lib.rs 34.2 KB
Newer Older
1
pub mod config;
2
mod health;
3
/// Text Generation Inference Webserver
4
mod infer;
5
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
6
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
8

9
use infer::{Infer, InferError, InferStreamResponse};
10
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
use serde::{Deserialize, Serialize};
12
13
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
14
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16

17
18
19
20
21
22
23
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

drbh's avatar
drbh committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

43
44
/// Hub type
#[derive(Clone, Debug, Deserialize)]
45
pub struct HubModelInfo {
46
47
48
49
50
51
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

52
53
54
55
56
57
58
59
60
61
62
63
64
65
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
66
pub struct HubTokenizerConfig {
67
    pub chat_template: Option<ChatTemplateVersions>,
68
    pub completion_template: Option<String>,
69
    #[serde(deserialize_with = "token_serde::deserialize")]
70
    pub bos_token: Option<String>,
71
    #[serde(deserialize_with = "token_serde::deserialize")]
72
    pub eos_token: Option<String>,
73
74
75
}

impl HubTokenizerConfig {
76
    pub fn from_file(filename: &std::path::Path) -> Self {
77
78
79
80
81
        let content = std::fs::read_to_string(filename).unwrap();
        serde_json::from_str(&content).unwrap_or_default()
    }
}

82
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
83
84
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
85
86
87
88
89
90
91
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
92
93
94
95
    #[serde(rename = "regex")]
    Regex(String),
}

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

124
125
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
126
    /// Model info
127
128
129
130
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
131
132
133
134
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
135
136
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
154
155
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
156
157
    #[schema(example = "2")]
    pub validation_workers: usize,
158
159
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
160
    /// Router Info
161
162
163
164
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
165
166
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
167
168
}

drbh's avatar
drbh committed
169
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
170
pub(crate) struct GenerateParameters {
171
172
173
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
    #[serde(default)]
191
192
193
194
195
196
197
198
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
    #[serde(default)]
199
200
201
202
203
204
205
206
207
208
209
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
210
    #[serde(default)]
211
212
213
214
215
216
217
218
219
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
    #[serde(default)]
220
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
221
222
    pub do_sample: bool,
    #[serde(default = "default_max_new_tokens")]
223
    #[schema(nullable = true, default = "100", example = "20")]
224
    pub max_new_tokens: Option<u32>,
OlivierDehaene's avatar
OlivierDehaene committed
225
    #[serde(default)]
226
    #[schema(nullable = true, default = "null", example = false)]
227
228
    pub return_full_text: Option<bool>,
    #[serde(default)]
229
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
230
    pub stop: Vec<String>,
OlivierDehaene's avatar
OlivierDehaene committed
231
    #[serde(default)]
232
    #[schema(nullable = true, default = "null", example = "null")]
233
234
    pub truncate: Option<usize>,
    #[serde(default)]
235
236
237
    #[schema(default = "false", example = true)]
    pub watermark: bool,
    #[serde(default)]
238
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
239
    pub details: bool,
240
    #[serde(default)]
241
    #[schema(default = "false")]
242
243
    pub decoder_input_details: bool,
    #[serde(default)]
244
245
246
247
248
249
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
250
    pub seed: Option<u64>,
Nicolas Patry's avatar
Nicolas Patry committed
251
252
253
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
drbh's avatar
drbh committed
254
    #[serde(default)]
255
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
256
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
257
258
}

259
fn default_max_new_tokens() -> Option<u32> {
260
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
261
262
263
264
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
265
        best_of: None,
266
267
        temperature: None,
        repetition_penalty: None,
268
        frequency_penalty: None,
269
270
        top_k: None,
        top_p: None,
271
        typical_p: None,
272
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
273
        max_new_tokens: default_max_new_tokens(),
274
        return_full_text: None,
275
        stop: Vec::new(),
276
        truncate: None,
277
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
278
        details: false,
279
        decoder_input_details: false,
280
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
281
        top_n_tokens: None,
drbh's avatar
drbh committed
282
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
283
284
285
    }
}

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

314
315
316
317
318
319
320
321
322
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
323
324
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

385
#[derive(Clone, Deserialize, Serialize, ToSchema)]
386
387
388
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
389
    #[schema(example = "1706270835")]
390
    pub created: u64,
391
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
392
393
394
395
396
397
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

398
#[derive(Clone, Deserialize, Serialize, ToSchema)]
399
400
401
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
402
    pub logprobs: Option<ChatCompletionLogprobs>,
403
404
405
    pub finish_reason: String,
}

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
449
450
451
452
453
454
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
455
456
457
458
459
460
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

477
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
478
479
480
481
482
483
484
485
486
487
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
488
        output: Option<String>,
489
490
491
        created: u64,
        details: Details,
        return_logprobs: bool,
492
        tool_calls: Option<Vec<ToolCall>>,
493
494
495
496
497
498
499
500
501
502
503
504
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
505
                    name: None,
drbh's avatar
drbh committed
506
                    tool_calls,
507
508
                },
                logprobs: return_logprobs
509
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
510
511
512
513
514
515
516
517
518
519
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
520
521
522
523
524
525
526
527
528
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
529
#[derive(Clone, Deserialize, Serialize, ToSchema)]
530
531
532
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
533
    #[schema(example = "1706270978")]
534
    pub created: u64,
535
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
536
537
538
539
540
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

541
#[derive(Clone, Deserialize, Serialize, ToSchema)]
542
543
544
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
545
    pub logprobs: Option<ChatCompletionLogprobs>,
546
547
548
    pub finish_reason: Option<String>,
}

