layers.py 44.7 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List, Tuple, Optional
8
9
from loguru import logger
from functools import lru_cache
10

11
12
from text_generation_server.utils.speculate import get_speculate

13
14
HAS_BITS_AND_BYTES = True
try:
15
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
16
    from bitsandbytes.nn import Int8Params, Params4bit
17
except ImportError:
18
19
    HAS_BITS_AND_BYTES = False

20
21
from accelerate import init_empty_weights

22
from text_generation_server.utils.gptq.quant_linear import QuantLinear
23
24
25
26
27
28
29
30
from text_generation_server.utils.import_utils import (
    IS_CUDA_SYSTEM,
    IS_ROCM_SYSTEM,
    IS_XPU_SYSTEM,
)

if IS_XPU_SYSTEM:
    import intel_extension_for_pytorch as ipex
31
32

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
33
try:
34
35
36
37
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

38
try:
39
40
41
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
42

43
HAS_EXLLAMA = False
fxmarty's avatar
fxmarty committed
44
CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
45
46
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"

47
if os.getenv("DISABLE_EXLLAMA") == "True":
48
    HAS_EXLLAMA = False
49
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
50
    try:
Nicolas Patry's avatar
Nicolas Patry committed
51
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
52
53
54
55
56
            from text_generation_server.utils.gptq.exllamav2 import (
                QuantLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
57

Nicolas Patry's avatar
Nicolas Patry committed
58
59
            HAS_EXLLAMA = "2"
        else:
OlivierDehaene's avatar
OlivierDehaene committed
60
61
62
63
64
            from text_generation_server.utils.gptq.exllama import (
                Ex4bitLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
65

Nicolas Patry's avatar
Nicolas Patry committed
66
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
67
68
69

    except ImportError:
        pass
70

71
72
73
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
74

75
76
77
78
    HAS_EETQ = True
except ImportError:
    pass

79

80
81
82
83
84
85
86
87
88
89
90
91
92
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


93
94
95
96
97
98
99
100
101
102
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
103

104
105
106
107
108
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
109
110
111
112
113
114
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
115
116
117
118
119
120
121

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
122
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
123
    cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
124
):
125
126
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
127
128
129
130
131
132
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
133
134
135
136
137

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

138

139
140
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
141
torch.nn.LayerNorm.load = load_layer_norm
142
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
143

144
145

class FastLinear(nn.Module):
146
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
147
148
149
        self,
        weight,
        bias,
150
    ) -> None:
151
152
153
154
155
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
156
            self.bias = None
157
158
159
160
161
162

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
163
        else:
164
165
            bias = None
        return cls(weight, bias)
166
167

    def forward(self, input: torch.Tensor) -> torch.Tensor:
168
        return F.linear(input, self.weight, self.bias)
169
170


171
172
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
173
174
175
        self,
        weight,
        bias,
176
177
178
    ) -> None:
        super().__init__()
        device = weight.device
179
180
        if weight.dtype != torch.float16:
            weight = weight.to(dtype=torch.float16)
181
182
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
183

184
185
186
187
188
189
190
191
192
193
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


Nicolas Patry's avatar
Nicolas Patry committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
    device = weight.device
    # weight, scale = quant_weights(weight, torch.int8, False)
    finfo = torch.finfo(qdtype)
    # Calculate the scale as dtype max divided by absmax
    scale = finfo.max / weight.abs().max().clamp(min=1e-12)
    # scale and clamp the tensor to bring it to
    # the representative range of float8 data type
    # (as default cast is unsaturated)
    qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
    # Return both float8 data and the inverse scale (as float),
    # as both required as inputs to torch._scaled_mm
    qweight = qweight.to(qdtype)
    scale = scale.float().reciprocal()
    return qweight, scale


class Fp8Linear(nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.dtype = weight.dtype
        self.qweight, self.scale = fp8_quantize(weight)

        self.bias = bias if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        qinput, scale = fp8_quantize(input)
        output, _ = torch._scaled_mm(
            qinput,
            self.qweight.t(),
            out_dtype=self.dtype,
            scale_a=scale,
            scale_b=self.scale,
            bias=self.bias,
        )
        return output


