>,
55

56
    /// Whether to shard the model across multiple GPUs
57
58
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
59
60
    #[clap(long, env)]
    sharded: Option<bool>,
61
62
63
64
65

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
    /// You can use `CUDA_VISIBLE_DEVICE=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICE=2,3 text-generation-launcher... --num_shard 2` to
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
66
67
    #[clap(long, env)]
    num_shard: Option<usize>,
68

69
    /// Whether you want the model to be quantized. This will use `bitsandbytes` for
70
71
72
    /// quantization on the fly, or `gptq`.
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
73

74
75
76
77
78
79
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

80
81
82
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
83
84
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
85
86
87
88

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
89
90
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
91
92
93
94
95
96

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
97
98
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
99
100
101
102
103

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
104
105
    #[clap(default_value = "1000", long, env)]
    max_input_length: usize,
106
107
108
109
110
111
112
113
114

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
115
116
    #[clap(default_value = "1512", long, env)]
    max_total_tokens: usize,
117
118
119
120

    /// The maximum allowed batch size during dynamic batching.
    /// Using `max_batch_total_tokens` should be favored in general
    /// as it's a finer way to control RAM usage.
121
122
    #[clap(long, env)]
    max_batch_size: Option<usize>,
123
124
125
126
127
128
129
130
131
132
133

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
134
135
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// So you don't have to control that finely
    /// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
    /// want maximum flexibility. However, for your users if they are asking for the full amount of
    /// total tokens, they are likely to wait for a very long time to get a spot
    /// in the batch (since they are going to be alone) so setting `max_batch_size`
    /// and `max_total_tokens` can still be useful to prevent those long waiting times.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
161
162
    #[clap(default_value = "32000", long, env)]
    max_batch_total_tokens: u32,
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
181
182
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
183
    #[clap(default_value = "3000", long, short, env)]
184
185

    /// The port to listen on.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
186
    port: u16,
187
188
189

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
190
191
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
192
193

    /// The address the master shard will listen on. (setting used by torch distributed)
194
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
195
    master_addr: String,
196
197

    /// The address the master port will listen on. (setting used by torch distributed)
198
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
199
    master_port: usize,
200
201
202

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
203
    #[clap(long, env)]
204
    huggingface_hub_cache: Option<String>,
205
206
207

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
208
209
    #[clap(long, env)]
    weights_cache_override: Option<String>,
210
211
212
213
214

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
215
    #[clap(long, env)]
216
    disable_custom_kernels: bool,
217
218

    /// Outputs the logs in JSON format (useful for telemetry)
219
    #[clap(long, env)]
220
    json_output: bool,
221

222
223
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
224

225
226
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
227
228
229
230
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
231
232
233
234

    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
235
236
}

237
238
239
240
241
#[derive(Debug)]
enum ShardStatus {
    Ready,
    Failed((usize, String)),
}
242

243
244
245
246
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
247
    quantize: Option<Quantization>,
248
    trust_remote_code: bool,
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
    shutdown: Arc<Mutex<bool>>,
    _shutdown_sender: mpsc::Sender<()>,
) {
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
    fs::remove_file(uds).unwrap_or_default();

    // Process args
    let mut shard_argv = vec![
        "text-generation-server".to_string(),
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

282
283
284
285
286
    // Activate trust remote code
    if trust_remote_code {
        shard_argv.push("--trust-remote-code".to_string());
    }

287
288
289
    // Activate tensor parallelism
    if world_size > 1 {
        shard_argv.push("--sharded".to_string());
290
291
    }

292
293
294
    if let Some(quantize) = quantize {
        shard_argv.push("--quantize".to_string());
        shard_argv.push(quantize.to_string())
295
    }
296

297
298
299
300
301
    // Model optional revision
    if let Some(revision) = revision {
        shard_argv.push("--revision".to_string());
        shard_argv.push(revision)
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
        shard_argv.push("--otlp-endpoint".to_string());
        shard_argv.push(otlp_endpoint);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // Torch Distributed Env vars
    env.push(("RANK".into(), rank.to_string().into()));
    env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    env.push(("MASTER_ADDR".into(), master_addr.into()));
    env.push(("MASTER_PORT".into(), master_port.to_string().into()));
    env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));

    // Safetensors load fast
    env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
        env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
        env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
        env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
    }

    // Start process
    tracing::info!("Starting shard {rank}");
    let mut p = match Popen::create(
        &shard_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            // NCCL env vars
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
384
385
                }
            }
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
            status_sender
                .send(ShardStatus::Failed((rank, err.to_string())))
                .unwrap();
            return;
        }
    };

    // Redirect STDOUT to the console
    let shard_stdout = p.stdout.take().unwrap();

    thread::spawn(move || {
        // Enter shard-manager tracing span
        let stdout = BufReader::new(shard_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
        if p.poll().is_some() {
            let mut err = String::new();
            p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
            status_sender
                .send(ShardStatus::Failed((rank, err)))
                .unwrap();
            return;
        }

