lib.rs 32.2 KB
Newer Older
1
pub mod config;
2
mod health;
3
/// Text Generation Inference Webserver
4
mod infer;
5
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
6
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
8

9
use infer::{Infer, InferError, InferStreamResponse};
10
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
use serde::{Deserialize, Serialize};
12
13
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
14
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
19
20
21
22
23
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

43
44
/// Hub type
#[derive(Clone, Debug, Deserialize)]
45
pub struct HubModelInfo {
46
47
48
49
50
51
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

52
53
54
#[derive(Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
    pub chat_template: Option<String>,
55
    pub completion_template: Option<String>,
56
    #[serde(deserialize_with = "token_serde::deserialize")]
57
    pub bos_token: Option<String>,
58
    #[serde(deserialize_with = "token_serde::deserialize")]
59
    pub eos_token: Option<String>,
60
61
62
}

impl HubTokenizerConfig {
63
    pub fn from_file(filename: &std::path::Path) -> Self {
64
65
66
67
68
        let content = std::fs::read_to_string(filename).unwrap();
        serde_json::from_str(&content).unwrap_or_default()
    }
}

drbh's avatar
drbh committed
69
#[derive(Clone, Debug, Deserialize, ToSchema)]
drbh's avatar
drbh committed
70
71
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
72
73
74
75
76
77
78
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
79
80
81
82
    #[serde(rename = "regex")]
    Regex(String),
}

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

111
112
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
113
    /// Model info
114
115
116
117
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
118
119
120
121
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
122
123
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
141
142
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
143
144
145
    #[schema(example = "2")]
    pub validation_workers: usize,
    /// Router Info
146
147
148
149
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
150
151
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
152
153
}

drbh's avatar
drbh committed
154
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
155
pub(crate) struct GenerateParameters {
156
157
158
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
    #[serde(default)]
176
177
178
179
180
181
182
183
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
    #[serde(default)]
184
185
186
187
188
189
190
191
192
193
194
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
195
    #[serde(default)]
196
197
198
199
200
201
202
203
204
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
    #[serde(default)]
205
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
206
207
    pub do_sample: bool,
    #[serde(default = "default_max_new_tokens")]
208
    #[schema(nullable = true, default = "100", example = "20")]
209
    pub max_new_tokens: Option<u32>,
OlivierDehaene's avatar
OlivierDehaene committed
210
    #[serde(default)]
211
    #[schema(nullable = true, default = "null", example = false)]
212
213
    pub return_full_text: Option<bool>,
    #[serde(default)]
214
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
215
    pub stop: Vec<String>,
OlivierDehaene's avatar
OlivierDehaene committed
216
    #[serde(default)]
217
    #[schema(nullable = true, default = "null", example = "null")]
218
219
    pub truncate: Option<usize>,
    #[serde(default)]
220
221
222
    #[schema(default = "false", example = true)]
    pub watermark: bool,
    #[serde(default)]
223
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
224
    pub details: bool,
225
    #[serde(default)]
226
227
228
    #[schema(default = "true")]
    pub decoder_input_details: bool,
    #[serde(default)]
229
230
231
232
233
234
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
235
    pub seed: Option<u64>,
Nicolas Patry's avatar
Nicolas Patry committed
236
237
238
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
drbh's avatar
drbh committed
239
240
    #[serde(default)]
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
241
242
}

243
fn default_max_new_tokens() -> Option<u32> {
244
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
245
246
247
248
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
249
        best_of: None,
250
251
        temperature: None,
        repetition_penalty: None,
252
        frequency_penalty: None,
253
254
        top_k: None,
        top_p: None,
255
        typical_p: None,
256
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
257
        max_new_tokens: default_max_new_tokens(),
258
        return_full_text: None,
259
        stop: Vec::new(),
260
        truncate: None,
261
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
262
        details: false,
263
        decoder_input_details: false,
264
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
265
        top_n_tokens: None,
drbh's avatar
drbh committed
266
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
267
268
269
    }
}

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
    pub prompt: String,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

340
#[derive(Clone, Deserialize, Serialize, ToSchema)]
341
342
343
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
344
    #[schema(example = "1706270835")]
345
    pub created: u64,
346
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
347
348
349
350
351
352
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

353
#[derive(Clone, Deserialize, Serialize, ToSchema)]
354
355
356
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
357
    pub logprobs: Option<ChatCompletionLogprobs>,
358
359
360
    pub finish_reason: String,
}

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
404
405
406
407
408
409
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
410
411
412
413
414
415
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

432
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
433
434
435
436
437
438
439
440
441
442
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
443
        output: Option<String>,
444
445
446
        created: u64,
        details: Details,
        return_logprobs: bool,
447
        tool_calls: Option<Vec<ToolCall>>,
448
449
450
451
452
453
454
455
456
457
458
459
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
460
                    name: None,
drbh's avatar
drbh committed
461
                    tool_calls,
462
463
                },
                logprobs: return_logprobs
464
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
465
466
467
468
469
470
471
472
473
474
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
475
476
477
478
479
480
481
482
483
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
484
#[derive(Clone, Deserialize, Serialize, ToSchema)]
485
486
487
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
488
    #[schema(example = "1706270978")]
489
    pub created: u64,
490
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
491
492
493
494
495
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

496
#[derive(Clone, Deserialize, Serialize, ToSchema)]
497
498
499
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
500
    pub logprobs: Option<ChatCompletionLogprobs>,
501
502
503
    pub finish_reason: Option<String>,
}

