lib.rs 17.4 KB
Newer Older
1
mod health;
2
/// Text Generation Inference Webserver
3
mod infer;
4
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
5
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
6
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
7

8
use infer::{Infer, InferError, InferStreamResponse};
9
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use serde::{Deserialize, Serialize};
11
12
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
13
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
14
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
17
18
19
20
21
22
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

23
24
/// Hub type
#[derive(Clone, Debug, Deserialize)]
25
pub struct HubModelInfo {
26
27
28
29
30
31
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

32
33
34
#[derive(Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
    pub chat_template: Option<String>,
35
36
    pub bos_token: Option<String>,
    pub eos_token: Option<String>,
37
38
39
}

impl HubTokenizerConfig {
40
    pub fn from_file(filename: &std::path::Path) -> Self {
41
42
43
44
45
        let content = std::fs::read_to_string(filename).unwrap();
        serde_json::from_str(&content).unwrap_or_default()
    }
}

46
47
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
48
    /// Model info
49
50
51
52
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
53
54
55
56
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
57
58
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
    /// Router Info
79
80
81
82
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
83
84
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
85
86
}

87
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
88
pub(crate) struct GenerateParameters {
89
90
91
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
120
    #[serde(default)]
121
122
123
124
125
126
127
128
129
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
    #[serde(default)]
130
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
131
132
    pub do_sample: bool,
    #[serde(default = "default_max_new_tokens")]
133
    #[schema(nullable = true, default = "100", example = "20")]
134
    pub max_new_tokens: Option<u32>,
OlivierDehaene's avatar
OlivierDehaene committed
135
    #[serde(default)]
136
    #[schema(nullable = true, default = "null", example = false)]
137
138
    pub return_full_text: Option<bool>,
    #[serde(default)]
139
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
140
    pub stop: Vec<String>,
OlivierDehaene's avatar
OlivierDehaene committed
141
    #[serde(default)]
142
    #[schema(nullable = true, default = "null", example = "null")]
143
144
    pub truncate: Option<usize>,
    #[serde(default)]
145
146
147
    #[schema(default = "false", example = true)]
    pub watermark: bool,
    #[serde(default)]
148
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
149
    pub details: bool,
150
    #[serde(default)]
151
152
153
    #[schema(default = "true")]
    pub decoder_input_details: bool,
    #[serde(default)]
154
155
156
157
158
159
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
160
    pub seed: Option<u64>,
Nicolas Patry's avatar
Nicolas Patry committed
161
162
163
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
164
165
}

166
fn default_max_new_tokens() -> Option<u32> {
167
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
168
169
170
171
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
172
        best_of: None,
173
174
175
176
        temperature: None,
        repetition_penalty: None,
        top_k: None,
        top_p: None,
177
        typical_p: None,
178
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
179
        max_new_tokens: default_max_new_tokens(),
180
        return_full_text: None,
181
        stop: Vec::new(),
182
        truncate: None,
183
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
184
        details: false,
185
        decoder_input_details: false,
186
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
187
        top_n_tokens: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
188
189
190
    }
}

191
#[derive(Clone, Deserialize, Serialize, ToSchema)]
192
193
194
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
195
    #[schema(example = "1706270835")]
196
    pub created: u64,
197
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
198
199
200
201
202
203
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

204
#[derive(Clone, Deserialize, Serialize, ToSchema)]
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        output: String,
        created: u64,
        details: Details,
        return_logprobs: bool,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
                },
                logprobs: return_logprobs
                    .then(|| details.tokens.iter().map(|t| t.logprob).collect()),
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}

253
#[derive(Clone, Deserialize, Serialize, ToSchema)]
254
255
256
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
257
    #[schema(example = "1706270978")]
258
    pub created: u64,
259
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
260
261
262
263
264
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

265
#[derive(Clone, Deserialize, Serialize, ToSchema)]
266
267
268
269
270
271
272
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
    pub logprobs: Option<f32>,
    pub finish_reason: Option<String>,
}

