lib.rs 33.1 KB
Newer Older
1
pub mod config;
2
mod health;
3
/// Text Generation Inference Webserver
4
mod infer;
5
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
6
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
8

9
use infer::{Infer, InferError, InferStreamResponse};
10
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
use serde::{Deserialize, Serialize};
12
13
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
14
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
19
20
21
22
23
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

43
44
/// Hub type
#[derive(Clone, Debug, Deserialize)]
45
pub struct HubModelInfo {
46
47
48
49
50
51
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

52
53
54
55
56
57
58
59
60
61
62
63
64
65
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
66
pub struct HubTokenizerConfig {
67
    pub chat_template: Option<ChatTemplateVersions>,
68
    pub completion_template: Option<String>,
69
    #[serde(deserialize_with = "token_serde::deserialize")]
70
    pub bos_token: Option<String>,
71
    #[serde(deserialize_with = "token_serde::deserialize")]
72
    pub eos_token: Option<String>,
73
74
75
}

impl HubTokenizerConfig {
76
    pub fn from_file(filename: &std::path::Path) -> Self {
77
78
79
80
81
        let content = std::fs::read_to_string(filename).unwrap();
        serde_json::from_str(&content).unwrap_or_default()
    }
}

82
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
83
84
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
85
86
87
88
89
90
91
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
92
93
94
95
    #[serde(rename = "regex")]
    Regex(String),
}

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

124
125
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
126
    /// Model info
127
128
129
130
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
131
132
133
134
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
135
136
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
154
155
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
156
157
158
    #[schema(example = "2")]
    pub validation_workers: usize,
    /// Router Info
159
160
161
162
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
163
164
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
165
166
}

drbh's avatar
drbh committed
167
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
168
pub(crate) struct GenerateParameters {
169
170
171
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
    #[serde(default)]
189
190
191
192
193
194
195
196
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
    #[serde(default)]
197
198
199
200
201
202
203
204
205
206
207
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
208
    #[serde(default)]
209
210
211
212
213
214
215
216
217
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
    #[serde(default)]
218
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
219
220
    pub do_sample: bool,
    #[serde(default = "default_max_new_tokens")]
221
    #[schema(nullable = true, default = "100", example = "20")]
222
    pub max_new_tokens: Option<u32>,
OlivierDehaene's avatar
OlivierDehaene committed
223
    #[serde(default)]
224
    #[schema(nullable = true, default = "null", example = false)]
225
226
    pub return_full_text: Option<bool>,
    #[serde(default)]
227
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
228
    pub stop: Vec<String>,
OlivierDehaene's avatar
OlivierDehaene committed
229
    #[serde(default)]
230
    #[schema(nullable = true, default = "null", example = "null")]
231
232
    pub truncate: Option<usize>,
    #[serde(default)]
233
234
235
    #[schema(default = "false", example = true)]
    pub watermark: bool,
    #[serde(default)]
236
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
237
    pub details: bool,
238
    #[serde(default)]
239
240
241
    #[schema(default = "true")]
    pub decoder_input_details: bool,
    #[serde(default)]
242
243
244
245
246
247
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
248
    pub seed: Option<u64>,
Nicolas Patry's avatar
Nicolas Patry committed
249
250
251
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
drbh's avatar
drbh committed
252
253
    #[serde(default)]
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
254
255
}

256
fn default_max_new_tokens() -> Option<u32> {
257
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
258
259
260
261
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
262
        best_of: None,
263
264
        temperature: None,
        repetition_penalty: None,
265
        frequency_penalty: None,
266
267
        top_k: None,
        top_p: None,
268
        typical_p: None,
269
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
270
        max_new_tokens: default_max_new_tokens(),
271
        return_full_text: None,
272
        stop: Vec::new(),
273
        truncate: None,
274
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
275
        details: false,
276
        decoder_input_details: false,
277
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
278
        top_n_tokens: None,
drbh's avatar
drbh committed
279
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
280
281
282
    }
}

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
    pub prompt: String,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

353
#[derive(Clone, Deserialize, Serialize, ToSchema)]
354
355
356
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
357
    #[schema(example = "1706270835")]
358
    pub created: u64,
359
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
360
361
362
363
364
365
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

366
#[derive(Clone, Deserialize, Serialize, ToSchema)]
367
368
369
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
370
    pub logprobs: Option<ChatCompletionLogprobs>,
371
372
373
    pub finish_reason: String,
}

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
417
418
419
420
421
422
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
423
424
425
426
427
428
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

445
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
446
447
448
449
450
451
452
453
454
455
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
456
        output: Option<String>,
457
458
459
        created: u64,
        details: Details,
        return_logprobs: bool,
460
        tool_calls: Option<Vec<ToolCall>>,
461
462
463
464
465
466
467
468
469
470
471
472
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
473
                    name: None,
drbh's avatar
drbh committed
474
                    tool_calls,
475
476
                },
                logprobs: return_logprobs
477
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
478
479
480
481
482
483
484
485
486
487
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
488
489
490
491
492
493
494
495
496
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
497
#[derive(Clone, Deserialize, Serialize, ToSchema)]
498
499
500
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
501
    #[schema(example = "1706270978")]
502
    pub created: u64,
503
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
504
505
506
507
508
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

509
#[derive(Clone, Deserialize, Serialize, ToSchema)]
510
511
512
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
513
    pub logprobs: Option<ChatCompletionLogprobs>,
514
515
516
    pub finish_reason: Option<String>,
}

