lib.rs 52.1 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
Nicolas Patry's avatar
Nicolas Patry committed
3
pub mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Nicolas Patry's avatar
Nicolas Patry committed
5
pub mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
#[cfg(feature = "kserve")]
mod kserve;
Nicolas Patry's avatar
Nicolas Patry committed
9
pub mod logging;
10

11
mod sagemaker;
12
pub mod usage_stats;
Nicolas Patry's avatar
Nicolas Patry committed
13
mod vertex;
14

Nicolas Patry's avatar
Nicolas Patry committed
15
16
use crate::infer::{Infer, InferError};
use crate::server::prepare_chat_input;
17
18
use pyo3::prelude::*;
use pyo3::types::IntoPyDict;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
use serde::{Deserialize, Serialize};
20
use tokenizers::Encoding;
Nicolas Patry's avatar
Nicolas Patry committed
21
use tracing::warn;
22
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
23
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
24

25
26
27
28
29
#[derive(Clone)]
pub enum Tokenizer {
    Python {
        tokenizer_name: String,
        revision: Option<String>,
30
        trust_remote_code: bool,
31
32
33
34
35
36
37
38
39
40
41
    },
    Rust(tokenizers::Tokenizer),
}

pub struct PyTokenizer<'a>(pyo3::Bound<'a, pyo3::PyAny>);

impl<'a> PyTokenizer<'a> {
    fn from_py(
        py: Python<'a>,
        tokenizer_name: String,
        revision: Option<String>,
42
        trust_remote_code: bool,
43
44
45
46
47
48
    ) -> PyResult<PyTokenizer<'a>> {
        let transformers = py.import_bound("transformers")?;
        let auto = transformers.getattr("AutoTokenizer")?;
        let from_pretrained = auto.getattr("from_pretrained")?;
        let args = (tokenizer_name,);
        let kwargs = if let Some(rev) = &revision {
49
50
51
52
53
            [
                ("revision", rev.to_string().into_py(py)),
                ("trust_remote_code", trust_remote_code.into_py(py)),
            ]
            .into_py_dict_bound(py)
54
        } else {
55
            [("trust_remote_code", trust_remote_code.into_py(py))].into_py_dict_bound(py)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        };
        let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
        tracing::info!("Loaded a python tokenizer");
        Ok(PyTokenizer(tokenizer))
    }
}

trait TokenizerTrait {
    fn encode_trait(
        &self,
        query: String,
        add_special_tokens: bool,
    ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>>;
}

impl TokenizerTrait for tokenizers::Tokenizer {
    fn encode_trait(
        &self,
        query: String,
        add_special_tokens: bool,
    ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>> {
        self.encode(query, add_special_tokens)
    }
}

impl<'a> TokenizerTrait for PyTokenizer<'a> {
    fn encode_trait(
        &self,
        query: String,
        add_special_tokens: bool,
    ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>> {
        let py = self.0.py();
        let kwargs = [
            ("text", query.into_py(py)),
            ("add_special_tokens", add_special_tokens.into_py(py)),
        ]
        .into_py_dict_bound(py);
        let encode = self.0.getattr("encode")?;
        let input_ids: Vec<u32> = encode.call((), Some(&kwargs))?.extract()?;
        Ok(Encoding::new(
            input_ids,
            vec![],                           // type ids
            vec![],                           // tokens (strings)
            vec![],                           // words
            vec![],                           // offsets
            vec![],                           // special_tokens_mask
            vec![],                           // attention_mask
            vec![],                           // overflowing
            std::collections::HashMap::new(), //sequence_ranges
        ))
    }
}

109
110
/// Hub type
#[derive(Clone, Debug, Deserialize)]
111
pub struct HubModelInfo {
112
113
114
115
116
117
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

118
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
119
120
121
122
123
pub struct ChatTemplate {
    name: String,
    template: String,
}

124
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
125
126
127
128
129
130
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

131
132
use std::path::Path;

133
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
134
pub struct HubTokenizerConfig {
135
    pub chat_template: Option<ChatTemplateVersions>,
136
    pub completion_template: Option<String>,
137
138
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
139
140
141
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
142
143
144
}

impl HubTokenizerConfig {
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
165
166
167
    }
}

