lib.rs 45.4 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
Nicolas Patry's avatar
Nicolas Patry committed
3
pub mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Nicolas Patry's avatar
Nicolas Patry committed
5
pub mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
#[cfg(feature = "kserve")]
mod kserve;
Nicolas Patry's avatar
Nicolas Patry committed
9
pub mod logging;
10

11
12
pub mod usage_stats;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
14
use tracing::warn;
15
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
16
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#[derive(PartialEq)]
pub enum Attention {
    Paged,
    FlashDecoding,
    FlashInfer,
}

#[derive(Debug)]
pub struct ParseError;

impl std::fmt::Display for ParseError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Cannot parse attention value")
    }
}
impl std::error::Error for ParseError {}

impl std::str::FromStr for Attention {
    type Err = ParseError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "paged" => Ok(Attention::Paged),
            "flashdecoding" => Ok(Attention::FlashDecoding),
            "flashinfer" => Ok(Attention::FlashInfer),
            _ => Err(ParseError),
        }
    }
}

drbh's avatar
drbh committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

66
67
/// Hub type
#[derive(Clone, Debug, Deserialize)]
68
pub struct HubModelInfo {
69
70
71
72
73
74
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

75
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
76
77
78
79
80
pub struct ChatTemplate {
    name: String,
    template: String,
}

81
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
82
83
84
85
86
87
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

88
89
use std::path::Path;

90
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
91
pub struct HubTokenizerConfig {
92
    pub chat_template: Option<ChatTemplateVersions>,
93
    pub completion_template: Option<String>,
94
95
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
96
97
98
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
99
100
101
}

impl HubTokenizerConfig {
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
122
123
124
    }
}

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
144
145
146
147
148
149
150
151
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
152
153
154
155
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
156
157
158
    }
}

159
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
160
161
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
162
163
164
165
166
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
167
    #[serde(alias = "json_object")]
168
169
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
170
171
172
173
    #[serde(rename = "regex")]
    Regex(String),
}

174
175
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
176
    /// Model info
177
178
179
180
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
181
182
183
184
    // #[schema(example = "torch.float16")]
    // pub model_dtype: String,
    // #[schema(example = "cuda")]
    // pub model_device_type: String,
185
186
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
187

188
189
190
191
192
193
194
195
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
196
    pub max_input_tokens: usize,
197
198
199
200
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
201
202
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
Nicolas Patry's avatar
Nicolas Patry committed
203

204
    /// Router Info
205
206
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
207
208
209
210
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
211
212
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
213
214
}

drbh's avatar
drbh committed
215
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
216
pub(crate) struct GenerateParameters {
217
    /// Generate best_of sequences and return the one if the highest token logprobs.
218
219
220
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
221
222

    /// The value used to module the logits distribution.
223
224
225
226
227
228
229
230
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
231
232
233

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
234
235
236
237
238
239
240
241
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
242
243
244
245

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
246
    #[serde(default)]
247
248
249
250
251
252
253
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
254
255

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
256
    #[serde(default)]
257
258
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
259
260

    /// Top-p value for nucleus sampling.
261
262
263
264
265
266
267
268
269
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
270
271
272

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
273
    #[serde(default)]
274
275
276
277
278
279
280
281
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
282
283

    /// Activate logits sampling.
284
    #[serde(default)]
285
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
286
    pub do_sample: bool,
287
288

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
289
    #[serde(default = "default_max_new_tokens")]
290
    #[schema(nullable = true, default = "100", example = "20")]
291
    pub max_new_tokens: Option<u32>,
292
293

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
294
    #[serde(default)]
295
    #[schema(nullable = true, default = "null", example = false)]
296
    pub return_full_text: Option<bool>,
297
298

    /// Stop generating tokens if a member of `stop` is generated.
299
    #[serde(default)]
300
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
301
    pub stop: Vec<String>,
302
303

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
304
    #[serde(default)]
305
    #[schema(nullable = true, default = "null", example = "null")]
306
    pub truncate: Option<usize>,
307
308

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
309
    #[serde(default)]
310
311
    #[schema(default = "false", example = true)]
    pub watermark: bool,
312
313

    /// Whether to return generation details.
314
    #[serde(default)]
315
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
316
    pub details: bool,
317
318

