lib.rs 49.3 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
Nicolas Patry's avatar
Nicolas Patry committed
3
pub mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Nicolas Patry's avatar
Nicolas Patry committed
5
pub mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
#[cfg(feature = "kserve")]
mod kserve;
Nicolas Patry's avatar
Nicolas Patry committed
9
pub mod logging;
10

11
pub mod usage_stats;
Nicolas Patry's avatar
Nicolas Patry committed
12
mod vertex;
13

Nicolas Patry's avatar
Nicolas Patry committed
14
15
use crate::infer::{Infer, InferError};
use crate::server::prepare_chat_input;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
17
use tracing::warn;
18
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
19
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
20

21
22
/// Hub type
#[derive(Clone, Debug, Deserialize)]
23
pub struct HubModelInfo {
24
25
26
27
28
29
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

30
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
31
32
33
34
35
pub struct ChatTemplate {
    name: String,
    template: String,
}

36
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
37
38
39
40
41
42
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

43
44
use std::path::Path;

45
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
46
pub struct HubTokenizerConfig {
47
    pub chat_template: Option<ChatTemplateVersions>,
48
    pub completion_template: Option<String>,
49
50
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
51
52
53
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
54
55
56
}

impl HubTokenizerConfig {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
77
78
79
    }
}

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
99
100
101
102
103
104
105
106
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
107
108
109
110
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
111
112
113
    }
}

114
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
115
#[cfg_attr(test, derive(PartialEq))]
drbh's avatar
drbh committed
116
117
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
118
119
120
121
122
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
123
    #[serde(alias = "json_object")]
124
125
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
126
127
128
129
    #[serde(rename = "regex")]
    Regex(String),
}

130
131
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
132
    /// Model info
133
134
135
136
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
137
138
139
140
    // #[schema(example = "torch.float16")]
    // pub model_dtype: String,
    // #[schema(example = "cuda")]
    // pub model_device_type: String,
141
142
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
143

144
145
146
147
148
149
150
151
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
152
    pub max_input_tokens: usize,
153
154
155
156
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
157
158
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
Nicolas Patry's avatar
Nicolas Patry committed
159

160
    /// Router Info
161
162
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
163
164
165
166
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
167
168
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
169
170
}

drbh's avatar
drbh committed
171
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Nicolas Patry's avatar
Nicolas Patry committed
172
#[cfg_attr(test, derive(PartialEq))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
173
pub(crate) struct GenerateParameters {
174
    /// Generate best_of sequences and return the one if the highest token logprobs.
175
176
177
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
178
179

    /// The value used to module the logits distribution.
180
181
182
183
184
185
186
187
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
188
189
190

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
191
192
193
194
195
196
197
198
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
199
200
201
202

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
203
    #[serde(default)]
204
205
206
207
208
209
210
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
211
212

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
213
    #[serde(default)]
214
215
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
216
217

    /// Top-p value for nucleus sampling.
218
219
220
221
222
223
224
225
226
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
227
228
229

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
230
    #[serde(default)]
231
232
233
234
235
236
237
238
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
239
240

    /// Activate logits sampling.
241
    #[serde(default)]
242
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
243
    pub do_sample: bool,
244
245

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
246
    #[serde(default = "default_max_new_tokens")]
247
    #[schema(nullable = true, default = "100", example = "20")]
248
    pub max_new_tokens: Option<u32>,
249
250

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
251
    #[serde(default)]
252
    #[schema(nullable = true, default = "null", example = false)]
253
    pub return_full_text: Option<bool>,
254
255

    /// Stop generating tokens if a member of `stop` is generated.
256
    #[serde(default)]
257
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
258
    pub stop: Vec<String>,
259
260

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
261
    #[serde(default)]
262
    #[schema(nullable = true, default = "null", example = "null")]
263
    pub truncate: Option<usize>,
264
265

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
266
    #[serde(default)]
267
268
    #[schema(default = "false", example = true)]
    pub watermark: bool,
269
270

    /// Whether to return generation details.
271
    #[serde(default)]
272
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
273
    pub details: bool,
274
275

    /// Whether to return decoder input token logprobs and ids.
276
    #[serde(default)]
277
    #[schema(default = "false")]
278
    pub decoder_input_details: bool,
279
280

    /// Random sampling seed.
281
    #[serde(default)]
282
283
284
285
286
287
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
288
    pub seed: Option<u64>,
289
290

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
291
292
293
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
294
295