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
187
188
189
190
191
192
193
194
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
195
196
197
198
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
199
200
201
    }
}

202
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
203
#[cfg_attr(test, derive(PartialEq))]
drbh's avatar
drbh committed
204
205
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
206
207
208
209
210
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
211
    #[serde(alias = "json_object")]
212
213
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
214
215
216
217
    #[serde(rename = "regex")]
    Regex(String),
}

218
219
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
220
    /// Model info
221
222
223
224
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
225
226
227
228
    // #[schema(example = "torch.float16")]
    // pub model_dtype: String,
    // #[schema(example = "cuda")]
    // pub model_device_type: String,
229
230
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
231

232
233
234
235
236
237
238
239
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
240
    pub max_input_tokens: usize,
241
242
243
244
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
245
246
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
Nicolas Patry's avatar
Nicolas Patry committed
247

248
    /// Router Info
249
250
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
251
252
253
254
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
255
256
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
257
258
}

drbh's avatar
drbh committed
259
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Nicolas Patry's avatar
Nicolas Patry committed
260
#[cfg_attr(test, derive(PartialEq))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
261
pub(crate) struct GenerateParameters {
262
    /// Generate best_of sequences and return the one if the highest token logprobs.
263
264
265
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
266
267

    /// The value used to module the logits distribution.
268
269
270
271
272
273
274
275
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
276
277
278

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
279
280
281
282
283
284
285
286
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
287
288
289
290

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
291
    #[serde(default)]
292
293
294
295
296
297
298
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
299
300

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
301
    #[serde(default)]
302
303
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
304
305

    /// Top-p value for nucleus sampling.
306
307
308
309
310
311
312
313
314
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
315
316
317

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
318
    #[serde(default)]
319
320
321
322
323
324
325
326
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
327
328

    /// Activate logits sampling.
329
    #[serde(default)]
330
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
331
    pub do_sample: bool,
332
333

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
334
    #[serde(default = "default_max_new_tokens")]
335
    #[schema(nullable = true, default = "100", example = "20")]
336
    pub max_new_tokens: Option<u32>,
337
338

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
339
    #[serde(default)]
340
    #[schema(nullable = true, default = "null", example = false)]
341
    pub return_full_text: Option<bool>,
342
343

    /// Stop generating tokens if a member of `stop` is generated.
344
    #[serde(default)]
345
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
346
    pub stop: Vec<String>,
347
348

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
349
    #[serde(default)]
350
    #[schema(nullable = true, default = "null", example = "null")]
351
    pub truncate: Option<usize>,
352
353

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
354
    #[serde(default)]
355
356
    #[schema(default = "false", example = true)]
    pub watermark: bool,
357
358

    /// Whether to return generation details.
359
    #[serde(default)]
360
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
361
    pub details: bool,
362
363

    /// Whether to return decoder input token logprobs and ids.
364
    #[serde(default)]
365
    #[schema(default = "false")]
366
    pub decoder_input_details: bool,
367
368

    /// Random sampling seed.
369
    #[serde(default)]
370
371
372
373
374
375
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
376
    pub seed: Option<u64>,
377
378

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
379
380
381
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
382
383

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
384
    #[serde(default)]
385
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
386
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
387
388
389
390
391

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
392
393
}

394
fn default_max_new_tokens() -> Option<u32> {
395
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
396
397
398
399
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
400
        best_of: None,
401
402
        temperature: None,
        repetition_penalty: None,
403
        frequency_penalty: None,
404
405
        top_k: None,
        top_p: None,
406
        typical_p: None,
407
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
408
        max_new_tokens: default_max_new_tokens(),
409
        return_full_text: None,
410
        stop: Vec::new(),
411
        truncate: None,
412
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
413
        details: false,
414
        decoder_input_details: false,
415
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
416
        top_n_tokens: None,
drbh's avatar
drbh committed
417
        grammar: None,
drbh's avatar
drbh committed
418
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
419
420
421
    }
}

422
423
424
425
426
427
428
429
430
431
432
433
434
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
435

436
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
437
        match value {
438
439
440
441
442
443
444
445
446
447
448
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
449
450
451
452
        }
    }
}

453
454
455
456
457
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
458
    pub model: Option<String>,
459
460
461