        // We received a shutdown signal
        if *shutdown.lock().unwrap() {
            p.terminate().unwrap();
            let _ = p.wait_timeout(Duration::from_secs(90));
            tracing::info!("Shard {rank} terminated");
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
            tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
            tracing::info!("Waiting for shard {rank} to be ready...");
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
    {
        let mut shutdown = shutdown.lock().unwrap();
        *shutdown = true;
    }

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
458
459
460
461
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
462
463
    let n_devices = devices.split(',').count();
    Some(n_devices)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
513
514
515
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
516
517
            if n_devices <= 1 {
                panic!("`sharded` is true but only found {n_devices} CUDA devices");
518
            }
519
            n_devices
520
        }
521
522
523
524
525
526
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
                panic!("`sharded` is true but `num_shard` <= 1");
            }
            num_shard
527
        }
528
529
530
531
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
532
    };
533
534
535
    if num_shard < 1 {
        panic!("`num_shard` cannot be < 1");
    }
536
537
    num_shard
}
538

539
540
541
542
543
544
545
546
547
#[derive(Debug)]
enum LauncherError {
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
548

549
550
551
552
553
fn download_convert_model(
    args: &Args,
    auto_convert: bool,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
554
555
556
557
558
559
560
561
562
563
    let mut download_argv = vec![
        "text-generation-server".to_string(),
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
564

565
566
567
568
569
    // Auto convert weights to safetensors
    if auto_convert {
        download_argv.push("--auto-convert".to_string());
    }

570
571
572
573
574
    // Model optional revision
    if let Some(revision) = &args.revision {
        download_argv.push("--revision".to_string());
        download_argv.push(revision.to_string())
    }
575

576
577
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
578

579
    // If huggingface_hub_cache is set, pass it to the download process
580
581
582
583
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };
584

585
586
587
588
589
590
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
591

592
593
594
595
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
596

597
598
599
600
601
602
603
604
605
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    // Start process
    tracing::info!("Starting download process.");
    let mut download_process = match Popen::create(
        &download_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
625
626
                }
            }
627
628
629
            return Err(LauncherError::DownloadError);
        }
    };
630

631
632
633
634
635
636
637
638
639
640
    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
    thread::spawn(move || {
        // Enter download tracing span
        let stdout = BufReader::new(download_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "download").entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
641
            }
642
643
        }
    });
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    loop {
        if let Some(status) = download_process.poll() {
            match status {
                ExitStatus::Exited(exit_code) => {
                    if exit_code == 0 {
                        tracing::info!("Successfully downloaded weights.");
                        break;
                    } else {
                        let mut err = String::new();
                        download_process
                            .stderr
                            .take()
                            .unwrap()
                            .read_to_string(&mut err)
                            .unwrap();
                        tracing::error!("Download encountered an error: {err}");
                        return Err(LauncherError::DownloadError);
662
663
                    }
                }
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                ExitStatus::Signaled(signal) => {
                    let mut err = String::new();
                    download_process
                        .stderr
                        .take()
                        .unwrap()
                        .read_to_string(&mut err)
                        .unwrap();
                    tracing::error!(
                        "Download process was signaled to shutdown with signal {signal}: {err}"
                    );
                    return Err(LauncherError::DownloadError);
                }
                e => {
                    tracing::error!("Download process exited with an unknown status.: {e:?}");
679
680
                    return Err(LauncherError::DownloadError);
                }
681
682
            }
        }
683
684
685
686
687
688
689
690
691
692
        if !running.load(Ordering::SeqCst) {
            download_process.terminate().unwrap();
            tracing::info!("Waiting for download process to gracefully shutdown");
            download_process
                .wait_timeout(Duration::from_secs(90))
                .unwrap();
            tracing::info!("Download process terminated");
            return Ok(());
        }
        sleep(Duration::from_millis(100));
693
    }
694
695
    Ok(())
}
696

697
#[allow(clippy::too_many_arguments)]
698
699
700
701
702
703
704
705
706
707
fn spawn_shards(
    num_shard: usize,
    args: &Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
708
709
710
711
712
713
714
715
716
717
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
        if args.revision.is_none() {
            tracing::warn!("Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.");
        }
    }

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
718
719
    // Start shard processes
    for rank in 0..num_shard {
720
721
722
723
724
725
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
726
727
728
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
729
        let otlp_endpoint = args.otlp_endpoint.clone();
730
        let quantize = args.quantize;
731
        let trust_remote_code = args.trust_remote_code;
732
733
734
735
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
736
737
        thread::spawn(move || {
            shard_manager(
738
                model_id,
739
                revision,
740
                quantize,
741
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
742
743
744
745
746
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
747
748
                huggingface_hub_cache,
                weights_cache_override,
749
                disable_custom_kernels,
750
751
                watermark_gamma,
                watermark_delta,
752
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
774
775
            Ok(ShardStatus::Failed((rank, err))) => {
                tracing::error!("Shard {} failed to start:\n{}", rank, err);
776
                shutdown_shards(shutdown, shutdown_receiver);
777
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
778
779
780
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
781
                shutdown_shards(shutdown, shutdown_receiver);
782
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
783
784
785
            }
        }
    }
786
787
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
788

