layers.py 38 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List, Tuple, Optional
8
9
from loguru import logger
from functools import lru_cache
10
11
12

HAS_BITS_AND_BYTES = True
try:
13
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
14
    from bitsandbytes.nn import Int8Params, Params4bit
15
except ImportError:
16
17
    HAS_BITS_AND_BYTES = False

18
19
from accelerate import init_empty_weights

20
from text_generation_server.utils.gptq.quant_linear import QuantLinear
OlivierDehaene's avatar
OlivierDehaene committed
21
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
22
from text_generation_server.utils.log import log_once
23
24

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
25
try:
26
27
28
29
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

30
try:
31
32
33
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
34

35
HAS_EXLLAMA = False
fxmarty's avatar
fxmarty committed
36
CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
37
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"
Nicolas Patry's avatar
Nicolas Patry committed
38
39
40
41
42
43
# if V2 and int(os.getenv("WORLD_SIZE", "1")) > 1:
#     V2 = False
#     log_once(
#         logger.warning,
#         "Disabling exllama v2 and using v1 instead because there are issues when sharding",
#     )
Nicolas Patry's avatar
Nicolas Patry committed
44

45
if os.getenv("DISABLE_EXLLAMA") == "True":
46
    HAS_EXLLAMA = False
47
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
48
    try:
Nicolas Patry's avatar
Nicolas Patry committed
49
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
50
51
52
53
54
            from text_generation_server.utils.gptq.exllamav2 import (
                QuantLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
55

Nicolas Patry's avatar
Nicolas Patry committed
56
57
            HAS_EXLLAMA = "2"
        else:
OlivierDehaene's avatar
OlivierDehaene committed
58
59
60
61
62
            from text_generation_server.utils.gptq.exllama import (
                Ex4bitLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
63

Nicolas Patry's avatar
Nicolas Patry committed
64
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
65
66
67

    except ImportError:
        pass
68

69
70
71
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
72

73
74
75
76
    HAS_EETQ = True
except ImportError:
    pass

77

78
79
80
81
82
83
84
85
86
87
88
89
90
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


91
92
93
94
95
96
97
98
99
100
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
101

102
103
104
105
106
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
107
108
109
110
111
112
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
113
114
115
116
117
118
119

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
120
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
121
    cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
122
):
123
124
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
125
126
127
128
129
130
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
131
132
133
134
135

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

136

137
138
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
139
torch.nn.LayerNorm.load = load_layer_norm
140
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
141

142
143

class FastLinear(nn.Module):
144
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
145
146
147
        self,
        weight,
        bias,
148
    ) -> None:
149
150
151
152
153
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
154
            self.bias = None
155
156
157
158
159
160

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
161
        else:
162
163
            bias = None
        return cls(weight, bias)
164
165

    def forward(self, input: torch.Tensor) -> torch.Tensor:
166
        return F.linear(input, self.weight, self.bias)
167
168


169
170
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
171
172
173
        self,
        weight,
        bias,
174
175
176
177
178
    ) -> None:
        super().__init__()
        device = weight.device
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
179

180
181
182
183
184
185
186
187
188
189
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


190
class Linear8bitLt(nn.Module):
191
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
192
193
194
195
196
197
198
        self,
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
199
    ):
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
218
        )
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
246
247


Nicolas Patry's avatar
Nicolas Patry committed
248
249
250
251
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
252
253
254
255
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


284
285
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
286
287
288
289
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

290

291
292
293
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
294
295
296
297
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
298
299
300
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
301
    elif quantize == "bitsandbytes":
302
        warn_deprecate_bnb()
303
304
305
306
307
308
309
310
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
311
312
313
314
315
316
317
318
319
320
321
322
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
323
    elif quantize == "gptq":
324
        try:
325
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
326
327
328
329
330
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

331
        if use_exllama:
OlivierDehaene's avatar
OlivierDehaene committed
332
333
334
            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
335
336
337
338
339
340
341
342
343
344
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
345
346
347
348
349
350
351
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
352
353
354
355
356
357
        if IS_ROCM_SYSTEM:
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        if not HAS_AWQ:
OlivierDehaene's avatar
OlivierDehaene committed
358
359
360
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
OlivierDehaene's avatar
OlivierDehaene committed
361
362
363
364
365
366
367
368
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
class ResBlock(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.linear = FastLinear.load(
            config, prefix=f"{prefix}.linear", weights=weights, bias=True
        )
        self.act = torch.nn.SiLU()

    def forward(self, x):
        return x + self.act(self.linear(x))


