lib.rs 43.5 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
3
mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
9
#[cfg(feature = "kserve")]
mod kserve;

10
11
pub mod usage_stats;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
13
use tracing::warn;
14
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

drbh's avatar
drbh committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

36
37
/// Hub type
#[derive(Clone, Debug, Deserialize)]
38
pub struct HubModelInfo {
39
40
41
42
43
44
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

45
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
46
47
48
49
50
pub struct ChatTemplate {
    name: String,
    template: String,
}

51
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
52
53
54
55
56
57
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

58
59
use std::path::Path;

60
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
61
pub struct HubTokenizerConfig {
62
    pub chat_template: Option<ChatTemplateVersions>,
63
    pub completion_template: Option<String>,
64
65
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
66
67
68
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
69
70
71
}

impl HubTokenizerConfig {
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
92
93
94
    }
}

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
114
115
116
117
118
119
120
121
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
122
123
124
125
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
126
127
128
    }
}

129
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
130
131
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
132
133
134
135
136
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
137
    #[serde(alias = "json_object")]
138
139
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
140
141
142
143
    #[serde(rename = "regex")]
    Regex(String),
}

144
145
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
146
    /// Model info
147
148
149
150
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
151
152
153
154
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
155
156
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
157
158
159
160
161
162
163
164
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
165
    pub max_input_tokens: usize,
166
167
168
169
170
171
172
173
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
174
175
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
176
177
    #[schema(example = "2")]
    pub validation_workers: usize,
178
179
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
180
    /// Router Info
181
182
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
183
184
185
186
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
187
188
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
189
190
}

drbh's avatar
drbh committed
191
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
192
pub(crate) struct GenerateParameters {
193
    /// Generate best_of sequences and return the one if the highest token logprobs.
194
195
196
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
197
198

    /// The value used to module the logits distribution.
199
200
201
202
203
204
205
206
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
207
208
209

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
210
211
212
213
214
215
216
217
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
218
219
220
221

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
222
    #[serde(default)]
223
224
225
226
227
228
229
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
230
231

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
232
    #[serde(default)]
233
234
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
235
236

    /// Top-p value for nucleus sampling.
237
238
239
240
241
242
243
244
245
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
246
247
248

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
249
    #[serde(default)]
250
251
252
253
254
255
256
257
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
258
259

    /// Activate logits sampling.
260
    #[serde(default)]
261
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
262
    pub do_sample: bool,
263
264

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
265
    #[serde(default = "default_max_new_tokens")]
266
    #[schema(nullable = true, default = "100", example = "20")]
267
    pub max_new_tokens: Option<u32>,
268
269

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
270
    #[serde(default)]
271
    #[schema(nullable = true, default = "null", example = false)]
272
    pub return_full_text: Option<bool>,
273
274

    /// Stop generating tokens if a member of `stop` is generated.
275
    #[serde(default)]
276
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
277
    pub stop: Vec<String>,
278
279

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
280
    #[serde(default)]
281
    #[schema(nullable = true, default = "null", example = "null")]
282
    pub truncate: Option<usize>,
283
284

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
285
    #[serde(default)]
286
287
    #[schema(default = "false", example = true)]
    pub watermark: bool,
288
289

    /// Whether to return generation details.
290
    #[serde(default)]
291
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
292
    pub details: bool,
293
294

    /// Whether to return decoder input token logprobs and ids.
295
    #[serde(default)]
296
    #[schema(default = "false")]
297
    pub decoder_input_details: bool,
298
299

    /// Random sampling seed.
300
    #[serde(default)]
301
302
303
304
305
306
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
307
    pub seed: Option<u64>,
308
309

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
310
311
312
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
313
314

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
315
    #[serde(default)]
316
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
317
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
318
319
320
321
322

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
323
324
}

325
fn default_max_new_tokens() -> Option<u32> {
326
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
327
328
329
330
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
331
        best_of: None,
332
333
        temperature: None,
        repetition_penalty: None,
334
        frequency_penalty: None,
335
336
        top_k: None,
        top_p: None,
337
        typical_p: None,
338
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
339
        max_new_tokens: default_max_new_tokens(),
340
        return_full_text: None,
341
        stop: Vec::new(),
342
        truncate: None,
343
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
344
        details: false,
345
        decoder_input_details: false,
346
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
347
        top_n_tokens: None,
drbh's avatar
drbh committed
348
        grammar: None,
drbh's avatar
drbh committed
349
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
350
351
352
    }
}

353
354
355
356
357
358
359
360
361
362
363
364
365
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
366

367
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
368
        match value {
369
370
371
372
373
374
375
376
377
378
379
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
380
381
382
383
        }
    }
}