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
462
    pub prompt: Prompt,
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
500
501
502
503
504

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
505
506
}

507
508
509
510
511
512
513
514
515
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

516
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
517
pub(crate) struct CompletionFinal {
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

536
537
538
539
540
541
542
543
544
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

545
#[derive(Clone, Deserialize, Serialize, ToSchema)]
546
547
pub(crate) struct ChatCompletion {
    pub id: String,
548
    #[schema(example = "1706270835")]
549
    pub created: u64,
550
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
551
552
553
554
555
556
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

557
#[derive(Clone, Deserialize, Serialize, ToSchema)]
558
559
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
560
    pub message: OutputMessage,
561
    pub logprobs: Option<ChatCompletionLogprobs>,
562
563
564
    pub finish_reason: String,
}

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
608
609
610
611
612
613
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
614
615
616
617
618
619
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

636
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
637
638
639
640
641
642
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

643
644
645
646
647
648
649
650
651
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

652
653
654
655
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
656
        output: Option<String>,
657
658
659
        created: u64,
        details: Details,
        return_logprobs: bool,
660
        tool_calls: Option<Vec<ToolCall>>,
661
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
686
687
688
689
690
691
692
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
693
                message,
694
                logprobs: return_logprobs
695
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
696
                finish_reason: details.finish_reason.format(true),
697
698
699
700
701
702
703
704
705
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
706
#[derive(Clone, Serialize, ToSchema)]
707
708
pub(crate) struct ChatCompletionChunk {
    pub id: String,
709
    #[schema(example = "1706270978")]
710
    pub created: u64,
711
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
712
713
714
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
Nicolas Patry's avatar
Nicolas Patry committed
715
    pub usage: Option<Usage>,
716
717
}

718
#[derive(Clone, Serialize, ToSchema)]
719
720
721
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
722
    pub logprobs: Option<ChatCompletionLogprobs>,
723
724
725
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
726
727
728
729
730
731
732
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

733
734
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
735
736
737
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
738
739
}

Nicolas Patry's avatar
Nicolas Patry committed
740
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
741
742
743
744
745
746
747
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
748
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
749
750
751
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
752
753
}

drbh's avatar
drbh committed
754
#[allow(clippy::too_many_arguments)]
755
756
757
758
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
759
760
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
761
        created: u64,
762
        logprobs: Option<ChatCompletionLogprobs>,
763
        finish_reason: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
764
        usage: Option<Usage>,
765
    ) -> Self {
766
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
767
768
769
770
771
772
773
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
774
775
776
777
778
779
780
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
781
782
783
784
785
786
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
787
        };
788
789
790
791
792
793
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
794
                index: 0,
795
                delta,
796
797
798
                logprobs,
                finish_reason,
            }],
Nicolas Patry's avatar
Nicolas Patry committed
799
            usage,
800
801
802
803
804
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
805
#[cfg_attr(test, derive(Debug, PartialEq, Default))]
806
pub(crate) struct ChatRequest {
807
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
808
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
809
    pub model: Option<String>,
drbh's avatar
drbh committed
810

811
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
812
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
813
814
815
816
817
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
818
    #[schema(example = "1.0")]
819
820
821
822
823
824
825
826
827
828
829
830
831
832
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
833
    #[schema(example = "false")]
834
835
836
837
838
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
839
    #[schema(example = "5")]
840
841
842
843
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
844
    #[schema(example = "32")]
845
846
847
848
849
850
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
851
    #[schema(nullable = true, example = "2")]
852
853
854
855
856
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
857
    #[schema(nullable = true, example = 0.1)]
858
859
    pub presence_penalty: Option<f32>,

860
861
862
863
864
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

865
866
867
868
869
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
870
871
872
873
874
875

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
876
    #[schema(nullable = true, example = 1.0)]
877
878
879
880
881
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
882
    #[schema(nullable = true, example = 0.95)]
883
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
884
885
886
887
888
889
890
891

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
drbh's avatar
drbh committed
892
    #[serde(default)]
drbh's avatar
drbh committed
893
894
    #[schema(
        nullable = true,
drbh's avatar
drbh committed
895
        example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables."
drbh's avatar
drbh committed
896
897
898
899
900
901
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
drbh's avatar
drbh committed
902
    pub tool_choice: ToolChoice,
drbh's avatar
drbh committed
903
904
905
906
907
908
909