236
class Linear8bitLt(nn.Module):
237
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
238
239
240
241
242
243
244
        self,
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
245
    ):
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
264
        )
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
292
293


Nicolas Patry's avatar
Nicolas Patry committed
294
295
296
297
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
298
299
300
301
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


330
331
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
332
333
334
335
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

336

337
338
339
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
340
341
342
343
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
344
345
346
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
Nicolas Patry's avatar
Nicolas Patry committed
347
348
    elif quantize == "fp8":
        linear = Fp8Linear(weight, bias)
349
    elif quantize == "bitsandbytes":
350
        warn_deprecate_bnb()
351
352
353
354
355
356
357
358
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
359
360
361
362
363
364
365
366
367
368
369
370
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
371
    elif quantize == "gptq":
372
        try:
373
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
374
375
376
377
378
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

379
        if use_exllama:
OlivierDehaene's avatar
OlivierDehaene committed
380
381
382
            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
383
384
385
386
387
388
389
390
391
392
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
393
394
395
396
397
398
399
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
400
401
402
403
404
405
        if IS_ROCM_SYSTEM:
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        if not HAS_AWQ:
OlivierDehaene's avatar
OlivierDehaene committed
406
407
408
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
OlivierDehaene's avatar
OlivierDehaene committed
409
410
411
412
413
414
415
416
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


431
432
433
434
435
436
437
438
439
440
441
442
443
class ResBlock(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.linear = FastLinear.load(
            config, prefix=f"{prefix}.linear", weights=weights, bias=True
        )
        self.act = torch.nn.SiLU()

    def forward(self, x):
        return x + self.act(self.linear(x))


class MedusaModel(torch.nn.Module):
OlivierDehaene's avatar
OlivierDehaene committed
444
    def __init__(self, config, medusa_config, weights):
445
446
447
        super().__init__()
        self.heads = torch.nn.ModuleList(
            [
OlivierDehaene's avatar
OlivierDehaene committed
448
                MedusaHead(config, medusa_config, prefix=f"{i}", weights=weights)
449
                for i in range(get_speculate())
450
451
452
453
454
455
456
457
458
            ]
        )

    def forward(self, x):
        speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
        return speculative_logits


class MedusaHead(torch.nn.Module):
OlivierDehaene's avatar
OlivierDehaene committed
459
    def __init__(self, config, medusa_config, prefix, weights):
460
461
462
463
        super().__init__()
        self.blocks = torch.nn.ModuleList(
            [
                ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
OlivierDehaene's avatar
OlivierDehaene committed
464
                for i in range(medusa_config["medusa_num_layers"])
465
466
467
468
469
470
471
472
473
474
475
476
477
478
            ]
        )
        n = len(self.blocks)
        self.out = FastLinear.load(
            config, prefix=f"{prefix}.{n}", weights=weights, bias=False
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.out(x)
        return x


OlivierDehaene's avatar
OlivierDehaene committed
479
class MedusaHeadV1(nn.Module):
480
481
482
483
484
485
486
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.lm_head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
OlivierDehaene's avatar
OlivierDehaene committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        from pathlib import Path
        from safetensors import safe_open
        import json

        use_medusa = config.use_medusa

        medusa_config = str(Path(use_medusa) / "config.json")
        filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

        with open(medusa_config, "r") as f:
            medusa_config = json.load(f)
        routing = weights.routing
        with safe_open(filename, framework="pytorch") as f:
            for k in f.keys():
                if k in routing and routing[k] != filename:
                    raise RuntimeError(
                        f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                    )
                routing[k] = filename

        medusa = MedusaModel(config, medusa_config, weights)
508
        lm_head = TensorParallelHead.load(config, prefix, weights)
OlivierDehaene's avatar
OlivierDehaene committed
509
510
511
512
513
514
        return MedusaHeadV1(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
OlivierDehaene's avatar
OlivierDehaene committed
515
516
517
518
        # If we have too many tokens, we skip speculative logits
        if input.shape[0] > 128:
            return logits, None