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
296
    #[serde(default)]
297
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
298
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
299
300
301
302
303

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
304
305
}

306
fn default_max_new_tokens() -> Option<u32> {
307
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
308
309
310
311
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
312
        best_of: None,
313
314
        temperature: None,
        repetition_penalty: None,
315
        frequency_penalty: None,
316
317
        top_k: None,
        top_p: None,
318
        typical_p: None,
319
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
320
        max_new_tokens: default_max_new_tokens(),
321
        return_full_text: None,
322
        stop: Vec::new(),
323
        truncate: None,
324
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
325
        details: false,
326
        decoder_input_details: false,
327
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
328
        top_n_tokens: None,
drbh's avatar
drbh committed
329
        grammar: None,
drbh's avatar
drbh committed
330
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
331
332
333
    }
}

334
335
336
337
338
339
340
341
342
343
344
345
346
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
347

348
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
349
        match value {
350
351
352
353
354
355
356
357
358
359
360
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
361
362
363
364
        }
    }
}

365
366
367
368
369
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
370
    pub model: Option<String>,
371
372
373

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
374
    pub prompt: Prompt,
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
412
413
414
415
416

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
417
418
}

419
420
421
422
423
424
425
426
427
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

428
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
429
pub(crate) struct CompletionFinal {
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

448
449
450
451
452
453
454
455
456
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

457
#[derive(Clone, Deserialize, Serialize, ToSchema)]
458
459
pub(crate) struct ChatCompletion {
    pub id: String,
460
    #[schema(example = "1706270835")]
461
    pub created: u64,
462
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
463
464
465
466
467
468
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

469
#[derive(Clone, Deserialize, Serialize, ToSchema)]
470
471
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
472
    pub message: OutputMessage,
473
    pub logprobs: Option<ChatCompletionLogprobs>,
474
475
476
    pub finish_reason: String,
}

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
520
521
522
523
524
525
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
526
527
528
529
530
531
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

548
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
549
550
551
552
553
554
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

555
556
557
558
559
560
561
562
563
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

564
565
566
567
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
568
        output: Option<String>,
569
570
571
        created: u64,
        details: Details,
        return_logprobs: bool,
572
        tool_calls: Option<Vec<ToolCall>>,
573
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
598
599
600
601
602
603
604
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
605
                message,
606
                logprobs: return_logprobs
607
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
608
                finish_reason: details.finish_reason.format(true),
609
610
611
612
613
614
615
616
617
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
618
#[derive(Clone, Serialize, ToSchema)]
619
620
pub(crate) struct ChatCompletionChunk {
    pub id: String,
621
    #[schema(example = "1706270978")]
622
    pub created: u64,
623
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
624
625
626
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
Nicolas Patry's avatar
Nicolas Patry committed
627
    pub usage: Option<Usage>,
628
629
}

630
#[derive(Clone, Serialize, ToSchema)]
631
632
633
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
634
    pub logprobs: Option<ChatCompletionLogprobs>,
635
636
637
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
638
639
640
641
642
643
644
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

645
646
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
647
648
649
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
650
651
}

Nicolas Patry's avatar
Nicolas Patry committed
652
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
653
654
655
656
657
658
659
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
660
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
661
662
663
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
664
665
}

drbh's avatar
drbh committed
666
#[allow(clippy::too_many_arguments)]
667
668
669
670
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
671
672
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
673
        created: u64,
674
        logprobs: Option<ChatCompletionLogprobs>,
675
        finish_reason: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
676
        usage: Option<Usage>,
677
    ) -> Self {
678
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
679
680
681
682
683
684
685
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
686
687
688
689
690
691
692
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
693
694
695
696
697
698
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
699
        };
700
701
702
703
704
705
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
706
                index: 0,
707
                delta,
708
709
710
                logprobs,
                finish_reason,
            }],
Nicolas Patry's avatar
Nicolas Patry committed
711
            usage,
712
713
714
715
716
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
717
#[cfg_attr(test, derive(Debug, PartialEq, Default))]
718
pub(crate) struct ChatRequest {
719
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
720
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
721
    pub model: Option<String>,
drbh's avatar
drbh committed
722

723
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
724
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
725
726
727
728
729
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
730
    #[schema(example = "1.0")]
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
745
    #[schema(example = "false")]
746
747
748
749
750
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
751
    #[schema(example = "5")]
752
753
754
755
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
756
    #[schema(example = "32")]
757
758
759
760
761
762
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
763
    #[schema(nullable = true, example = "2")]
764
765
766
767
768
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
769
    #[schema(nullable = true, example = 0.1)]
770
771
    pub presence_penalty: Option<f32>,