273
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
274
pub(crate) struct ChatCompletionDelta {
275
    #[schema(example = "user")]
276
    pub role: String,
277
    #[schema(example = "What is Deep Learning?")]
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    pub content: String,
}

impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        delta: String,
        created: u64,
        index: u32,
        logprobs: Option<f32>,
        finish_reason: Option<String>,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
                index,
                delta: ChatCompletionDelta {
                    role: "assistant".to_string(),
                    content: delta,
                },
                logprobs,
                finish_reason,
            }],
        }
    }
}

fn default_request_messages() -> Vec<Message> {
    vec![Message {
        role: "user".to_string(),
        content: "My name is David and I".to_string(),
    }]
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
    /// UNUSED
320
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
321
322
323
324
325
326
327
328
329
330
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String, /* NOTE: UNUSED */

    /// A list of messages comprising the conversation so far.
    #[serde(default = "default_request_messages")]
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
331
    #[schema(example = "1.0")]
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
346
    #[schema(example = "false")]
347
348
349
350
351
352
    pub logprobs: Option<bool>,

    /// UNUSED
    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
353
    #[schema(example = "5")]
354
355
356
357
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
358
    #[schema(example = "32")]
359
360
361
362
363
364
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
365
    #[schema(nullable = true, example = "2")]
366
367
368
369
370
371
    pub n: Option<u32>,

    /// UNUSED
    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
372
    #[schema(nullable = true, example = 0.1)]
373
374
375
376
377
378
379
    pub presence_penalty: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
380
381
382
383
384
385

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
386
    #[schema(nullable = true, example = 1.0)]
387
388
389
390
391
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
392
    #[schema(nullable = true, example = 0.95)]
393
    pub top_p: Option<f32>,
394
395
}

396
397
398
399
400
#[derive(Clone, Serialize, Deserialize)]
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
401
    add_generation_prompt: bool,
402
403
}

404
405
406
407
408
409
410
411
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
    pub content: String,
}

412
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
413
pub(crate) struct GenerateRequest {
414
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
415
416
417
418
419
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

420
421
422
423
424
425
426
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
427
    #[schema(default = "false")]
428
429
430
431
432
433
434
435
436
437
438
439
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

440
441
442
443
444
445
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
446
    #[schema(nullable = true, example = - 0.34)]
447
448
449
    logprob: f32,
}

450
451
452
453
454
455
#[derive(Debug, Serialize, ToSchema)]
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
456
    #[schema(nullable = true, example = - 0.34)]
457
    logprob: f32,
458
459
    #[schema(example = "false")]
    special: bool,
460
461
}

462
463
464
465
466
467
468
469
470
471
472
473
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

474
475
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
476
#[schema(example = "Length")]
477
478
479
480
481
482
483
484
485
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
486

487
488
489
490
491
492
493
494
495
496
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

497
498
499
500
501
502
503
504
505
506
507
508
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
509
510
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
511
512
}

513
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
514
pub(crate) struct Details {
515
516
517
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
518
    pub generated_tokens: u32,
519
    #[schema(nullable = true, example = 42)]
520
    pub seed: Option<u64>,
521
522
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
523
524
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
525
526
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
527
528
}

529
#[derive(Serialize, ToSchema)]
530
pub(crate) struct GenerateResponse {
531
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
532
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
533
534
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
535
}
536

537
538
539
540
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

541
542
543
544
545
546
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
547
    #[schema(nullable = true, example = 42)]
548
549
550
551
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
552
pub(crate) struct StreamResponse {
553
    pub index: u32,
554
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
555
556
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
557
    #[schema(nullable = true, default = "null", example = "test")]
558
    pub generated_text: Option<String>,
559
560
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
561
562
}

563
#[derive(Serialize, ToSchema)]
564
565
pub(crate) struct ErrorResponse {
    pub error: String,
566
    pub error_type: String,
567
}
568
569

#[cfg(test)]
570
mod tests {
571
572
    use tokenizers::Tokenizer;

573
    pub(crate) async fn get_tokenizer() -> Tokenizer {
574
575
576
577
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
578
579
    }
}