    /// Whether to return decoder input token logprobs and ids.
319
    #[serde(default)]
320
    #[schema(default = "false")]
321
    pub decoder_input_details: bool,
322
323

    /// Random sampling seed.
324
    #[serde(default)]
325
326
327
328
329
330
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
331
    pub seed: Option<u64>,
332
333

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
334
335
336
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
337
338

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
339
    #[serde(default)]
340
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
341
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
342
343
344
345
346

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
347
348
}

349
fn default_max_new_tokens() -> Option<u32> {
350
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
351
352
353
354
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
355
        best_of: None,
356
357
        temperature: None,
        repetition_penalty: None,
358
        frequency_penalty: None,
359
360
        top_k: None,
        top_p: None,
361
        typical_p: None,
362
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
363
        max_new_tokens: default_max_new_tokens(),
364
        return_full_text: None,
365
        stop: Vec::new(),
366
        truncate: None,
367
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
368
        details: false,
369
        decoder_input_details: false,
370
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
371
        top_n_tokens: None,
drbh's avatar
drbh committed
372
        grammar: None,
drbh's avatar
drbh committed
373
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
374
375
376
    }
}

377
378
379
380
381
382
383
384
385
386
387
388
389
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
390

391
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
392
        match value {
393
394
395
396
397
398
399
400
401
402
403
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
404
405
406
407
        }
    }
}

408
409
410
411
412
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
413
    pub model: Option<String>,
414
415
416

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
417
    pub prompt: Prompt,
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
455
456
457
458
459

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
460
461
}

462
463
464
465
466
467
468
469
470
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

471
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
472
pub(crate) struct CompletionFinal {
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

491
492
493
494
495
496
497
498
499
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

500
#[derive(Clone, Deserialize, Serialize, ToSchema)]
501
502
pub(crate) struct ChatCompletion {
    pub id: String,
503
    #[schema(example = "1706270835")]
504
    pub created: u64,
505
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
506
507
508
509
510
511
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

512
#[derive(Clone, Deserialize, Serialize, ToSchema)]
513
514
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
515
    pub message: OutputMessage,
516
    pub logprobs: Option<ChatCompletionLogprobs>,
517
518
519
    pub finish_reason: String,
}

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
563
564
565
566
567
568
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
569
570
571
572
573
574
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

591
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
592
593
594
595
596
597
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

598
599
600
601
602
603
604
605
606
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

607
608
609
610
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
611
        output: Option<String>,
612
613
614
        created: u64,
        details: Details,
        return_logprobs: bool,
615
        tool_calls: Option<Vec<ToolCall>>,
616
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
641
642
643
644
645
646
647
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
648
                message,
649
                logprobs: return_logprobs
650
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
651
                finish_reason: details.finish_reason.format(true),
652
653
654
655
656
657
658
659
660
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
661
#[derive(Clone, Serialize, ToSchema)]
662
663
pub(crate) struct ChatCompletionChunk {
    pub id: String,
664
    #[schema(example = "1706270978")]
665
    pub created: u64,
666
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
667
668
669
670
671
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

672
#[derive(Clone, Serialize, ToSchema)]
673
674
675
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
676
    pub logprobs: Option<ChatCompletionLogprobs>,
677
678
679
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
680
681
682
683
684
685
686
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

687
688
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
689
690
691
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
692
693
}

Nicolas Patry's avatar
Nicolas Patry committed
694
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
695
696
697
698
699
700
701
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
702
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
703
704
705
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
706
707
}

drbh's avatar
drbh committed
708
#[allow(clippy::too_many_arguments)]
709
710
711
712
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
713
714
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
715
        created: u64,
716
        logprobs: Option<ChatCompletionLogprobs>,
717
718
        finish_reason: Option<String>,
    ) -> Self {
719
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
720
721
722
723
724
725
726
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
727
728
729
730
731
732
733
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
734
735
736
737
738
739
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
740
        };
741
742
743
744
745
746
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
747
                index: 0,
748
                delta,
749
750
751
752
753
754
755
756
757
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
758
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
759
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
760
    pub model: Option<String>,
drbh's avatar
drbh committed
761

