lib.rs 42.8 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
3
mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
7
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
8
use tracing::warn;
9
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
10
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11

drbh's avatar
drbh committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

31
32
/// Hub type
#[derive(Clone, Debug, Deserialize)]
33
pub struct HubModelInfo {
34
35
36
37
38
39
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

40
41
42
43
44
45
46
47
48
49
50
51
52
53
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
54
pub struct HubTokenizerConfig {
55
    pub chat_template: Option<ChatTemplateVersions>,
56
    pub completion_template: Option<String>,
57
    #[serde(deserialize_with = "token_serde::deserialize")]
58
    pub bos_token: Option<String>,
59
    #[serde(deserialize_with = "token_serde::deserialize")]
60
    pub eos_token: Option<String>,
61
62
63
}

impl HubTokenizerConfig {
64
65
66
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
67
68
69
    }
}

drbh's avatar
drbh committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

84
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
85
86
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
87
88
89
90
91
92
93
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
94
95
96
97
    #[serde(rename = "regex")]
    Regex(String),
}

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
121
            Value::Null => Ok(None),
122
123
124
125
126
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

127
128
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
129
    /// Model info
130
131
132
133
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
134
135
136
137
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
138
139
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
140
141
142
143
144
145
146
147
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
148
    pub max_input_tokens: usize,
149
150
151
152
153
154
155
156
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
157
158
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
159
160
    #[schema(example = "2")]
    pub validation_workers: usize,
161
162
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
163
    /// Router Info
164
165
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
166
167
168
169
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
170
171
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
172
173
}

drbh's avatar
drbh committed
174
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
175
pub(crate) struct GenerateParameters {
176
    /// Generate best_of sequences and return the one if the highest token logprobs.
177
178
179
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
180
181

    /// The value used to module the logits distribution.
182
183
184
185
186
187
188
189
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
190
191
192

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
193
194
195
196
197
198
199
200
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
201
202
203
204

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
205
    #[serde(default)]
206
207
208
209
210
211
212
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
213
214

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
215
    #[serde(default)]
216
217
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
218
219

    /// Top-p value for nucleus sampling.
220
221
222
223
224
225
226
227
228
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
229
230
231

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
232
    #[serde(default)]
233
234
235
236
237
238
239
240
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
241
242

    /// Activate logits sampling.
243
    #[serde(default)]
244
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
245
    pub do_sample: bool,
246
247

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
248
    #[serde(default = "default_max_new_tokens")]
249
    #[schema(nullable = true, default = "100", example = "20")]
250
    pub max_new_tokens: Option<u32>,
251
252

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
253
    #[serde(default)]
254
    #[schema(nullable = true, default = "null", example = false)]
255
    pub return_full_text: Option<bool>,
256
257

    /// Stop generating tokens if a member of `stop` is generated.
258
    #[serde(default)]
259
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
260
    pub stop: Vec<String>,
261
262

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
263
    #[serde(default)]
264
    #[schema(nullable = true, default = "null", example = "null")]
265
    pub truncate: Option<usize>,
266
267

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
268
    #[serde(default)]
269
270
    #[schema(default = "false", example = true)]
    pub watermark: bool,
271
272

    /// Whether to return generation details.
273
    #[serde(default)]
274
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
275
    pub details: bool,
276
277

    /// Whether to return decoder input token logprobs and ids.
278
    #[serde(default)]
279
    #[schema(default = "false")]
280
    pub decoder_input_details: bool,
281
282

    /// Random sampling seed.
283
    #[serde(default)]
284
285
286
287
288
289
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
290
    pub seed: Option<u64>,
291
292

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
293
294
295
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
296
297

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
298
    #[serde(default)]
299
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
300
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
301
302
}

303
fn default_max_new_tokens() -> Option<u32> {
304
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
305
306
307
308
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
309
        best_of: None,
310
311
        temperature: None,
        repetition_penalty: None,
312
        frequency_penalty: None,
313
314
        top_k: None,
        top_p: None,
315
        typical_p: None,
316
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
317
        max_new_tokens: default_max_new_tokens(),
318
        return_full_text: None,
319
        stop: Vec::new(),
320
        truncate: None,
321
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
322
        details: false,
323
        decoder_input_details: false,
324
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
325
        top_n_tokens: None,
drbh's avatar
drbh committed
326
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
327
328
329
    }
}