772
773
774
775
776
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

777
778
779
780
781
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
782
783
784
785
786
787

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
788
    #[schema(nullable = true, example = 1.0)]
789
790
791
792
793
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
794
    #[schema(nullable = true, example = 0.95)]
795
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
796
797
798
799
800
801
802
803

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
drbh's avatar
drbh committed
804
    #[serde(default)]
drbh's avatar
drbh committed
805
806
    #[schema(
        nullable = true,
drbh's avatar
drbh committed
807
        example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables."
drbh's avatar
drbh committed
808
809
810
811
812
813
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
drbh's avatar
drbh committed
814
    pub tool_choice: ToolChoice,
drbh's avatar
drbh committed
815
816
817
818
819
820
821

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
822
823
824
825
826

    /// A guideline to be used in the chat_template
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub guideline: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
827
828
829
830
831
832
833

    /// Options for streaming response. Only set this when you set stream: true.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stream_options: Option<StreamOptions>,
}

Nicolas Patry's avatar
Nicolas Patry committed
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
impl ChatRequest {
    fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> {
        let ChatRequest {
            model,
            max_tokens,
            messages,
            seed,
            stop,
            stream,
            tools,
            tool_choice,
            tool_prompt,
            temperature,
            response_format,
            guideline,
            presence_penalty,
            frequency_penalty,
            top_p,
            top_logprobs,
            ..
        } = self;

        let repetition_penalty = presence_penalty.map(|x| x + 2.0);
        let max_new_tokens = max_tokens.or(Some(100));
        let tool_prompt = tool_prompt
            .filter(|s| !s.is_empty())
            .unwrap_or_else(default_tool_prompt);
        let stop = stop.unwrap_or_default();
        // enable greedy only when temperature is 0
        let (do_sample, temperature) = match temperature {
            Some(temperature) if temperature == 0.0 => (false, None),
            other => (true, other),
        };
        let (inputs, grammar, using_tools) = prepare_chat_input(
            infer,
            response_format,
            tools,
            tool_choice,
            &tool_prompt,
            guideline,
            messages,
        )?;

        Ok((
            GenerateRequest {
                inputs: inputs.to_string(),
                add_special_tokens: false,
                parameters: GenerateParameters {
                    best_of: None,
                    temperature,
                    repetition_penalty,
                    frequency_penalty,
                    top_k: None,
                    top_p,
                    typical_p: None,
                    do_sample,
                    max_new_tokens,
                    return_full_text: None,
                    stop,
                    truncate: None,
                    watermark: false,
                    details: true,
                    decoder_input_details: !stream,
                    seed,
                    top_n_tokens: top_logprobs,
                    grammar,
                    adapter_id: model.filter(|m| *m != "tgi").map(String::from),
                },
            },
            using_tools,
        ))
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
908
#[derive(Clone, Deserialize, ToSchema, Serialize)]
Nicolas Patry's avatar
Nicolas Patry committed
909
#[cfg_attr(test, derive(Debug, PartialEq))]
Nicolas Patry's avatar
Nicolas Patry committed
910
911
912
913
struct StreamOptions {
    /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value.
    #[schema(example = "true")]
    include_usage: bool,
drbh's avatar
drbh committed
914
915
}

drbh's avatar
drbh committed
916
917
pub fn default_tool_prompt() -> String {
    "\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.\n".to_string()
drbh's avatar
drbh committed
918
}
919
920

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
921
922
#[schema(example = "auto")]
/// Controls which (if any) tool is called by the model.
923
pub enum ToolType {
924
925
    /// Means the model can pick between generating a message or calling one or more tools.
    #[schema(rename = "auto")]
drbh's avatar
drbh committed
926
    OneOf,
927
928
    /// Means the model will not call any tool and instead generates a message.
    #[schema(rename = "none")]
drbh's avatar
drbh committed
929
    NoTool,
930
931
932
    /// Forces the model to call a specific tool.
    #[schema(rename = "function")]
    Function(FunctionName),
drbh's avatar
drbh committed
933
934
}

935
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
936
937
938
939
pub struct FunctionName {
    pub name: String,
}

drbh's avatar
drbh committed
940
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
941
942
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
943