class MedusaModel(torch.nn.Module):
    def __init__(self, config, weights):
        super().__init__()
        self.heads = torch.nn.ModuleList(
            [
                MedusaHead(config, prefix=f"{i}", weights=weights)
                for i in range(config["medusa_num_heads"])
            ]
        )

    def forward(self, x):
        speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
        return speculative_logits


class MedusaHead(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.blocks = torch.nn.ModuleList(
            [
                ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
                for i in range(config["medusa_num_layers"])
            ]
        )
        n = len(self.blocks)
        self.out = FastLinear.load(
            config, prefix=f"{prefix}.{n}", weights=weights, bias=False
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.out(x)
        return x


class SpeculativeHead(nn.Module):
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.lm_head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
        lm_head = TensorParallelHead.load(config, prefix, weights)
        use_medusa = config.use_medusa
        if use_medusa:
            from pathlib import Path
            from safetensors import safe_open
            import json

            medusa_config = str(Path(use_medusa) / "config.json")
            filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

            with open(medusa_config, "r") as f:
                config = json.load(f)
            routing = weights.routing
            with safe_open(filename, framework="pytorch") as f:
                for k in f.keys():
                    if k in routing:
                        raise RuntimeError(
                            f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                        )
                    weights.routing[k] = filename

            medusa = MedusaModel(config, weights)
        else:
            medusa = None
        return SpeculativeHead(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
        speculative_logits = self.medusa(input) if self.medusa is not None else None
        return logits, speculative_logits


473
class TensorParallelHead(SuperLayer):
474
    def __init__(self, linear, process_group, should_gather: bool):
475
        super().__init__(linear)
476
        self.process_group = process_group
477
        self.should_gather = should_gather
478
479
480

    @staticmethod
    def load(config, prefix: str, weights):
481
482
483
484
485
486
487
488
489
490
491
492
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
493

494
495
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
496
497
498
            quantize = None
        else:
            quantize = config.quantize
499
        return TensorParallelHead(
500
            get_linear(weight, bias=None, quantize=quantize),
501
            process_group=weights.process_group,
502
            should_gather=should_gather,
503
504
505
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
506
507
508
        if not self.should_gather:
            return super().forward(input)

509
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
510
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
511
512
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
513
514
515
516
517
518
519
520
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
521
522
523
524

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
525
                world_out, gather_input, group=self.process_group
526
527
            )

OlivierDehaene's avatar
OlivierDehaene committed
528
529
530
            if input.shape[0] == 1:
                return world_out
            return world_out.T
531

OlivierDehaene's avatar
OlivierDehaene committed
532
533
534
535
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
536
537
538
539
540
541
542
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
xiaobin's avatar
xiaobin committed
543
544
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
545
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
546
547
548
549
550
551
552
553
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
554
    def load(cls, config, prefix: str, weights, bias: bool):
555
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
556

557
558
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
559
560
561
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
562

563
564
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
565
            bias = torch.cat(b, dim=dim)
566
567
        else:
            bias = None
568
569
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
570

571
572
573
574

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
575
576
        self.process_group = process_group

577
578
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
579
580
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

581
582
583
584
585
586
587
588
589
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
590

591
    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
592
        out = super().forward(input)
593
        if self.process_group.size() > 1 and reduce:
594
            torch.distributed.all_reduce(out, group=self.process_group)
595
        return out
596
597


598
599
600
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
601
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
602
603
604
605
606
607
608
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

609
        block_size = (num_embeddings + world_size - 1) // world_size
610
611
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
OlivierDehaene's avatar
OlivierDehaene committed
612
613
614
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
615
616
        self.process_group = weights.process_group
        self.reduce = reduce
617
618

        """Additional 0 entry used for masking"""
619
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
620
621
622
623
624
625
626
627
628

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
629
        out = torch.nn.functional.embedding(input, self.weight)
630
        if self.reduce and self.process_group.size() > 1:
631
            torch.distributed.all_reduce(out, group=self.process_group)
632
633
634
635
        return out


try:
fxmarty's avatar
fxmarty committed
636
637
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
638
639
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
640
641
    else:
        dropout_layer_norm = None
642
643
644

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
fxmarty's avatar
fxmarty committed
645
            if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
OlivierDehaene's avatar
OlivierDehaene committed
709
710
711
712
713
                (
                    normed_hidden_states,
                    res,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
OlivierDehaene's avatar
OlivierDehaene committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
750
751
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
OlivierDehaene's avatar
OlivierDehaene committed
752

753
754
755
756
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
757
758
759
760
761
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
762

