layers.py 22.7 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
from loguru import logger
from functools import lru_cache
10
11
12

HAS_BITS_AND_BYTES = True
try:
13
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
14
    from bitsandbytes.nn import Int8Params, Params4bit
15
16

except ImportError:
17
18
    HAS_BITS_AND_BYTES = False

19
20
from accelerate import init_empty_weights

21
from text_generation_server.utils.gptq.quant_linear import QuantLinear
22

23
24
25
26
27
28
29

HAS_AWQ = True
try: 
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

30
try:
31
32
33
34
35
36
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
HAS_EXLLAMA = False
CAN_EXLLAMA = major >= 8
if os.getenv("DISABLE_EXLLAMA") == "True":
37
    HAS_EXLLAMA = False
38
39
40
41
42
43
elif CAN_EXLLAMA:
        try:
            from text_generation_server.utils.gptq.exllama import Ex4bitLinear
            HAS_EXLLAMA = True
        except ImportError:
            pass
44

45
from typing import Optional
46

47
48
49
50
51
52
53
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
    HAS_EETQ = True
except ImportError:
    pass

54
55
56
57
58
59
60
61
62
63
64
65
66
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


67
68
69
70
71
72
73
74
75
76
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
def load_conv2d_no_bias(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

99

100
101
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
102
torch.nn.LayerNorm.load = load_layer_norm
103
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
104

105
106

class FastLinear(nn.Module):
107
108
    def __init__(
        self,
109
110
        weight,
        bias,
111
    ) -> None:
112
113
114
115
116
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
117
            self.bias = None
118
119
120
121
122
123

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
124
        else:
125
126
            bias = None
        return cls(weight, bias)
127
128

    def forward(self, input: torch.Tensor) -> torch.Tensor:
129
        return F.linear(input, self.weight, self.bias)
130
131


132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class EETQLinear(nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        device = weight.device
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


156
class Linear8bitLt(nn.Module):
157
158
    def __init__(
        self,
159
160
161
162
163
164
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
165
    ):
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
184
        )
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
212
213


Nicolas Patry's avatar
Nicolas Patry committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
            weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


247
248
249
250
@lru_cache(1)
def warn_deprecate_bnb():
    logger.warning("Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce")

251
252
253
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
254
255
256
257
258
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
            raise ImportError("Please install EETQ from https://github.com/NetEase-FuXi/EETQ")
259
    elif quantize == "bitsandbytes":
260
        warn_deprecate_bnb()
261
262
263
264
265
266
267
268
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
269
270
271
272
273
274
275
276
277
278
279
280
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
281
    elif quantize == "gptq":
282
        try:
283
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
284
285
286
287
288
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

289
290
291
292
293
294
295
296
297
298
299
300
        if use_exllama:
            linear = Ex4bitLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
301
302
303
304
305
306
307
308
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
        linear = WQLinear(w_bit=bits, group_size=groupsize, qweight=qweight, qzeros=qzeros, scales=scales, bias=bias is not None)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
324
    def __init__(self, linear, process_group, should_gather: bool):
325
        super().__init__(linear)
326
        self.process_group = process_group
327
        self.should_gather = should_gather
328
329
330

    @staticmethod
    def load(config, prefix: str, weights):
331
332
333
334
335
336
337
338
339
340
341
342
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
343

344
345
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
346
347
348
            quantize = None
        else:
            quantize = config.quantize
349
        return TensorParallelHead(
350
            get_linear(weight, bias=None, quantize=quantize),
351
            process_group=weights.process_group,
352
            should_gather=should_gather,
353
354
355
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
356
357
358
        if not self.should_gather:
            return super().forward(input)

359
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
360
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
361
362
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
363
364
365
366
367
368
369
370
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
371
372
373
374

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
375
                world_out, gather_input, group=self.process_group
376
377
            )

OlivierDehaene's avatar
OlivierDehaene committed
378
379
380
            if input.shape[0] == 1:
                return world_out
            return world_out.T
381

OlivierDehaene's avatar
OlivierDehaene committed
382
383
384
385
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
386
387
388
389
390
391
392
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
xiaobin's avatar
xiaobin committed
393
394
395
396
397
398
399
400
401
402
403
404
405
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
        weight = weights.get_weights_col_packed_qkv(
            prefix, quantize=config.quantize
        )
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
406
    def load(cls, config, prefix: str, weights, bias: bool):
407
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
408

409
410
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
411
412
413
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
414

415
416
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
417
            bias = torch.cat(b, dim=dim)
418
419
        else:
            bias = None
420
421
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
422

423
424
425
426

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
427
428
        self.process_group = process_group

429
430
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
431
432
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

433
434
435
436
437
438
439
440
441
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
442

443
444
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
445
446
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
447
        return out
448
449


450
451
452
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
453
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
454
455
456
457
458
459
460
461
462
463
464
465
466
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
467
468

        """Additional 0 entry used for masking"""
469
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
470
471
472
473
474
475
476
477
478

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
479
        out = torch.nn.functional.embedding(input, self.weight)
480
        if self.reduce and self.process_group.size() > 1:
481
            torch.distributed.all_reduce(out, group=self.process_group)
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        return out


try:
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

except ImportError:
    pass


try:
    from flash_attn.layers.rotary import RotaryEmbedding
    import rotary_emb

Nicolas Patry's avatar
Nicolas Patry committed
531
532
533
534
535
536
537
538
539
540
541
542
543
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
            base
            ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
            rope_scaling = {"type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"])}
            return rope_scaling
        return getattr(config, "rope_scaling", None)

544
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
545
        def __init__(self, inv_freq, scaling_factor):
546
            super().__init__()
547
            self.inv_freq = inv_freq
548
549
550
551
552
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
553
554
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
555
556

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
557
558
559
560
561
562
563
564
565
566
567
568
569
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
                    return DynamicPositionRotaryEmbedding(dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor)
                else:
                    raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
            return cls(inv_freq, scaling_factor)
570
571

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
572
        def load(cls, config, prefix, weights):
573
574
575
576
577
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
578
579
580
581
582
583
584
585
586
587
588
589

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
                    return DynamicPositionRotaryEmbedding(dim=2*inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor)
                else:
                    raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
            return cls(inv_freq, scaling_factor)
590

591
592
593
594
595
596
597
598
599
600
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
601
602
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
603
604
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
        ):
            """
            Return cos and sin for the asked position ids
            """

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
            return cos.unsqueeze(1), sin.unsqueeze(1)

623
        def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
624
            rotary_dim = cos.shape[-1]
625
626
627
628
629
            x1 = x[..., :rotary_dim]
            x2 = x[..., rotary_dim : 2 * rotary_dim]

            rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
            return x
630

Nicolas Patry's avatar
Nicolas Patry committed
631
632
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
633
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                if seqlen > self.max_position_embeddings:
Nicolas Patry's avatar
Nicolas Patry committed
648
                    newbase = self.base * ((self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
Nicolas Patry's avatar
Nicolas Patry committed
649
650
651
652
653
654
655
656
657
658
659
                    self.inv_freq = _create_inv_freq(self.dim, newbase, self.inv_freq.device)
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)


660
661
except ImportError:
    pass