517
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
518
pub(crate) struct ChatCompletionDelta {
519
    #[schema(example = "user")]
520
    pub role: String,
drbh's avatar
drbh committed
521
    #[serde(default, skip_serializing_if = "Option::is_none")]
522
    #[schema(example = "What is Deep Learning?")]
drbh's avatar
drbh committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    pub content: Option<String>,
    // default to None
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub tool_calls: Option<DeltaToolCall>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
541
542
}

drbh's avatar
drbh committed
543
#[allow(clippy::too_many_arguments)]
544
545
546
547
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
548
549
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
550
        created: u64,
551
        logprobs: Option<ChatCompletionLogprobs>,
552
553
554
555
556
557
558
559
560
        finish_reason: Option<String>,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
561
                index: 0,
562
563
564
                delta: ChatCompletionDelta {
                    role: "assistant".to_string(),
                    content: delta,
drbh's avatar
drbh committed
565
                    tool_calls: tool_calls.map(|tc| DeltaToolCall {
566
                        index: 0,
drbh's avatar
drbh committed
567
568
569
570
571
572
573
                        id: String::new(),
                        r#type: "function".to_string(),
                        function: Function {
                            name: None,
                            arguments: tc[0].to_string(),
                        },
                    }),
574
575
576
577
578
579
580
581
582
583
                },
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
584
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
585
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
586
    pub model: String,
drbh's avatar
drbh committed
587

588
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
589
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
590
591
592
593
594
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
595
    #[schema(example = "1.0")]
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
610
    #[schema(example = "false")]
611
612
613
614
615
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
616
    #[schema(example = "5")]
617
618
619
620
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
621
    #[schema(example = "32")]
622
623
624
625
626
627
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
628
    #[schema(nullable = true, example = "2")]
629
630
631
632
633
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
634
    #[schema(nullable = true, example = 0.1)]
635
636
    pub presence_penalty: Option<f32>,

637
638
639
640
641
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

642
643
644
645
646
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
647
648
649
650
651
652

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
653
    #[schema(nullable = true, example = 1.0)]
654
655
656
657
658
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
659
    #[schema(nullable = true, example = 0.95)]
660
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
661
662
663
664
665
666
667
668
669
670
671

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
672
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
673
674
675
676
677
678
679
680
681
682
683
684
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
685
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

730
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
731
732
733
734
735
736
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

737
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
738
739
740
741
742
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

743
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
744
745
746
747
748
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

749
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
770
771
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
772
773
774
775
776
777
778
779
780
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
781
782
}

783
#[derive(Clone, Serialize, Deserialize, Default)]
784
785
786
787
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
788
    add_generation_prompt: bool,
789
790
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
791
792
}

drbh's avatar
drbh committed
793
794
795
796
797
798
799
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct ToolCall {
    pub id: u32,
    pub r#type: String,
    pub function: FunctionDefinition,
}

800
801
802
803
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
drbh's avatar
drbh committed
804
    #[serde(skip_serializing_if = "Option::is_none")]
805
    #[schema(example = "My name is David and I")]
drbh's avatar
drbh committed
806
    pub content: Option<String>,
drbh's avatar
drbh committed
807
    #[serde(default, skip_serializing_if = "Option::is_none")]
808
809
    #[schema(example = "\"David\"")]
    pub name: Option<String>,
drbh's avatar
drbh committed
810
    #[serde(default, skip_serializing_if = "Option::is_none")]
811
    pub tool_calls: Option<Vec<ToolCall>>,
812
813
}

814
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
815
pub(crate) struct GenerateRequest {
816
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
817
818
819
820
821
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

822
823
824
825
826
827
828
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
829
    #[schema(default = "false")]
830
831
832
833
834
835
836
837
838
839
840
841
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

842
843
844
845
846
847
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
848
    #[schema(nullable = true, example = - 0.34)]
849
850
851
    logprob: f32,
}

852
#[derive(Debug, Serialize, ToSchema, Clone)]
853
854
855
856
857
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
858
    #[schema(nullable = true, example = - 0.34)]
859
    logprob: f32,
860
861
    #[schema(example = "false")]
    special: bool,
862
863
}

864
865
866
867
868
869
870
871
872
873
874
875
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

876
877
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
878
#[schema(example = "Length")]
879
880
881
882
883
884
885
886
887
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
888

889
890
891
892
893
894
895
896
897
898
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

899
900
901
902
903
904
905
906
907
908
909
910
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
911
912
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
913
914
}

915
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
916
pub(crate) struct Details {
917
918
919
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
920
    pub generated_tokens: u32,
921
    #[schema(nullable = true, example = 42)]
922
    pub seed: Option<u64>,
923
924
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
925
926
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
927
928
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
929
930
}

931
#[derive(Serialize, ToSchema)]
932
pub(crate) struct GenerateResponse {
933
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
934
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
935
936
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
937
}
938

939
940
941
942
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

943
944
945
946
947
948
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
949
    #[schema(nullable = true, example = 42)]
950
951
952
953
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
954
pub(crate) struct StreamResponse {
955
    pub index: u32,
956
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
957
958
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
959
    #[schema(nullable = true, default = "null", example = "test")]
960
    pub generated_text: Option<String>,
961
962
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
963
964
}

965
#[derive(Serialize, ToSchema)]
966
967
pub(crate) struct ErrorResponse {
    pub error: String,
968
    pub error_type: String,
969
}
970
971

#[cfg(test)]
972
mod tests {
973
974
    use super::*;

975
976
    use tokenizers::Tokenizer;

977
    pub(crate) async fn get_tokenizer() -> Tokenizer {
978
979
980
981
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
982
    }
983
984
985
986
987
988
989
990
991
992
993
994
995
996

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
997
998
999
1000
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1032
1033
1034
1035
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1036
1037
1038
1039
1040
1041
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
1042
}