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

358
359
360
361
362
363
364
365
366
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
367
368
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
406
407
408
409
410

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

434
#[derive(Clone, Deserialize, Serialize, ToSchema)]
435
436
437
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
438
    #[schema(example = "1706270835")]
439
    pub created: u64,
440
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
441
442
443
444
445
446
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

447
#[derive(Clone, Deserialize, Serialize, ToSchema)]
448
449
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
450
    pub message: OutputMessage,
451
    pub logprobs: Option<ChatCompletionLogprobs>,
452
453
454
    pub finish_reason: String,
}

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
498
499
500
501
502
503
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
504
505
506
507
508
509
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

526
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
527
528
529
530
531
532
533
534
535
536
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
537
        output: Option<String>,
538
539
540
        created: u64,
        details: Details,
        return_logprobs: bool,
541
        tool_calls: Option<Vec<ToolCall>>,
542
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
567
568
569
570
571
572
573
574
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
575
                message,
576
                logprobs: return_logprobs
577
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
578
579
580
581
582
583
584
585
586
587
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
588
589
590
591
592
593
594
595
596
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
Nicolas Patry's avatar
Nicolas Patry committed
597

598
#[derive(Clone, Serialize, ToSchema)]
599
600
601
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
602
    #[schema(example = "1706270978")]
603
    pub created: u64,
604
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
605
606
607
608
609
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

610
#[derive(Clone, Serialize, ToSchema)]
611
612
613
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
614
    pub logprobs: Option<ChatCompletionLogprobs>,
615
616
617
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
618
619
620
621
622
623
624
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

625
626
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
627
628
629
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
630
631
}

Nicolas Patry's avatar
Nicolas Patry committed
632
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
633
634
635
636
637
638
639
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
640
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
641
642
643
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
644
645
}

drbh's avatar
drbh committed
646
#[allow(clippy::too_many_arguments)]
647
648
649
650
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
651
652
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
653
        created: u64,
654
        logprobs: Option<ChatCompletionLogprobs>,
655
656
        finish_reason: Option<String>,
    ) -> Self {
657
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
658
659
660
661
662
663
664
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
665
666
667
668
669
670
671
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
672
673
674
675
676
677
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
678
        };
679
680
681
682
683
684
685
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
686
                index: 0,
687
                delta,
688
689
690
691
692
693
694
695
696
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
697
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
698
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
699
    pub model: String,
drbh's avatar
drbh committed
700

701
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
702
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
703
704
705
706
707
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
708
    #[schema(example = "1.0")]
709
710
711
712
713
714
715
716
717
718
719
720
721
722
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
723
    #[schema(example = "false")]
724
725
726
727
728
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
729
    #[schema(example = "5")]
730
731
732
733
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
734
    #[schema(example = "32")]
735
736
737
738
739
740
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
741
    #[schema(nullable = true, example = "2")]
742
743
744
745
746
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
747
    #[schema(nullable = true, example = 0.1)]
748
749
    pub presence_penalty: Option<f32>,

750
751
752
753
754
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

755
756
757
758
759
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
760
761
762
763
764
765

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
766
    #[schema(nullable = true, example = 1.0)]
767
768
769
770
771
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
772
    #[schema(nullable = true, example = 0.95)]
773
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
774
775
776
777
778
779
780
781
782
783
784

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
785
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
786
787
788
789
790
791
792
793
794
795
796
797
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
}

fn default_tool_prompt() -> Option<String> {
    Some(
798
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

843
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
844
845
846
847
848
849
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

850
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
851
852
853
854
855
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

856
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
857
858
859
860
861
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

862
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
878
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
879
880
881
882
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
883
884
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
885
886
887
888
889
890
891
892
893
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
894
895
}

896
#[derive(Clone, Serialize, Deserialize, Default)]
897
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
898
    messages: Vec<TextMessage>,
899
900
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
901
    add_generation_prompt: bool,
902
903
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
904
905
}

Nicolas Patry's avatar
Nicolas Patry committed
906
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
907
pub(crate) struct ToolCall {
908
    pub id: String,
drbh's avatar
drbh committed
909
910
911
912
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
913
914
915
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Url {
    url: String,
drbh's avatar
drbh committed
916
917
}

Nicolas Patry's avatar
Nicolas Patry committed
918
919
920
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct ImageUrl {
    image_url: Url,
drbh's avatar
drbh committed
921
922
}