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
910
911
912
913
914

    /// A guideline to be used in the chat_template
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub guideline: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
915
916
917
918
919
920
921

    /// Options for streaming response. Only set this when you set stream: true.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stream_options: Option<StreamOptions>,
}

Nicolas Patry's avatar
Nicolas Patry committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
impl ChatRequest {
    fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> {
        let ChatRequest {
            model,
            max_tokens,
            messages,
            seed,
            stop,
            stream,
            tools,
            tool_choice,
            tool_prompt,
            temperature,
            response_format,
            guideline,
            presence_penalty,
            frequency_penalty,
            top_p,
            top_logprobs,
            ..
        } = self;

        let repetition_penalty = presence_penalty.map(|x| x + 2.0);
        let max_new_tokens = max_tokens.or(Some(100));
        let tool_prompt = tool_prompt
            .filter(|s| !s.is_empty())
            .unwrap_or_else(default_tool_prompt);
        let stop = stop.unwrap_or_default();
        // enable greedy only when temperature is 0
        let (do_sample, temperature) = match temperature {
            Some(temperature) if temperature == 0.0 => (false, None),
            other => (true, other),
        };
        let (inputs, grammar, using_tools) = prepare_chat_input(
            infer,
            response_format,
            tools,
            tool_choice,
            &tool_prompt,
            guideline,
            messages,
        )?;

        Ok((
            GenerateRequest {
                inputs: inputs.to_string(),
                add_special_tokens: false,
                parameters: GenerateParameters {
                    best_of: None,
                    temperature,
                    repetition_penalty,
                    frequency_penalty,
                    top_k: None,
                    top_p,
                    typical_p: None,
                    do_sample,
                    max_new_tokens,
                    return_full_text: None,
                    stop,
                    truncate: None,
                    watermark: false,
                    details: true,
                    decoder_input_details: !stream,
                    seed,
                    top_n_tokens: top_logprobs,
                    grammar,
                    adapter_id: model.filter(|m| *m != "tgi").map(String::from),
                },
            },
            using_tools,
        ))
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
996
#[derive(Clone, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
997
#[cfg_attr(test, derive(Debug, PartialEq))]
Nicolas Patry's avatar
Nicolas Patry committed
998
999
1000
1001
struct StreamOptions {
    /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value.
    #[schema(example = "true")]
    include_usage: bool,
drbh's avatar
drbh committed
1002
1003
}

drbh's avatar
drbh committed
1004
1005
pub fn default_tool_prompt() -> String {
    "\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.\n".to_string()
drbh's avatar
drbh committed
1006
}
1007
1008

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
1009
1010
#[schema(example = "auto")]
/// Controls which (if any) tool is called by the model.
1011
pub enum ToolType {
1012
1013
    /// Means the model can pick between generating a message or calling one or more tools.
    #[schema(rename = "auto")]
drbh's avatar
drbh committed
1014
    OneOf,
1015
1016
    /// Means the model will not call any tool and instead generates a message.
    #[schema(rename = "none")]
drbh's avatar
drbh committed
1017
    NoTool,
1018
1019
1020
    /// Forces the model to call a specific tool.
    #[schema(rename = "function")]
    Function(FunctionName),
drbh's avatar
drbh committed
1021
1022
}

1023
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
1024
1025
1026
1027
pub struct FunctionName {
    pub name: String,
}

drbh's avatar
drbh committed
1028
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
1029
1030
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
1031

1032
1033
1034
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
1035
    Null,
drbh's avatar
drbh committed
1036
1037
    String(String),
    ToolType(ToolType),
1038
}
drbh's avatar
drbh committed
1039

1040
1041
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
1042
        match value {
1043
            ToolTypeDeserializer::Null => ToolChoice(None),
drbh's avatar
drbh committed
1044
1045
1046
            ToolTypeDeserializer::String(s) => match s.as_str() {
                "none" => ToolChoice(Some(ToolType::NoTool)),
                "auto" => ToolChoice(Some(ToolType::OneOf)),
1047
                _ => ToolChoice(Some(ToolType::Function(FunctionName { name: s }))),
drbh's avatar
drbh committed
1048
            },
drbh's avatar
drbh committed
1049
            ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
1050
1051
1052
1053
        }
    }
}