384
385
386
387
388
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
389
    pub model: Option<String>,
390
391
392

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
393
    pub prompt: Prompt,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
431
432
433
434
435

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
436
437
}

438
439
440
441
442
443
444
445
446
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

447
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
448
pub(crate) struct CompletionFinal {
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

467
468
469
470
471
472
473
474
475
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

476
#[derive(Clone, Deserialize, Serialize, ToSchema)]
477
478
pub(crate) struct ChatCompletion {
    pub id: String,
479
    #[schema(example = "1706270835")]
480
    pub created: u64,
481
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
482
483
484
485
486
487
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

488
#[derive(Clone, Deserialize, Serialize, ToSchema)]
489
490
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
491
    pub message: OutputMessage,
492
    pub logprobs: Option<ChatCompletionLogprobs>,
493
494
495
    pub finish_reason: String,
}

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
539
540
541
542
543
544
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
545
546
547
548
549
550
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

567
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
568
569
570
571
572
573
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

574
575
576
577
578
579
580
581
582
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

583
584
585
586
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
587
        output: Option<String>,
588
589
590
        created: u64,
        details: Details,
        return_logprobs: bool,
591
        tool_calls: Option<Vec<ToolCall>>,
592
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
617
618
619
620
621
622
623
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
624
                message,
625
                logprobs: return_logprobs
626
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
627
628
629
630
631
632
633
634
635
636
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
637
#[derive(Clone, Serialize, ToSchema)]
638
639
pub(crate) struct ChatCompletionChunk {
    pub id: String,
640
    #[schema(example = "1706270978")]
641
    pub created: u64,
642
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
643
644
645
646
647
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

648
#[derive(Clone, Serialize, ToSchema)]
649
650
651
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
652
    pub logprobs: Option<ChatCompletionLogprobs>,
653
654
655
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
656
657
658
659
660
661
662
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

663
664
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
665
666
667
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
668
669
}

Nicolas Patry's avatar
Nicolas Patry committed
670
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
671
672
673
674
675
676
677
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
678
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
679
680
681
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
682
683
}

drbh's avatar
drbh committed
684
#[allow(clippy::too_many_arguments)]
685
686
687
688
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
689
690
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
691
        created: u64,
692
        logprobs: Option<ChatCompletionLogprobs>,
693
694
        finish_reason: Option<String>,
    ) -> Self {
695
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
696
697
698
699
700
701
702
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
703
704
705
706
707
708
709
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
710
711
712
713
714
715
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
716
        };
717
718
719
720
721
722
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
723
                index: 0,
724
                delta,
725
726
727
728
729
730
731
732
733
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
734
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
735
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
736
    pub model: Option<String>,
drbh's avatar
drbh committed
737

738
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
739
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
740
741
742
743
744
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
745
    #[schema(example = "1.0")]
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
760
    #[schema(example = "false")]
761
762
763
764
765
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
766
    #[schema(example = "5")]
767
768
769
770
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
771
    #[schema(example = "32")]
772
773
774
775
776
777
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
778
    #[schema(nullable = true, example = "2")]
779
780
781
782
783
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
784
    #[schema(nullable = true, example = 0.1)]
785
786
    pub presence_penalty: Option<f32>,

787
788
789
790
791
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

792
793
794
795
796
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
797
798
799
800
801
802

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
803
    #[schema(nullable = true, example = 1.0)]
804
805
806
807
808
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
809
    #[schema(nullable = true, example = 0.95)]
810
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
811
812
813
814
815
816
817
818
819
820
821

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
822
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
823
824
825
826
827
828
829
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tool_choice: Option<ToolType>,
drbh's avatar
drbh committed
830
831
832
833
834
835
836

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
drbh's avatar
drbh committed
837
838
839
840
}

fn default_tool_prompt() -> Option<String> {
    Some(
841
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
842
843
    )
}
844
845
846
847

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
#[serde(untagged)]
pub enum ToolType {
drbh's avatar
drbh committed
848
    OneOf,
849
850
    FunctionName(String),
    Function { function: FunctionName },
drbh's avatar
drbh committed
851
852
}

853
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
854
855
856
857
858
859
860
pub struct FunctionName {
    pub name: String,
}

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
861

862
863
864
865
866
867
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
    None(Option<String>),
    Some(ToolType),
}
drbh's avatar
drbh committed
868

869
870
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
871
        match value {
872
873
874
875
876
            ToolTypeDeserializer::None(opt) => match opt.as_deref() {
                Some("none") => ToolChoice(None),
                Some("auto") => ToolChoice(Some(ToolType::OneOf)),
                Some(s) => ToolChoice(Some(ToolType::FunctionName(s.to_string()))),
                None => ToolChoice(Some(ToolType::OneOf)),
drbh's avatar
drbh committed
877
            },
878
            ToolTypeDeserializer::Some(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
879
880
881
882
        }
    }
}