762
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
763
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
764
765
766
767
768
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
769
    #[schema(example = "1.0")]
770
771
772
773
774
775
776
777
778
779
780
781
782
783
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
784
    #[schema(example = "false")]
785
786
787
788
789
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
790
    #[schema(example = "5")]
791
792
793
794
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
795
    #[schema(example = "32")]
796
797
798
799
800
801
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
802
    #[schema(nullable = true, example = "2")]
803
804
805
806
807
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
808
    #[schema(nullable = true, example = 0.1)]
809
810
    pub presence_penalty: Option<f32>,

811
812
813
814
815
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

816
817
818
819
820
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
821
822
823
824
825
826

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
827
    #[schema(nullable = true, example = 1.0)]
828
829
830
831
832
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
833
    #[schema(nullable = true, example = 0.95)]
834
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
835
836
837
838
839
840
841
842
843
844
845

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
846
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
847
848
849
850
851
852
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
drbh's avatar
drbh committed
853
    pub tool_choice: ToolChoice,
drbh's avatar
drbh committed
854
855
856
857
858
859
860

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
861
862
863
864
865

    /// A guideline to be used in the chat_template
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub guideline: Option<String>,
drbh's avatar
drbh committed
866
867
868
869
}

fn default_tool_prompt() -> Option<String> {
    Some(
870
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
871
872
    )
}
873
874
875
876

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
#[serde(untagged)]
pub enum ToolType {
drbh's avatar
drbh committed
877
    OneOf,
878
879
    FunctionName(String),
    Function { function: FunctionName },
drbh's avatar
drbh committed
880
    NoTool,
drbh's avatar
drbh committed
881
882
}

883
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
884
885
886
887
pub struct FunctionName {
    pub name: String,
}

drbh's avatar
drbh committed
888
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
889
890
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
891

892
893
894
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
drbh's avatar
drbh committed
895
896
    String(String),
    ToolType(ToolType),
897
}
drbh's avatar
drbh committed
898

899
900
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
901
        match value {
drbh's avatar
drbh committed
902
903
904
905
            ToolTypeDeserializer::String(s) => match s.as_str() {
                "none" => ToolChoice(Some(ToolType::NoTool)),
                "auto" => ToolChoice(Some(ToolType::OneOf)),
                _ => ToolChoice(Some(ToolType::FunctionName(s))),
drbh's avatar
drbh committed
906
            },
drbh's avatar
drbh committed
907
            ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
908
909
910
911
        }
    }
}

912
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
913
914
915
916
917
918
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

919
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
920
921
922
923
924
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

925
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
926
927
928
929
930
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

931
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
947
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
948
949
950
951
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
952
953
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
954
955
956
957
958
959
960
961
962
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
963
964
}

965
#[derive(Clone, Serialize, Deserialize, Default)]
966
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
967
    messages: Vec<TextMessage>,
968
969
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
970
    add_generation_prompt: bool,
971
972
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
973
    guideline: Option<&'a str>,
974
975
}

Nicolas Patry's avatar
Nicolas Patry committed
976
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
977
pub(crate) struct ToolCall {
978
    pub id: String,
drbh's avatar
drbh committed
979
980
981
982
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
983
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
984
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
985
    url: String,
drbh's avatar
drbh committed
986
987
}

Nicolas Patry's avatar
Nicolas Patry committed
988
989
990
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
991
992
993
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
994
995
996
997
998
999
1000
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
1001
    pub content: MessageContent,
drbh's avatar
drbh committed
1002
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
1003
1004
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
1005
1006
}

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
drbh's avatar
drbh committed
1019
1020
1021
1022
                *self = MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: text.clone() },
                    chunk,
                ]);
Nicolas Patry's avatar
Nicolas Patry committed
1023
            }
1024
1025
1026
1027
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
1028
1029
1030
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
1031
1032
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
1033
1034
1035
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
1036
1037
1038
1039
1040
1041
1042
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1070
1071
}

1072
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1073
pub(crate) struct GenerateRequest {
1074
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1075
1076
1077
1078
1079
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1080
1081
1082
1083
1084
1085
1086
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1087
    #[schema(default = "false")]
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1100
1101
1102
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1103
    pub id: u32,
1104
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1105
    pub text: String,
1106
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1107
    pub logprob: f32,
1108
1109
}