1054
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
1055
pub struct JsonSchemaTool {
drbh's avatar
drbh committed
1056
1057
1058
1059
1060
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

1061
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
1062
1063
1064
1065
1066
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

1067
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
1068
1069
1070
1071
1072
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

1073
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
1089
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
1090
1091
1092
1093
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
1094
1095
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
1096
1097
1098
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
Nicolas Patry's avatar
Nicolas Patry committed
1099
#[cfg_attr(test, derive(PartialEq))]
drbh's avatar
drbh committed
1100
1101
1102
1103
1104
1105
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
1106
1107
}

1108
#[derive(Clone, Serialize, Deserialize, Default)]
1109
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
1110
    messages: Vec<TextMessage>,
1111
1112
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
1113
    add_generation_prompt: bool,
drbh's avatar
drbh committed
1114
    tools: Option<Vec<Tool>>,
1115
    guideline: Option<&'a str>,
1116
1117
}

Nicolas Patry's avatar
Nicolas Patry committed
1118
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
1119
pub(crate) struct ToolCall {
1120
    pub id: String,
drbh's avatar
drbh committed
1121
1122
1123
1124
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
1125
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
1126
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
1127
    url: String,
drbh's avatar
drbh committed
1128
1129
}

Nicolas Patry's avatar
Nicolas Patry committed
1130
1131
1132
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
1133
1134
1135
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
1136
1137
1138
1139
1140
1141
1142
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
1143
    pub content: MessageContent,
drbh's avatar
drbh committed
1144
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
1145
1146
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
1147
1148
}

1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
drbh's avatar
drbh committed
1161
1162
1163
1164
                *self = MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: text.clone() },
                    chunk,
                ]);
Nicolas Patry's avatar
Nicolas Patry committed
1165
            }
1166
1167
1168
1169
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
1170
1171
1172
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
1173
1174
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
1175
1176
1177
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
1178
1179
1180
1181
1182
1183
1184
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1212
1213
}

1214
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1215
pub(crate) struct GenerateRequest {
1216
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1217
1218
1219
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229

    /// This is used internally because some requests
    /// already contain the templated input therefore
    /// we shouldn't add the special tokens.
    #[serde(default = "default_true", skip)]
    pub add_special_tokens: bool,
}

fn default_true() -> bool {
    true
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1230
1231
}

1232
1233
1234
1235
1236
1237
1238
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1239
    #[schema(default = "false")]
1240
1241
1242
1243
1244
1245
1246
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
1247
            add_special_tokens: true,
1248
1249
1250
1251
1252
            parameters: req.parameters,
        }
    }
}

1253
1254
1255
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1256
    pub id: u32,
1257
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1258
    pub text: String,
1259
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1260
    pub logprob: f32,
1261
1262
}

1263
#[derive(Debug, Serialize, ToSchema, Clone)]
1264
1265
pub struct Token {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1266
    pub id: u32,
1267
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1268
    pub text: String,
1269
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1270
    pub logprob: f32,
1271
    #[schema(example = "false")]
Nicolas Patry's avatar
Nicolas Patry committed
1272
    pub special: bool,
1273
1274
}

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1287
#[derive(Debug, Serialize, ToSchema)]
1288
#[serde(rename_all(serialize = "snake_case"))]
1289
#[schema(example = "Length")]
Nicolas Patry's avatar
Nicolas Patry committed
1290
pub enum FinishReason {
1291
1292
1293
1294
1295
1296
1297
1298
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1310
1311
1312
1313
1314
1315
1316
1317
1318
impl FinishReason {
    pub fn format(&self, use_stop: bool) -> String {
        match self {
            FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(),
            _ => self.to_string(),
        }
    }
}

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1331
1332
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1333
1334
}

1335
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1336
pub(crate) struct Details {
1337
1338
1339
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1340
    pub generated_tokens: u32,
1341
    #[schema(nullable = true, example = 42)]
1342
    pub seed: Option<u64>,
1343
1344
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1345
1346
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1347
1348
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1349
1350
}