OlivierDehaene's avatar
OlivierDehaene committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        speculative_logits = self.medusa(input)
        return logits, speculative_logits


class MedusaHeadV2(nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        from pathlib import Path
        from safetensors import safe_open
        import json

        use_medusa = config.use_medusa

        medusa_config = str(Path(use_medusa) / "config.json")
        filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

        with open(medusa_config, "r") as f:
            medusa_config = json.load(f)
        routing = weights.routing
        with safe_open(filename, framework="pytorch") as f:
            for k in f.keys():
                if k in routing and routing[k] != filename:
                    raise RuntimeError(
                        f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                    )
                routing[k] = filename

546
        self.n_medusa_heads = get_speculate()
OlivierDehaene's avatar
OlivierDehaene committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

        assert medusa_config["medusa_num_layers"] == 1
        self.linear = TensorParallelColumnLinear.load_multi(
            config,
            prefixes=[f"{i}.0.linear" for i in range(self.n_medusa_heads)],
            dim=0,
            weights=weights,
            bias=True,
        )
        self.process_group = weights.process_group
        self.world_size = self.process_group.size()
        self.rank = self.process_group.rank()

        self.act = torch.nn.SiLU()

        self.lm_head = TensorParallelHead.load(config, prefix, weights)

    def forward(self, x):
OlivierDehaene's avatar
OlivierDehaene committed
565
566
567
568
569
        # If we have too many tokens, we skip speculative logits
        if x.shape[0] > 128:
            logits = self.lm_head(x)
            return logits, None

OlivierDehaene's avatar
OlivierDehaene committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        size = x.shape[-1]
        block_size = (size + self.world_size - 1) // self.world_size
        start = self.rank * block_size
        stop = (self.rank + 1) * block_size

        x_block = x[:, start:stop]

        # Compute all medusa heads at the same time, then reshape and move the n_medusa_heads dim to dim 1
        medusa_res = self.act(self.linear(x)).reshape(
            *x_block.shape[:-1], self.n_medusa_heads, x_block.shape[-1]
        )

        # Apply all residual medusa heads
        output = x[:, start:stop].unsqueeze(-2) + medusa_res

        # Gather medusa heads
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)

        # Stack x and medusa residual x
        stacked_x = torch.cat([x.unsqueeze(-2), world_output], dim=-2)

        # Compute lm head on x + medusa residual x
        logits = self.lm_head(stacked_x)

        # Finally, split logits from speculative logits
        logits, speculative_logits = torch.split(
            logits, [1, self.n_medusa_heads], dim=-2
        )
        # Squeeze added dimension
        logits = logits.squeeze(-2)

        return logits, speculative_logits


class SpeculativeHead(nn.Module):
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
616
617
        use_medusa = config.use_medusa
        if use_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
618
619
620
621
622
            lm_head = None
            try:
                medusa = MedusaHeadV1.load(config, prefix, weights)
            except:
                medusa = MedusaHeadV2(config, prefix, weights)
623
        else:
OlivierDehaene's avatar
OlivierDehaene committed
624
            lm_head = TensorParallelHead.load(config, prefix, weights)
625
626
627
628
629
630
            medusa = None
        return SpeculativeHead(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
OlivierDehaene's avatar
OlivierDehaene committed
631
632
633
634
635
636
        if self.medusa is not None:
            return self.medusa(input)

        assert self.head is not None
        logits = self.head(input)
        return logits, None
637
638


639
class TensorParallelHead(SuperLayer):
640
    def __init__(self, linear, process_group, should_gather: bool):
641
        super().__init__(linear)
642
        self.process_group = process_group
643
        self.should_gather = should_gather
644
645
646

    @staticmethod
    def load(config, prefix: str, weights):
647
648
649
650
651
652
653
654
655
656
657
658
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
659

660
661
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
662
663
664
            quantize = None
        else:
            quantize = config.quantize
665
        return TensorParallelHead(
666
            get_linear(weight, bias=None, quantize=quantize),
667
            process_group=weights.process_group,
668
            should_gather=should_gather,
669
670
671
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
672
673
674
        if not self.should_gather:
            return super().forward(input)

675
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
676
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
677
678
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
679
680
681
682
683
684
685
686
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
687
688
689
690

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
691
                world_out, gather_input, group=self.process_group
692
693
            )

OlivierDehaene's avatar
OlivierDehaene committed
694
695
696
            if input.shape[0] == 1:
                return world_out
            return world_out.T
697

