layers.py 19.2 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
10

HAS_BITS_AND_BYTES = True
try:
11
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
12
    from bitsandbytes.nn import Int8Params, Params4bit
13
14

except ImportError:
15
16
    HAS_BITS_AND_BYTES = False

17
18
from accelerate import init_empty_weights

19
from text_generation_server.utils.gptq.quant_linear import QuantLinear
20

21
22
HAS_EXLLAMA = True
if os.getenv("DISABLE_EXLLAMA") == "True":
23
    HAS_EXLLAMA = False
24
25
26
27
try:
    from text_generation_server.utils.gptq.exllama import Ex4bitLinear
except ImportError:
    HAS_EXLLAMA = False
28

29
from typing import Optional
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


44
45
46
47
48
49
50
51
52
53
54
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln


55
torch.nn.LayerNorm.load = load_layer_norm
56
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
57

58
59

class FastLinear(nn.Module):
60
61
    def __init__(
        self,
62
63
        weight,
        bias,
64
    ) -> None:
65
66
67
68
69
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
70
            self.bias = None
71
72
73
74
75
76

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
77
        else:
78
79
            bias = None
        return cls(weight, bias)
80
81

    def forward(self, input: torch.Tensor) -> torch.Tensor:
82
        return F.linear(input, self.weight, self.bias)
83
84


85
class Linear8bitLt(nn.Module):
86
87
    def __init__(
        self,
88
89
90
91
92
93
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
94
    ):
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
113
        )
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
141
142


Nicolas Patry's avatar
Nicolas Patry committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
            weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


176
177
178
179
180
181
182
183
184
185
186
187
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
    elif quantize == "bitsandbytes":
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
188
189
190
191
192
193
194
195
196
197
198
199
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
200
    elif quantize == "gptq":
201
        try:
202
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
203
204
205
206
207
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

208
209
210
211
212
213
214
215
216
217
218
219
        if use_exllama:
            linear = Ex4bitLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
235
    def __init__(self, linear, process_group, should_gather: bool):
236
        super().__init__(linear)
237
        self.process_group = process_group
238
        self.should_gather = should_gather
239
240
241

    @staticmethod
    def load(config, prefix: str, weights):
242
243
244
245
246
247
248
249
250
251
252
253
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
254
255
256
257
258
259

        # GPTQ doesn't quantize heads (nor embeddings)
        if config.quantize == "gptq":
            quantize = None
        else:
            quantize = config.quantize
260
        return TensorParallelHead(
261
            get_linear(weight, bias=None, quantize=quantize),
262
            process_group=weights.process_group,
263
            should_gather=should_gather,
264
265
266
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
267
268
269
        if not self.should_gather:
            return super().forward(input)

270
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
271
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
272
273
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
274
275
276
277
278
279
280
281
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
282
283
284
285

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
286
                world_out, gather_input, group=self.process_group
287
288
            )

OlivierDehaene's avatar
OlivierDehaene committed
289
290
291
            if input.shape[0] == 1:
                return world_out
            return world_out.T
292

OlivierDehaene's avatar
OlivierDehaene committed
293
294
295
296
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
297
298
299
300
301
302
303
304
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
305
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
306

307
308
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
309
310
311
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
312

313
314
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
315
            bias = torch.cat(b, dim=dim)
316
317
        else:
            bias = None
318
319
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
320

321
322
323
324

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
325
326
        self.process_group = process_group

327
328
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
329
330
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

331
332
333
334
335
336
337
338
339
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
340

341
342
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
343
344
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
345
        return out
346
347


348
349
350
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
351
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
352
353
354
355
356
357
358
359
360
361
362
363
364
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
365
366

        """Additional 0 entry used for masking"""
367
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
368
369
370
371
372
373
374
375
376

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
377
        out = torch.nn.functional.embedding(input, self.weight)
378
        if self.reduce and self.process_group.size() > 1:
379
            torch.distributed.all_reduce(out, group=self.process_group)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        return out


try:
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

except ImportError:
    pass


try:
    from flash_attn.layers.rotary import RotaryEmbedding
    import rotary_emb

Nicolas Patry's avatar
Nicolas Patry committed
429
430
431
432
433
434
435
436
437
438
439
440
441
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
            base
            ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
            rope_scaling = {"type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"])}
            return rope_scaling
        return getattr(config, "rope_scaling", None)

442
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
443
        def __init__(self, inv_freq, scaling_factor):
444
            super().__init__()
445
            self.inv_freq = inv_freq
446
447
448
449
450
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
451
452
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
453
454

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
455
456
457
458
459
460
461
462
463
464
465
466
467
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
                    return DynamicPositionRotaryEmbedding(dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor)
                else:
                    raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
            return cls(inv_freq, scaling_factor)
468
469

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
470
        def load(cls, config, prefix, weights):
471
472
473
474
475
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
476
477
478
479
480
481
482
483
484
485
486
487

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
                    return DynamicPositionRotaryEmbedding(dim=2*inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor)
                else:
                    raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
            return cls(inv_freq, scaling_factor)
488

489
490
491
492
493
494
495
496
497
498
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
499
500
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
501
502
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
        ):
            """
            Return cos and sin for the asked position ids
            """

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
            return cos.unsqueeze(1), sin.unsqueeze(1)

521
        def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
522
            rotary_dim = cos.shape[-1]
523
524
525
526
527
            x1 = x[..., :rotary_dim]
            x2 = x[..., rotary_dim : 2 * rotary_dim]

            rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
            return x
528

Nicolas Patry's avatar
Nicolas Patry committed
529
530
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
531
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                if seqlen > self.max_position_embeddings:
Nicolas Patry's avatar
Nicolas Patry committed
546
                    newbase = self.base * ((self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
Nicolas Patry's avatar
Nicolas Patry committed
547
548
549
550
551
552
553
554
555
556
557
                    self.inv_freq = _create_inv_freq(self.dim, newbase, self.inv_freq.device)
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)


558
559
except ImportError:
    pass