1351
#[derive(Serialize, ToSchema)]
1352
pub(crate) struct GenerateResponse {
1353
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1354
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1355
1356
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1357
}
1358

1359
1360
1361
1362
1363
1364
#[derive(Serialize, ToSchema)]
pub(crate) struct ChatTokenizeResponse {
    pub(crate) tokenize_response: TokenizeResponse,
    pub(crate) templated_text: String,
}

1365
1366
1367
1368
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1369
1370
1371
1372
1373
1374
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1375
    #[schema(nullable = true, example = 42)]
1376
    pub seed: Option<u64>,
1377
1378
    #[schema(example = 1)]
    pub input_length: u32,
1379
1380
1381
}

#[derive(Serialize, ToSchema)]
1382
pub(crate) struct StreamResponse {
1383
    pub index: u32,
1384
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1385
1386
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1387
    #[schema(nullable = true, default = "null", example = "test")]
1388
    pub generated_text: Option<String>,
1389
1390
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1391
1392
}

1393
#[derive(Serialize, ToSchema)]
1394
1395
pub(crate) struct ErrorResponse {
    pub error: String,
1396
    pub error_type: String,
1397
}
1398

drbh's avatar
drbh committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelInfo {
    #[schema(example = "gpt2")]
    pub id: String,
    #[schema(example = "model")]
    pub object: String,
    #[schema(example = 1686935002)]
    pub created: u64,
    #[schema(example = "openai")]
    pub owned_by: String,
}

#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelsInfo {
    #[schema(example = "list")]
    pub object: String,
    pub data: Vec<ModelInfo>,
}

impl Default for ModelsInfo {
    fn default() -> Self {
        ModelsInfo {
            object: "list".to_string(),
            data: Vec::new(),
        }
    }
}

1427
#[cfg(test)]
1428
mod tests {
1429
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1430
    use serde_json::json;
1431

1432
    pub(crate) fn get_tokenizer() -> Tokenizer {
1433
1434
1435
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
1436
        Tokenizer::Rust(tokenizers::Tokenizer::from_file(filename).unwrap())
1437
    }
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1452
1453
1454
1455
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1456
1457
        assert_eq!(
            config.bos_token,
1458
1459
1460
1461
1462
1463
1464
1465
1466
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1494
1495
1496
1497
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1498
1499
        assert_eq!(
            config.bos_token,
1500
1501
1502
1503
1504
1505
1506
1507
1508
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1509
1510
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1511
1512
1513

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1514
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1515
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1516
1517
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1518
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1519
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1520
1521
1522
1523
1524
1525
1526
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1527
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1528
1529
1530
1531
1532
                name: None
            }
        );
    }

drbh's avatar
drbh committed
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
    #[test]
    fn test_message_content_append() {
        let mut content = MessageContent::SingleText("Initial text".to_string());
        let chunk = MessageChunk::Text {
            text: "Additional text".to_string(),
        };

        content.push(chunk);

        match content {
            MessageContent::MultipleChunks(chunks) => {
                assert_eq!(chunks.len(), 2);
                assert_eq!(
                    chunks[0],
                    MessageChunk::Text {
                        text: "Initial text".to_string()
                    }
                );
                assert_eq!(
                    chunks[1],
                    MessageChunk::Text {
                        text: "Additional text".to_string()
                    }
                );
            }
            _ => panic!("Expected MultipleChunks, but got a different variant"),
        }
    }

Nicolas Patry's avatar
Nicolas Patry committed
1562
1563
    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1564
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1565
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1566
1567
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1568
1569
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1570
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1571
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1572
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1573
1574
1575
1576
1577
1578
1579
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1580
1581
1582
1583
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1584
1585
1586
1587
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1588
1589
1590
1591
1592

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1593
1594
1595
1596
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1597
1598
1599
1600
1601
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
Nicolas Patry's avatar
Nicolas Patry committed
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622

    #[test]
    fn test_chat_stream_options() {
        let json = json!({
            "model": "",
            "stream_options": {"include_usage": true},
            "messages": [{
                "role": "user",
                "content": "Hello"
            }]
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert!(matches!(
            request.stream_options,
            Some(StreamOptions {
                include_usage: true
            })
        ));
    }

Nicolas Patry's avatar
Nicolas Patry committed
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1655
}