OlivierDehaene's avatar
OlivierDehaene committed
698
699
700
701
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
702
703
704
705
706
707
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
Nicolas Patry's avatar
Nicolas Patry committed
708
709
710
711
712
713
714
715
716
717
718
719
720
    @classmethod
    def load_gate_up(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
        weight = weights.get_weights_col_packed_gate_up(
            prefix, quantize=config.quantize
        )
        if bias:
            raise NotImplementedError("packed_gate_up only implemented without bias")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

721
    @classmethod
xiaobin's avatar
xiaobin committed
722
723
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
724
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
725
726
727
728
729
730
731
732
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
733
    def load(cls, config, prefix: str, weights, bias: bool):
734
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
735

736
737
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
738
739
740
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
741

742
743
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
744
            bias = torch.cat(b, dim=dim)
745
746
        else:
            bias = None
747
748
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
749

750
751
752
753

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
754
755
        self.process_group = process_group

756
757
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
758
759
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

760
761
762
763
764
765
766
767
768
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
769

770
    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
771
        out = super().forward(input)
772
        if self.process_group.size() > 1 and reduce:
773
            torch.distributed.all_reduce(out, group=self.process_group)
774
        return out
775
776


777
778
779
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
780
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
781
782
783
784
785
786
787
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

788
        block_size = (num_embeddings + world_size - 1) // world_size
789
790
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
OlivierDehaene's avatar
OlivierDehaene committed
791
792
793
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
794
795
        self.process_group = weights.process_group
        self.reduce = reduce
796
797

        """Additional 0 entry used for masking"""
798
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
799
800
801
802
803
804
805
806
807

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
808
        out = torch.nn.functional.embedding(input, self.weight)
809
        if self.reduce and self.process_group.size() > 1:
810
            torch.distributed.all_reduce(out, group=self.process_group)
811
812
813
814
        return out


try:
fxmarty's avatar
fxmarty committed
815
816
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
817
818
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
819
820
    else:
        dropout_layer_norm = None
821
822
823

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
824
825
826
827
828
829
830
831
832
            if IS_XPU_SYSTEM:
                res_out = hidden_states
                out = ipex.llm.functional.add_layer_norm(
                    residual, hidden_states, self.weight, self.bias, self.eps, True
                )
                if residual is not None:
                    res_out = residual
                return out, res_out
            elif hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
864
865
866
867
868
869
870
871
872
873
874
875
876
877

    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
878
879
880
881
882
883
884
885
886
887
888
889
890
891
            if IS_XPU_SYSTEM:
                residual_out = hidden_states
                out = ipex.llm.functional.add_rms_norm(
                    residual,
                    hidden_states,
                    self.weight,
                    None,
                    self.variance_epsilon,
                    True,
                )
                if residual is not None:
                    residual_out = residual
                return out, residual_out
            elif hidden_states.shape[-1] > 8192:
OlivierDehaene's avatar
OlivierDehaene committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
OlivierDehaene's avatar
OlivierDehaene committed
909
910
911
912
913
                (
                    normed_hidden_states,
                    res,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
OlivierDehaene's avatar
OlivierDehaene committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
950
951
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
OlivierDehaene's avatar
OlivierDehaene committed
952

953
954
955
956
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
957
958
959
960
961
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
962

Nicolas Patry's avatar
Nicolas Patry committed
963
964
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
965
            base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
966
967
968
969
970
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
971
972
973
974
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
975
976
977
            return rope_scaling
        return getattr(config, "rope_scaling", None)

978
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
979
        def __init__(self, inv_freq, scaling_factor):
980
            super().__init__()
981
            self.inv_freq = inv_freq
982
983
984
985
986
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
987
988
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
989

OlivierDehaene's avatar
OlivierDehaene committed
990
991
992
993
994
995
996
        def forward(
            self,
            query: torch.Tensor,
            key: torch.Tensor,
            cos: torch.Tensor,
            sin: torch.Tensor,
        ):
fxmarty's avatar
fxmarty committed
997
998
999
1000
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
1001
                q2 = query[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
1002
1003
1004
1005