1110
#[derive(Debug, Serialize, ToSchema, Clone)]
1111
1112
pub struct Token {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1113
    pub id: u32,
1114
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1115
    pub text: String,
1116
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1117
    pub logprob: f32,
1118
    #[schema(example = "false")]
Nicolas Patry's avatar
Nicolas Patry committed
1119
    pub special: bool,
1120
1121
}

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1134
#[derive(Debug, Serialize, ToSchema)]
1135
#[serde(rename_all(serialize = "snake_case"))]
1136
#[schema(example = "Length")]
Nicolas Patry's avatar
Nicolas Patry committed
1137
pub enum FinishReason {
1138
1139
1140
1141
1142
1143
1144
1145
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1146

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1157
1158
1159
1160
1161
1162
1163
1164
1165
impl FinishReason {
    pub fn format(&self, use_stop: bool) -> String {
        match self {
            FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(),
            _ => self.to_string(),
        }
    }
}

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1178
1179
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1180
1181
}

1182
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1183
pub(crate) struct Details {
1184
1185
1186
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1187
    pub generated_tokens: u32,
1188
    #[schema(nullable = true, example = 42)]
1189
    pub seed: Option<u64>,
1190
1191
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1192
1193
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1194
1195
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1196
1197
}

1198
#[derive(Serialize, ToSchema)]
1199
pub(crate) struct GenerateResponse {
1200
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1201
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1202
1203
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1204
}
1205

1206
1207
1208
1209
1210
1211
#[derive(Serialize, ToSchema)]
pub(crate) struct ChatTokenizeResponse {
    pub(crate) tokenize_response: TokenizeResponse,
    pub(crate) templated_text: String,
}

1212
1213
1214
1215
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1216
1217
1218
1219
1220
1221
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1222
    #[schema(nullable = true, example = 42)]
1223
    pub seed: Option<u64>,
1224
1225
    #[schema(example = 1)]
    pub input_length: u32,
1226
1227
1228
}

#[derive(Serialize, ToSchema)]
1229
pub(crate) struct StreamResponse {
1230
    pub index: u32,
1231
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1232
1233
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1234
    #[schema(nullable = true, default = "null", example = "test")]
1235
    pub generated_text: Option<String>,
1236
1237
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1238
1239
}

1240
#[derive(Serialize, ToSchema)]
1241
1242
pub(crate) struct ErrorResponse {
    pub error: String,
1243
    pub error_type: String,
1244
}
1245
1246

#[cfg(test)]
1247
mod tests {
1248
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1249
    use serde_json::json;
1250
1251
    use tokenizers::Tokenizer;

1252
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1253
1254
1255
1256
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1257
    }
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1272
1273
1274
1275
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1276
1277
        assert_eq!(
            config.bos_token,
1278
1279
1280
1281
1282
1283
1284
1285
1286
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1314
1315
1316
1317
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1318
1319
        assert_eq!(
            config.bos_token,
1320
1321
1322
1323
1324
1325
1326
1327
1328
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1329
1330
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1331
1332
1333

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1334
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1335
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1336
1337
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1338
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1339
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1340
1341
1342
1343
1344
1345
1346
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1347
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1348
1349
1350
1351
1352
                name: None
            }
        );
    }

drbh's avatar
drbh committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
    #[test]
    fn test_message_content_append() {
        let mut content = MessageContent::SingleText("Initial text".to_string());
        let chunk = MessageChunk::Text {
            text: "Additional text".to_string(),
        };

        content.push(chunk);

        match content {
            MessageContent::MultipleChunks(chunks) => {
                assert_eq!(chunks.len(), 2);
                assert_eq!(
                    chunks[0],
                    MessageChunk::Text {
                        text: "Initial text".to_string()
                    }
                );
                assert_eq!(
                    chunks[1],
                    MessageChunk::Text {
                        text: "Additional text".to_string()
                    }
                );
            }
            _ => panic!("Expected MultipleChunks, but got a different variant"),
        }
    }

Nicolas Patry's avatar
Nicolas Patry committed
1382
1383
    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1384
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1385
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1386
1387
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1388
1389
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1390
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1391
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1392
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1393
1394
1395
1396
1397
1398
1399
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1400
1401
1402
1403
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1404
1405
1406
1407
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1408
1409
1410
1411
1412

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1413
1414
1415
1416
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1454
}