Nicolas Patry's avatar
Nicolas Patry committed
763
764
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
765
            base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
766
767
768
769
770
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
771
772
773
774
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
775
776
777
            return rope_scaling
        return getattr(config, "rope_scaling", None)

778
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
779
        def __init__(self, inv_freq, scaling_factor):
780
            super().__init__()
781
            self.inv_freq = inv_freq
782
783
784
785
786
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
787
788
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
789

OlivierDehaene's avatar
OlivierDehaene committed
790
791
792
793
794
795
796
        def forward(
            self,
            query: torch.Tensor,
            key: torch.Tensor,
            cos: torch.Tensor,
            sin: torch.Tensor,
        ):
fxmarty's avatar
fxmarty committed
797
798
799
800
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
801
                q2 = query[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
802
803
804
805

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
806
                k2 = key[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
807
808
809
810
811
812
813
814
815

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
OlivierDehaene's avatar
OlivierDehaene committed
816
                pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
fxmarty's avatar
fxmarty committed
817
            else:
OlivierDehaene's avatar
OlivierDehaene committed
818
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
819
820
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
fxmarty's avatar
fxmarty committed
821

822
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
823
824
825
826
827
828
829
830
831
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
832
833
834
835
836
837
838
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
839
840
841
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
842
843
844
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
845
846
847
848
849
850
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
851
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
852
                    )
Nicolas Patry's avatar
Nicolas Patry committed
853
                else:
OlivierDehaene's avatar
OlivierDehaene committed
854
855
856
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
857
            return cls(inv_freq, scaling_factor)
858
859

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
860
        def load(cls, config, prefix, weights):
861
862
863
864
865
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
866
867
868
869
870
871
872
873

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
874
875
876
877
878
879
880
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
881
882
883
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
884
885
886
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
887
888
889
890
891
892
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
893
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
894
                    )
Nicolas Patry's avatar
Nicolas Patry committed
895
                else:
OlivierDehaene's avatar
OlivierDehaene committed
896
897
898
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
899
            return cls(inv_freq, scaling_factor)
900

901
902
903
904
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
905
906
907
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
908
909
910
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
911
912
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
913
914
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
915

916
917
918
919
920
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
921
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
922
923
924
925
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
926
927
928
929
930
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
931
932
933
934
935

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
fxmarty's avatar
fxmarty committed
936
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
937
938
            return cos.unsqueeze(1), sin.unsqueeze(1)

Nicolas Patry's avatar
Nicolas Patry committed
939
940
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
941
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
942
943
944
945
946
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
947
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
948
949
950
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
951
952
953
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
954
955
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
956
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
957
958
                        (self.scaling_factor * seqlen / self.max_position_embeddings)
                        - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
959
960
961
962
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
963
964
965
966
967
968
969
970
971
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
972
973
    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
974

OlivierDehaene's avatar
OlivierDehaene committed
975
976
977
978
979
980
    def find_correction_dim(
        num_rotations, dim, base=10000, max_position_embeddings=2048
    ):
        return (
            dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
        ) / (2 * math.log(base))
Nicolas Patry's avatar
Nicolas Patry committed
981
982

    # Find dim range bounds based on rotations
OlivierDehaene's avatar
OlivierDehaene committed
983
984
985
986
987
988
989
990
991
    def find_correction_range(
        low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
    ):
        low = math.floor(
            find_correction_dim(low_rot, dim, base, max_position_embeddings)
        )
        high = math.ceil(
            find_correction_dim(high_rot, dim, base, max_position_embeddings)
        )
OlivierDehaene's avatar
OlivierDehaene committed
992
993
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        def __init__(
            self,
            dim,
            max_position_embeddings,
            base,
            device,
            scaling_factor,
            *,
            extrapolation_factor,
            attn_factor,
            beta_fast,
            beta_slow,
        ):
Nicolas Patry's avatar
Nicolas Patry committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
1030
1031
1032
            self.mscale = float(
                get_mscale(self.scaling_factor) * self.attn_factor
            )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1033
1034
1035
1036
1037

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1038
1039
1040
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1041
1042
1043
1044
1045
1046
1047
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
                    low, high = find_correction_range(
                        self.beta_fast,
                        self.beta_slow,
                        self.dim,
                        self.base,
                        self.max_position_embeddings,
                    )
                    inv_freq_mask = (
                        1
                        - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
                    ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
                    inv_freq = (
                        inv_freq_interpolation * (1 - inv_freq_mask)
                        + inv_freq_extrapolation * inv_freq_mask
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1063
1064

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
1065
1066
1067
                    self.mscale = float(
                        get_mscale(self.scaling_factor) * self.attn_factor
                    )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

1078
1079
except ImportError:
    pass