944
945
946
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
947
    Null,
drbh's avatar
drbh committed
948
949
    String(String),
    ToolType(ToolType),
950
}
drbh's avatar
drbh committed
951

952
953
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
954
        match value {
955
            ToolTypeDeserializer::Null => ToolChoice(None),
drbh's avatar
drbh committed
956
957
958
            ToolTypeDeserializer::String(s) => match s.as_str() {
                "none" => ToolChoice(Some(ToolType::NoTool)),
                "auto" => ToolChoice(Some(ToolType::OneOf)),
959
                _ => ToolChoice(Some(ToolType::Function(FunctionName { name: s }))),
drbh's avatar
drbh committed
960
            },
drbh's avatar
drbh committed
961
            ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
962
963
964
965
        }
    }
}

966
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
967
pub struct JsonSchemaTool {
drbh's avatar
drbh committed
968
969
970
971
972
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

973
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
974
975
976
977
978
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

979
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
980
981
982
983
984
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

985
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
1001
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
1002
1003
1004
1005
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
1006
1007
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
1008
1009
1010
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
Nicolas Patry's avatar
Nicolas Patry committed
1011
#[cfg_attr(test, derive(PartialEq))]
drbh's avatar
drbh committed
1012
1013
1014
1015
1016
1017
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
1018
1019
}

1020
#[derive(Clone, Serialize, Deserialize, Default)]
1021
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
1022
    messages: Vec<TextMessage>,
1023
1024
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
1025
    add_generation_prompt: bool,
drbh's avatar
drbh committed
1026
    tools: Option<Vec<Tool>>,
1027
    guideline: Option<&'a str>,
1028
1029
}

Nicolas Patry's avatar
Nicolas Patry committed
1030
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
1031
pub(crate) struct ToolCall {
1032
    pub id: String,
drbh's avatar
drbh committed
1033
1034
1035
1036
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
1037
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
1038
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
1039
    url: String,
drbh's avatar
drbh committed
1040
1041
}

Nicolas Patry's avatar
Nicolas Patry committed
1042
1043
1044
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
1045
1046
1047
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
1048
1049
1050
1051
1052
1053
1054
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
1055
    pub content: MessageContent,
drbh's avatar
drbh committed
1056
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
1057
1058
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
1059
1060
}

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
drbh's avatar
drbh committed
1073
1074
1075
1076
                *self = MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: text.clone() },
                    chunk,
                ]);
Nicolas Patry's avatar
Nicolas Patry committed
1077
            }
1078
1079
1080
1081
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
1082
1083
1084
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
1085
1086
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
1087
1088
1089
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
1090
1091
1092
1093
1094
1095
1096
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1124
1125
}

1126
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1127
pub(crate) struct GenerateRequest {
1128
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1129
1130
1131
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

    /// This is used internally because some requests
    /// already contain the templated input therefore
    /// we shouldn't add the special tokens.
    #[serde(default = "default_true", skip)]
    pub add_special_tokens: bool,
}

fn default_true() -> bool {
    true
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1142
1143
}

1144
1145
1146
1147
1148
1149
1150
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1151
    #[schema(default = "false")]
1152
1153
1154
1155
1156
1157
1158
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
1159
            add_special_tokens: true,
1160
1161
1162
1163
1164
            parameters: req.parameters,
        }
    }
}

1165
1166
1167
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1168
    pub id: u32,
1169
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1170
    pub text: String,
1171
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1172
    pub logprob: f32,
1173
1174
}

1175
#[derive(Debug, Serialize, ToSchema, Clone)]
1176
1177
pub struct Token {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1178
    pub id: u32,
1179
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1180
    pub text: String,
1181
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1182
    pub logprob: f32,
1183
    #[schema(example = "false")]
Nicolas Patry's avatar
Nicolas Patry committed
1184
    pub special: bool,
1185
1186
}

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1199
#[derive(Debug, Serialize, ToSchema)]
1200
#[serde(rename_all(serialize = "snake_case"))]
1201
#[schema(example = "Length")]
Nicolas Patry's avatar
Nicolas Patry committed
1202
pub enum FinishReason {
1203
1204
1205
1206
1207
1208
1209
1210
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1222
1223
1224
1225
1226
1227
1228
1229
1230
impl FinishReason {
    pub fn format(&self, use_stop: bool) -> String {
        match self {
            FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(),
            _ => self.to_string(),
        }
    }
}

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1243
1244
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1245
1246
}