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
1006
                k2 = key[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
1007
1008
1009
1010
1011
1012
1013
1014
1015

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
OlivierDehaene's avatar
OlivierDehaene committed
1016
                pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
1017
1018
1019
1020
            elif IS_XPU_SYSTEM:
                ipex.llm.functional.rotary_embedding(
                    query, key, sin, cos, query.size(-1), True
                )
fxmarty's avatar
fxmarty committed
1021
            else:
OlivierDehaene's avatar
OlivierDehaene committed
1022
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
1023
1024
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
fxmarty's avatar
fxmarty committed
1025

1026
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
1036
1037
1038
1039
1040
1041
1042
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1043
1044
1045
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
1046
1047
1048
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
1049
1050
1051
1052
1053
1054
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
1055
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
1056
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1057
                else:
OlivierDehaene's avatar
OlivierDehaene committed
1058
1059
1060
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1061
            return cls(inv_freq, scaling_factor)
1062
1063

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
1064
        def load(cls, config, prefix, weights):
1065
1066
1067
1068
1069
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
1070
1071
1072
1073
1074
1075
1076
1077

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
1078
1079
1080
1081
1082
1083
1084
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1085
1086
1087
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
1088
1089
1090
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
1091
1092
1093
1094
1095
1096
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
1097
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
1098
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1099
                else:
OlivierDehaene's avatar
OlivierDehaene committed
1100
1101
1102
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1103
            return cls(inv_freq, scaling_factor)
1104

1105
1106
1107
1108
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1109
1110
1111
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
1112
1113
1114
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
1115
1116
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
1117
1118
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
1119

1120
1121
1122
1123
1124
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
1125
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
1126
1127
1128
1129
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
1130
1131
1132
1133
1134
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
1135
1136
1137
1138
1139

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
1140

fxmarty's avatar
fxmarty committed
1141
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
1142
1143
            return cos.unsqueeze(1), sin.unsqueeze(1)

Nicolas Patry's avatar
Nicolas Patry committed
1144
1145
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
1146
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
1147
1148
1149
1150
1151
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
1152
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
1153
1154
1155
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1156
1157
1158
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1159
1160
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
1161
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
1162
1163
                        (self.scaling_factor * seqlen / self.max_position_embeddings)
                        - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
1164
1165
1166
1167
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
1177
1178
    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
1179

OlivierDehaene's avatar
OlivierDehaene committed
1180
1181
1182
1183
1184
1185
    def find_correction_dim(
        num_rotations, dim, base=10000, max_position_embeddings=2048
    ):
        return (
            dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
        ) / (2 * math.log(base))
Nicolas Patry's avatar
Nicolas Patry committed
1186
1187

    # Find dim range bounds based on rotations
OlivierDehaene's avatar
OlivierDehaene committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
    def find_correction_range(
        low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
    ):
        low = math.floor(
            find_correction_dim(low_rot, dim, base, max_position_embeddings)
        )
        high = math.ceil(
            find_correction_dim(high_rot, dim, base, max_position_embeddings)
        )
OlivierDehaene's avatar
OlivierDehaene committed
1197
1198
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        def __init__(
            self,
            dim,
            max_position_embeddings,
            base,
            device,
            scaling_factor,
            *,
            extrapolation_factor,
            attn_factor,
            beta_fast,
            beta_slow,
        ):
Nicolas Patry's avatar
Nicolas Patry committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
1235
1236
1237
            self.mscale = float(
                get_mscale(self.scaling_factor) * self.attn_factor
            )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1238
1239
1240
1241
1242

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1243
1244
1245
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1246
1247
1248
1249
1250
1251
1252
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
                    low, high = find_correction_range(
                        self.beta_fast,
                        self.beta_slow,
                        self.dim,
                        self.base,
                        self.max_position_embeddings,
                    )
                    inv_freq_mask = (
                        1
                        - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
                    ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
                    inv_freq = (
                        inv_freq_interpolation * (1 - inv_freq_mask)
                        + inv_freq_extrapolation * inv_freq_mask
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1268
1269

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
1270
1271
1272
                    self.mscale = float(
                        get_mscale(self.scaling_factor) * self.attn_factor
                    )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

1283
1284
except ImportError:
    pass