883
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
884
885
886
887
888
889
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

890
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
891
892
893
894
895
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

896
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
897
898
899
900
901
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

902
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
918
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
919
920
921
922
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
923
924
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
925
926
927
928
929
930
931
932
933
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
934
935
}

936
#[derive(Clone, Serialize, Deserialize, Default)]
937
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
938
    messages: Vec<TextMessage>,
939
940
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
941
    add_generation_prompt: bool,
942
943
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
944
945
}

Nicolas Patry's avatar
Nicolas Patry committed
946
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
947
pub(crate) struct ToolCall {
948
    pub id: String,
drbh's avatar
drbh committed
949
950
951
952
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
953
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
954
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
955
    url: String,
drbh's avatar
drbh committed
956
957
}

Nicolas Patry's avatar
Nicolas Patry committed
958
959
960
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
961
962
963
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
964
965
966
967
968
969
970
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
971
    pub content: MessageContent,
drbh's avatar
drbh committed
972
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
973
974
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
975
976
}

977
978
979
980
981
982
983
984
985
986
987
988
989
990
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
                *self =
                    MessageContent::MultipleChunks(vec![MessageChunk::Text { text: text.clone() }]);
Nicolas Patry's avatar
Nicolas Patry committed
991
            }
992
993
994
995
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
996
997
998
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
999
1000
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
1001
1002
1003
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
1004
1005
1006
1007
1008
1009
1010
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1038
1039
}

1040
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1041
pub(crate) struct GenerateRequest {
1042
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1043
1044
1045
1046
1047
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1048
1049
1050
1051
1052
1053
1054
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1055
    #[schema(default = "false")]
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1068
1069
1070
1071
1072
1073
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1074
    #[schema(nullable = true, example = - 0.34)]
1075
1076
1077
    logprob: f32,
}

1078
#[derive(Debug, Serialize, ToSchema, Clone)]
1079
1080
1081
1082
1083
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1084
    #[schema(nullable = true, example = - 0.34)]
1085
    logprob: f32,
1086
1087
    #[schema(example = "false")]
    special: bool,
1088
1089
}

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1102
#[derive(Debug, Serialize, ToSchema)]
1103
#[serde(rename_all(serialize = "snake_case"))]
1104
#[schema(example = "Length")]
1105
1106
1107
1108
1109
1110
1111
1112
1113
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1114

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1137
1138
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1139
1140
}

1141
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1142
pub(crate) struct Details {
1143
1144
1145
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1146
    pub generated_tokens: u32,
1147
    #[schema(nullable = true, example = 42)]
1148
    pub seed: Option<u64>,
1149
1150
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1151
1152
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1153
1154
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1155
1156
}

1157
#[derive(Serialize, ToSchema)]
1158
pub(crate) struct GenerateResponse {
1159
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1160
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1161
1162
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1163
}
1164

1165
1166
1167
1168
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1169
1170
1171
1172
1173
1174
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1175
    #[schema(nullable = true, example = 42)]
1176
1177
1178
1179
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1180
pub(crate) struct StreamResponse {
1181
    pub index: u32,
1182
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1183
1184
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1185
    #[schema(nullable = true, default = "null", example = "test")]
1186
    pub generated_text: Option<String>,
1187
1188
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1189
1190
}

1191
#[derive(Serialize, ToSchema)]
1192
1193
pub(crate) struct ErrorResponse {
    pub error: String,
1194
    pub error_type: String,
1195
}
1196
1197

#[cfg(test)]
1198
mod tests {
1199
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1200
    use serde_json::json;
1201
1202
    use tokenizers::Tokenizer;

1203
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1204
1205
1206
1207
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1208
    }
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1223
1224
1225
1226
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1227
1228
        assert_eq!(
            config.bos_token,
1229
1230
1231
1232
1233
1234
1235
1236
1237
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1265
1266
1267
1268
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1269
1270
        assert_eq!(
            config.bos_token,
1271
1272
1273
1274
1275
1276
1277
1278
1279
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1280
1281
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1282
1283
1284

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1285
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1286
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1287
1288
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1289
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1290
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1291
1292
1293
1294
1295
1296
1297
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1298
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1299
1300
1301
1302
1303
1304
1305
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1306
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1307
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1308
1309
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1310
1311
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1312
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1313
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1314
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1315
1316
1317
1318
1319
1320
1321
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1322
1323
1324
1325
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1326
1327
1328
1329
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1330
1331
1332
1333
1334

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1335
1336
1337
1338
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1376
}