Nicolas Patry's avatar
Nicolas Patry committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Text {
    text: String,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
    Text(Text),
    ImageUrl(ImageUrl),
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
    #[serde(deserialize_with = "message_content_serde::deserialize")]
    content: Vec<MessageChunk>,
drbh's avatar
drbh committed
943
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
944
945
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
946
947
948
949
}

mod message_content_serde {
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
950
    use serde::{Deserialize, Deserializer};
drbh's avatar
drbh committed
951

Nicolas Patry's avatar
Nicolas Patry committed
952
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
drbh's avatar
drbh committed
953
954
955
    where
        D: Deserializer<'de>,
    {
Nicolas Patry's avatar
Nicolas Patry committed
956
957
958
959
960
        #[derive(Deserialize)]
        #[serde(untagged)]
        enum Message {
            Text(String),
            Chunks(Vec<MessageChunk>),
drbh's avatar
drbh committed
961
        }
Nicolas Patry's avatar
Nicolas Patry committed
962
963
964
965
966
967
968
969
        let message: Message = Deserialize::deserialize(deserializer)?;
        let chunks = match message {
            Message::Text(text) => {
                vec![MessageChunk::Text(Text { text })]
            }
            Message::Chunks(s) => s,
        };
        Ok(chunks)
drbh's avatar
drbh committed
970
971
972
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
973
974
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
975
976
977
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
            content: value
                .content
                .into_iter()
                .map(|c| match c {
                    MessageChunk::Text(Text { text }) => text,
                    MessageChunk::ImageUrl(image) => {
                        let url = image.image_url.url;
                        format!("![]({url})")
                    }
                })
                .collect::<Vec<_>>()
                .join(""),
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1013
1014
}

1015
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1016
pub(crate) struct GenerateRequest {
1017
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1018
1019
1020
1021
1022
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1023
1024
1025
1026
1027
1028
1029
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1030
    #[schema(default = "false")]
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1043
1044
1045
1046
1047
1048
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1049
    #[schema(nullable = true, example = - 0.34)]
1050
1051
1052
    logprob: f32,
}

1053
#[derive(Debug, Serialize, ToSchema, Clone)]
1054
1055
1056
1057
1058
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1059
    #[schema(nullable = true, example = - 0.34)]
1060
    logprob: f32,
1061
1062
    #[schema(example = "false")]
    special: bool,
1063
1064
}

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1077
#[derive(Debug, Serialize, ToSchema)]
1078
#[serde(rename_all(serialize = "snake_case"))]
1079
#[schema(example = "Length")]
1080
1081
1082
1083
1084
1085
1086
1087
1088
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1112
1113
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1114
1115
}

1116
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1117
pub(crate) struct Details {
1118
1119
1120
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1121
    pub generated_tokens: u32,
1122
    #[schema(nullable = true, example = 42)]
1123
    pub seed: Option<u64>,
1124
1125
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1126
1127
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1128
1129
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1130
1131
}

1132
#[derive(Serialize, ToSchema)]
1133
pub(crate) struct GenerateResponse {
1134
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1135
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1136
1137
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1138
}
1139

1140
1141
1142
1143
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1144
1145
1146
1147
1148
1149
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1150
    #[schema(nullable = true, example = 42)]
1151
1152
1153
1154
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1155
pub(crate) struct StreamResponse {
1156
    pub index: u32,
1157
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1158
1159
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1160
    #[schema(nullable = true, default = "null", example = "test")]
1161
    pub generated_text: Option<String>,
1162
1163
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1164
1165
}

1166
#[derive(Serialize, ToSchema)]
1167
1168
pub(crate) struct ErrorResponse {
    pub error: String,
1169
    pub error_type: String,
1170
}
1171
1172

#[cfg(test)]
1173
mod tests {
1174
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1175
    use serde_json::json;
1176
1177
    use tokenizers::Tokenizer;

1178
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1179
1180
1181
1182
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1183
    }
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1198
1199
1200
1201
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1233
1234
1235
1236
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1237
1238
1239
1240
1241
1242
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
Nicolas Patry's avatar
Nicolas Patry committed
1243
1244
1245

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1246
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1247
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1248
1249
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1250
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1251
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
                content: vec![MessageChunk::Text(Text {
                    text: "What is Deep Learning?".to_string()
                }),],
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1269
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1270
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1271
1272
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1273
1274
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1275
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1276
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1277
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1339
}