549
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
550
pub(crate) struct ChatCompletionDelta {
551
    #[schema(example = "user")]
552
    pub role: String,
drbh's avatar
drbh committed
553
    #[serde(default, skip_serializing_if = "Option::is_none")]
554
    #[schema(example = "What is Deep Learning?")]
drbh's avatar
drbh committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    pub content: Option<String>,
    // default to None
    #[serde(default, skip_serializing_if = "Option::is_none")]
    pub tool_calls: Option<DeltaToolCall>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
573
574
}

drbh's avatar
drbh committed
575
#[allow(clippy::too_many_arguments)]
576
577
578
579
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
580
581
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
582
        created: u64,
583
        logprobs: Option<ChatCompletionLogprobs>,
584
585
586
587
588
589
590
591
592
        finish_reason: Option<String>,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
593
                index: 0,
594
595
596
                delta: ChatCompletionDelta {
                    role: "assistant".to_string(),
                    content: delta,
drbh's avatar
drbh committed
597
                    tool_calls: tool_calls.map(|tc| DeltaToolCall {
598
                        index: 0,
drbh's avatar
drbh committed
599
600
601
602
603
604
605
                        id: String::new(),
                        r#type: "function".to_string(),
                        function: Function {
                            name: None,
                            arguments: tc[0].to_string(),
                        },
                    }),
606
607
608
609
610
611
612
613
614
615
                },
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
616
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
617
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
618
    pub model: String,
drbh's avatar
drbh committed
619

620
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
621
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
622
623
624
625
626
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
627
    #[schema(example = "1.0")]
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
642
    #[schema(example = "false")]
643
644
645
646
647
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
648
    #[schema(example = "5")]
649
650
651
652
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
653
    #[schema(example = "32")]
654
655
656
657
658
659
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
660
    #[schema(nullable = true, example = "2")]
661
662
663
664
665
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
666
    #[schema(nullable = true, example = 0.1)]
667
668
    pub presence_penalty: Option<f32>,

669
670
671
672
673
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

674
675
676
677
678
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
679
680
681
682
683
684

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
685
    #[schema(nullable = true, example = 1.0)]
686
687
688
689
690
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
691
    #[schema(nullable = true, example = 0.95)]
692
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
693
694
695
696
697
698
699
700
701
702
703

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
704
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
705
706
707
708
709
710
711
712
713
714
715
716
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
717
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

762
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
763
764
765
766
767
768
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

769
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
770
771
772
773
774
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

775
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
776
777
778
779
780
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

781
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
802
803
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
804
805
806
807
808
809
810
811
812
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
813
814
}

815
#[derive(Clone, Serialize, Deserialize, Default)]
816
817
818
819
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
820
    add_generation_prompt: bool,
821
822
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
823
824
}

drbh's avatar
drbh committed
825
826
827
828
829
830
831
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)]
pub(crate) struct ToolCall {
    pub id: u32,
    pub r#type: String,
    pub function: FunctionDefinition,
}

832
833
834
835
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
drbh's avatar
drbh committed
836
    #[serde(skip_serializing_if = "Option::is_none")]
837
    #[schema(example = "My name is David and I")]
drbh's avatar
drbh committed
838
    pub content: Option<String>,
drbh's avatar
drbh committed
839
    #[serde(default, skip_serializing_if = "Option::is_none")]
840
841
    #[schema(example = "\"David\"")]
    pub name: Option<String>,
drbh's avatar
drbh committed
842
    #[serde(default, skip_serializing_if = "Option::is_none")]
843
    pub tool_calls: Option<Vec<ToolCall>>,
844
845
}

846
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
847
pub(crate) struct GenerateRequest {
848
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
849
850
851
852
853
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

854
855
856
857
858
859
860
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
861
    #[schema(default = "false")]
862
863
864
865
866
867
868
869
870
871
872
873
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

874
875
876
877
878
879
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
880
    #[schema(nullable = true, example = - 0.34)]
881
882
883
    logprob: f32,
}

884
#[derive(Debug, Serialize, ToSchema, Clone)]
885
886
887
888
889
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
890
    #[schema(nullable = true, example = - 0.34)]
891
    logprob: f32,
892
893
    #[schema(example = "false")]
    special: bool,
894
895
}

896
897
898
899
900
901
902
903
904
905
906
907
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

908
909
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
910
#[schema(example = "Length")]
911
912
913
914
915
916
917
918
919
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
920

921
922
923
924
925
926
927
928
929
930
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

931
932
933
934
935
936
937
938
939
940
941
942
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
943
944
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
945
946
}

947
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
948
pub(crate) struct Details {
949
950
951
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
952
    pub generated_tokens: u32,
953
    #[schema(nullable = true, example = 42)]
954
    pub seed: Option<u64>,
955
956
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
957
958
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
959
960
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
961
962
}

963
#[derive(Serialize, ToSchema)]
964
pub(crate) struct GenerateResponse {
965
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
966
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
967
968
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
969
}
970

971
972
973
974
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

975
976
977
978
979
980
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
981
    #[schema(nullable = true, example = 42)]
982
983
984
985
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
986
pub(crate) struct StreamResponse {
987
    pub index: u32,
988
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
989
990
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
991
    #[schema(nullable = true, default = "null", example = "test")]
992
    pub generated_text: Option<String>,
993
994
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
995
996
}

997
#[derive(Serialize, ToSchema)]
998
999
pub(crate) struct ErrorResponse {
    pub error: String,
1000
    pub error_type: String,
1001
}
1002
1003

#[cfg(test)]
1004
mod tests {
1005
1006
    use super::*;

1007
1008
    use tokenizers::Tokenizer;

1009
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1010
1011
1012
1013
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1014
    }
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1029
1030
1031
1032
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1064
1065
1066
1067
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1068
1069
1070
1071
1072
1073
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
1074
}