504
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
505
pub(crate) struct ChatCompletionDelta {
506
    #[schema(example = "user")]
507
    pub role: String,
drbh's avatar
drbh committed
508
    #[serde(default, skip_serializing_if = "Option::is_none")]
509
    #[schema(example = "What is Deep Learning?")]
drbh's avatar
drbh committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    pub content: Option<String>,
    // default to None
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub tool_calls: Option<DeltaToolCall>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
528
529
}

drbh's avatar
drbh committed
530
#[allow(clippy::too_many_arguments)]
531
532
533
534
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
535
536
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
537
        created: u64,
538
        logprobs: Option<ChatCompletionLogprobs>,
539
540
541
542
543
544
545
546
547
        finish_reason: Option<String>,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
548
                index: 0,
549
550
551
                delta: ChatCompletionDelta {
                    role: "assistant".to_string(),
                    content: delta,
drbh's avatar
drbh committed
552
                    tool_calls: tool_calls.map(|tc| DeltaToolCall {
553
                        index: 0,
drbh's avatar
drbh committed
554
555
556
557
558
559
560
                        id: String::new(),
                        r#type: "function".to_string(),
                        function: Function {
                            name: None,
                            arguments: tc[0].to_string(),
                        },
                    }),
561
562
563
564
565
566
567
568
569
570
                },
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
571
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
572
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
573
    pub model: String,
drbh's avatar
drbh committed
574

575
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
576
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
577
578
579
580
581
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
582
    #[schema(example = "1.0")]
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
597
    #[schema(example = "false")]
598
599
600
601
602
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
603
    #[schema(example = "5")]
604
605
606
607
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
608
    #[schema(example = "32")]
609
610
611
612
613
614
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
615
    #[schema(nullable = true, example = "2")]
616
617
618
619
620
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
621
    #[schema(nullable = true, example = 0.1)]
622
623
    pub presence_penalty: Option<f32>,

624
625
626
627
628
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

629
630
631
632
633
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
634
635
636
637
638
639

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
640
    #[schema(nullable = true, example = 1.0)]
641
642
643
644
645
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
646
    #[schema(nullable = true, example = 0.95)]
647
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
        example = "\"Based on the conversation, please choose the most appropriate tool to use: \""
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
        "\nBased on the conversation, please choose the most appropriate tool to use: ".to_string(),
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

#[derive(Debug, Deserialize, Serialize, ToSchema)]
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

#[derive(Debug, Serialize, Deserialize)]
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

#[derive(Debug, Serialize, Deserialize)]
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

#[derive(Debug, Serialize, Deserialize)]
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
    pub parameters: serde_json::Value,
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
767
768
}

769
770
771
772
773
#[derive(Clone, Serialize, Deserialize)]
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
774
    add_generation_prompt: bool,
775
776
}

drbh's avatar
drbh committed
777
778
779
780
781
782
783
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct ToolCall {
    pub id: u32,
    pub r#type: String,
    pub function: FunctionDefinition,
}

784
785
786
787
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
drbh's avatar
drbh committed
788
    #[serde(skip_serializing_if = "Option::is_none")]
789
    #[schema(example = "My name is David and I")]
drbh's avatar
drbh committed
790
    pub content: Option<String>,
drbh's avatar
drbh committed
791
    #[serde(default, skip_serializing_if = "Option::is_none")]
792
793
    #[schema(example = "\"David\"")]
    pub name: Option<String>,
drbh's avatar
drbh committed
794
    #[serde(default, skip_serializing_if = "Option::is_none")]
795
    pub tool_calls: Option<Vec<ToolCall>>,
796
797
}

798
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
799
pub(crate) struct GenerateRequest {
800
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
801
802
803
804
805
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

806
807
808
809
810
811
812
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
813
    #[schema(default = "false")]
814
815
816
817
818
819
820
821
822
823
824
825
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

826
827
828
829
830
831
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
832
    #[schema(nullable = true, example = - 0.34)]
833
834
835
    logprob: f32,
}

836
#[derive(Debug, Serialize, ToSchema, Clone)]
837
838
839
840
841
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
842
    #[schema(nullable = true, example = - 0.34)]
843
    logprob: f32,
844
845
    #[schema(example = "false")]
    special: bool,
846
847
}

848
849
850
851
852
853
854
855
856
857
858
859
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

860
861
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
862
#[schema(example = "Length")]
863
864
865
866
867
868
869
870
871
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
872

873
874
875
876
877
878
879
880
881
882
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

883
884
885
886
887
888
889
890
891
892
893
894
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
895
896
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
897
898
}

899
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
900
pub(crate) struct Details {
901
902
903
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
904
    pub generated_tokens: u32,
905
    #[schema(nullable = true, example = 42)]
906
    pub seed: Option<u64>,
907
908
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
909
910
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
911
912
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
913
914
}

915
#[derive(Serialize, ToSchema)]
916
pub(crate) struct GenerateResponse {
917
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
918
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
919
920
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
921
}
922

923
924
925
926
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

927
928
929
930
931
932
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
933
    #[schema(nullable = true, example = 42)]
934
935
936
937
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
938
pub(crate) struct StreamResponse {
939
    pub index: u32,
940
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
941
942
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
943
    #[schema(nullable = true, default = "null", example = "test")]
944
    pub generated_text: Option<String>,
945
946
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
947
948
}

949
#[derive(Serialize, ToSchema)]
950
951
pub(crate) struct ErrorResponse {
    pub error: String,
952
    pub error_type: String,
953
}
954
955

#[cfg(test)]
956
mod tests {
957
958
    use super::*;

959
960
    use tokenizers::Tokenizer;

961
    pub(crate) async fn get_tokenizer() -> Tokenizer {
962
963
964
965
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
966
    }
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
        assert_eq!(config.chat_template, Some("test".to_string()));
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
        assert_eq!(config.chat_template, Some("test".to_string()));
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
1020
}