1247
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1248
pub(crate) struct Details {
1249
1250
1251
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1252
    pub generated_tokens: u32,
1253
    #[schema(nullable = true, example = 42)]
1254
    pub seed: Option<u64>,
1255
1256
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1257
1258
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1259
1260
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1261
1262
}

1263
#[derive(Serialize, ToSchema)]
1264
pub(crate) struct GenerateResponse {
1265
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1266
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1267
1268
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1269
}
1270

1271
1272
1273
1274
1275
1276
#[derive(Serialize, ToSchema)]
pub(crate) struct ChatTokenizeResponse {
    pub(crate) tokenize_response: TokenizeResponse,
    pub(crate) templated_text: String,
}

1277
1278
1279
1280
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1281
1282
1283
1284
1285
1286
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1287
    #[schema(nullable = true, example = 42)]
1288
    pub seed: Option<u64>,
1289
1290
    #[schema(example = 1)]
    pub input_length: u32,
1291
1292
1293
}

#[derive(Serialize, ToSchema)]
1294
pub(crate) struct StreamResponse {
1295
    pub index: u32,
1296
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1297
1298
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1299
    #[schema(nullable = true, default = "null", example = "test")]
1300
    pub generated_text: Option<String>,
1301
1302
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1303
1304
}

1305
#[derive(Serialize, ToSchema)]
1306
1307
pub(crate) struct ErrorResponse {
    pub error: String,
1308
    pub error_type: String,
1309
}
1310

drbh's avatar
drbh committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelInfo {
    #[schema(example = "gpt2")]
    pub id: String,
    #[schema(example = "model")]
    pub object: String,
    #[schema(example = 1686935002)]
    pub created: u64,
    #[schema(example = "openai")]
    pub owned_by: String,
}

#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelsInfo {
    #[schema(example = "list")]
    pub object: String,
    pub data: Vec<ModelInfo>,
}

impl Default for ModelsInfo {
    fn default() -> Self {
        ModelsInfo {
            object: "list".to_string(),
            data: Vec::new(),
        }
    }
}

1339
#[cfg(test)]
1340
mod tests {
1341
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1342
    use serde_json::json;
1343
1344
    use tokenizers::Tokenizer;

1345
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1346
1347
1348
1349
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1350
    }
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1365
1366
1367
1368
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1369
1370
        assert_eq!(
            config.bos_token,
1371
1372
1373
1374
1375
1376
1377
1378
1379
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1407
1408
1409
1410
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1411
1412
        assert_eq!(
            config.bos_token,
1413
1414
1415
1416
1417
1418
1419
1420
1421
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1422
1423
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1424
1425
1426

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1427
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1428
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1429
1430
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1431
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1432
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1433
1434
1435
1436
1437
1438
1439
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1440
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1441
1442
1443
1444
1445
                name: None
            }
        );
    }

drbh's avatar
drbh committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    #[test]
    fn test_message_content_append() {
        let mut content = MessageContent::SingleText("Initial text".to_string());
        let chunk = MessageChunk::Text {
            text: "Additional text".to_string(),
        };

        content.push(chunk);

        match content {
            MessageContent::MultipleChunks(chunks) => {
                assert_eq!(chunks.len(), 2);
                assert_eq!(
                    chunks[0],
                    MessageChunk::Text {
                        text: "Initial text".to_string()
                    }
                );
                assert_eq!(
                    chunks[1],
                    MessageChunk::Text {
                        text: "Additional text".to_string()
                    }
                );
            }
            _ => panic!("Expected MultipleChunks, but got a different variant"),
        }
    }

Nicolas Patry's avatar
Nicolas Patry committed
1475
1476
    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1477
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1478
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1479
1480
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1481
1482
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1483
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1484
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1485
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1486
1487
1488
1489
1490
1491
1492
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1493
1494
1495
1496
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1497
1498
1499
1500
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1501
1502
1503
1504
1505

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1506
1507
1508
1509
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1510
1511
1512
1513
1514
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
Nicolas Patry's avatar
Nicolas Patry committed
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535

    #[test]
    fn test_chat_stream_options() {
        let json = json!({
            "model": "",
            "stream_options": {"include_usage": true},
            "messages": [{
                "role": "user",
                "content": "Hello"
            }]
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert!(matches!(
            request.stream_options,
            Some(StreamOptions {
                include_usage: true
            })
        ));
    }

Nicolas Patry's avatar
Nicolas Patry committed
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1568
}