789
790
791
792
793
fn spawn_webserver(
    args: Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
794
795
796
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
797
798
799
    let mut argv = vec![
        "text-generation-router".to_string(),
        "--max-concurrent-requests".to_string(),
800
        args.max_concurrent_requests.to_string(),
801
        "--max-best-of".to_string(),
802
        args.max_best_of.to_string(),
803
        "--max-stop-sequences".to_string(),
804
        args.max_stop_sequences.to_string(),
805
        "--max-input-length".to_string(),
806
        args.max_input_length.to_string(),
807
        "--max-total-tokens".to_string(),
808
        args.max_total_tokens.to_string(),
809
        "--waiting-served-ratio".to_string(),
810
        args.waiting_served_ratio.to_string(),
811
        "--max-waiting-tokens".to_string(),
812
        args.max_waiting_tokens.to_string(),
813
        "--port".to_string(),
814
        args.port.to_string(),
815
        "--master-shard-uds-path".to_string(),
816
        format!("{}-0", args.shard_uds_path),
817
        "--tokenizer-name".to_string(),
818
        args.model_id,
819
820
    ];

821
    // Deprecate max_batch_size
822
    if let Some(max_batch_size) = args.max_batch_size {
823
        argv.push("--max-batch-size".to_string());
824
825
826
827
        argv.push(max_batch_size.to_string())
    } else {
        argv.push("--max-batch-total-tokens".to_string());
        argv.push(args.max_batch_total_tokens.to_string())
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
828
829
    }

830
831
832
833
    // Model optional revision
    if let Some(ref revision) = args.revision {
        argv.push("--revision".to_string());
        argv.push(revision.to_string())
834
835
    }

836
837
    if args.json_output {
        argv.push("--json-output".to_string());
838
839
    }

840
    // OpenTelemetry
841
842
843
844
845
846
847
848
849
    if let Some(otlp_endpoint) = args.otlp_endpoint {
        argv.push("--otlp-endpoint".to_string());
        argv.push(otlp_endpoint);
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
        argv.push("--cors-allow-origin".to_string());
        argv.push(origin);
850
851
    }

852
853
854
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

855
856
857
858
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
859

860
861
    let mut webserver = match Popen::create(
        &argv,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
862
863
864
865
866
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
Nicolas Patry's avatar
Nicolas Patry committed
867
            env: Some(env),
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
868
869
870
871
872
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
873
874
            tracing::error!("Failed to start webserver: {}", err);
            if let PopenError::IoError(err) = err {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
875
                if err.kind() == io::ErrorKind::NotFound {
876
877
                    tracing::error!("text-generation-router not found in PATH");
                    tracing::error!("Please install it with `make install-router`")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
878
                }
879
880
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
881
            }
882

883
            shutdown_shards(shutdown, shutdown_receiver);
884
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
885
886
887
        }
    };

888
889
890
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
891
892

    thread::spawn(move || {
893
894
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
895
        for line in stdout.lines() {
896
            println!("{}", line.unwrap());
897
        }
898
899
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
900
        }
901
902
903
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
904

905
906
907
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
    let args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
908

909
910
911
912
    if args.json_output {
        tracing_subscriber::fmt().json().init();
    } else {
        tracing_subscriber::fmt().compact().init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
913
914
    }

915
916
917
918
919
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

920
921
922
923
924
    tracing::info!("{:?}", args);

    let num_shard = find_num_shards(args.sharded, args.num_shard);
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
925
926
    }

927
928
929
930
931
932
933
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
934

935
936
937
938
939
    // auto_convert is only needed for sharded models as we do not require safetensors in
    // single shard mode
    let auto_convert = num_shard > 1;
    // Download and convert model weights
    download_convert_model(&args, auto_convert, running.clone())?;
940

941
942
943
944
945
    // Shared shutdown bool
    let shutdown = Arc::new(Mutex::new(false));
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
946

947
948
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
949

950
951
952
953
954
955
956
957
958
959
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
960

961
962
963
964
965
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
    let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
        if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
            tracing::error!("Shard {rank} failed:\n{err}");
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

        match webserver.poll() {
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
989
    }
990
991
992
993
994
995
996
997
998

    // Graceful termination
    webserver.terminate().unwrap();
    tracing::info!("Waiting for webserver to gracefully shutdown");
    webserver.wait_timeout(Duration::from_secs(90)).unwrap();
    tracing::info!("Webserver terminated");
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
999
}