layers.py 37.9 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List, Tuple, Optional
8
9
from loguru import logger
from functools import lru_cache
10
11
12

HAS_BITS_AND_BYTES = True
try:
13
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
14
    from bitsandbytes.nn import Int8Params, Params4bit
15
except ImportError:
16
17
    HAS_BITS_AND_BYTES = False

18
19
from accelerate import init_empty_weights

20
from text_generation_server.utils.gptq.quant_linear import QuantLinear
OlivierDehaene's avatar
OlivierDehaene committed
21
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
22
23

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
24
try:
25
26
27
28
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

29
try:
30
31
32
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
33

34
HAS_EXLLAMA = False
fxmarty's avatar
fxmarty committed
35
CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
36
37
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"

38
if os.getenv("DISABLE_EXLLAMA") == "True":
39
    HAS_EXLLAMA = False
40
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
41
    try:
Nicolas Patry's avatar
Nicolas Patry committed
42
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
43
44
45
46
47
            from text_generation_server.utils.gptq.exllamav2 import (
                QuantLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
48

Nicolas Patry's avatar
Nicolas Patry committed
49
50
            HAS_EXLLAMA = "2"
        else:
OlivierDehaene's avatar
OlivierDehaene committed
51
52
53
54
55
            from text_generation_server.utils.gptq.exllama import (
                Ex4bitLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
56

Nicolas Patry's avatar
Nicolas Patry committed
57
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
58
59
60

    except ImportError:
        pass
61

62
63
64
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
65

66
67
68
69
    HAS_EETQ = True
except ImportError:
    pass

70

71
72
73
74
75
76
77
78
79
80
81
82
83
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


84
85
86
87
88
89
90
91
92
93
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
94

95
96
97
98
99
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
100
101
102
103
104
105
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
106
107
108
109
110
111
112

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
113
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
114
    cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
115
):
116
117
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
118
119
120
121
122
123
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
124
125
126
127
128

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

129

130
131
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
132
torch.nn.LayerNorm.load = load_layer_norm
133
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
134

135
136

class FastLinear(nn.Module):
137
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
138
139
140
        self,
        weight,
        bias,
141
    ) -> None:
142
143
144
145
146
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
147
            self.bias = None
148
149
150
151
152
153

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
154
        else:
155
156
            bias = None
        return cls(weight, bias)
157
158

    def forward(self, input: torch.Tensor) -> torch.Tensor:
159
        return F.linear(input, self.weight, self.bias)
160
161


162
163
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
164
165
166
        self,
        weight,
        bias,
167
168
169
    ) -> None:
        super().__init__()
        device = weight.device
170
171
        if weight.dtype != torch.float16:
            weight = weight.to(dtype=torch.float16)
172
173
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
174

175
176
177
178
179
180
181
182
183
184
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


185
class Linear8bitLt(nn.Module):
186
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
187
188
189
190
191
192
193
        self,
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
194
    ):
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
213
        )
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
241
242


Nicolas Patry's avatar
Nicolas Patry committed
243
244
245
246
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
247
248
249
250
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


279
280
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
281
282
283
284
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

285

286
287
288
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
289
290
291
292
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
293
294
295
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
296
    elif quantize == "bitsandbytes":
297
        warn_deprecate_bnb()
298
299
300
301
302
303
304
305
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
306
307
308
309
310
311
312
313
314
315
316
317
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
318
    elif quantize == "gptq":
319
        try:
320
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
321
322
323
324
325
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

326
        if use_exllama:
OlivierDehaene's avatar
OlivierDehaene committed
327
328
329
            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
330
331
332
333
334
335
336
337
338
339
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
340
341
342
343
344
345
346
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
347
348
349
350
351
352
        if IS_ROCM_SYSTEM:
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        if not HAS_AWQ:
OlivierDehaene's avatar
OlivierDehaene committed
353
354
355
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
OlivierDehaene's avatar
OlivierDehaene committed
356
357
358
359
360
361
362
363
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
class ResBlock(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.linear = FastLinear.load(
            config, prefix=f"{prefix}.linear", weights=weights, bias=True
        )
        self.act = torch.nn.SiLU()

    def forward(self, x):
        return x + self.act(self.linear(x))


class MedusaModel(torch.nn.Module):
    def __init__(self, config, weights):
        super().__init__()
        self.heads = torch.nn.ModuleList(
            [
                MedusaHead(config, prefix=f"{i}", weights=weights)
                for i in range(config["medusa_num_heads"])
            ]
        )

    def forward(self, x):
        speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
        return speculative_logits


class MedusaHead(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.blocks = torch.nn.ModuleList(
            [
                ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
                for i in range(config["medusa_num_layers"])
            ]
        )
        n = len(self.blocks)
        self.out = FastLinear.load(
            config, prefix=f"{prefix}.{n}", weights=weights, bias=False
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.out(x)
        return x


class SpeculativeHead(nn.Module):
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.lm_head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
        lm_head = TensorParallelHead.load(config, prefix, weights)
        use_medusa = config.use_medusa
        if use_medusa:
            from pathlib import Path
            from safetensors import safe_open
            import json

            medusa_config = str(Path(use_medusa) / "config.json")
            filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

            with open(medusa_config, "r") as f:
                config = json.load(f)
            routing = weights.routing
            with safe_open(filename, framework="pytorch") as f:
                for k in f.keys():
                    if k in routing:
                        raise RuntimeError(
                            f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                        )
                    weights.routing[k] = filename

            medusa = MedusaModel(config, weights)
        else:
            medusa = None
        return SpeculativeHead(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
        speculative_logits = self.medusa(input) if self.medusa is not None else None
        return logits, speculative_logits


468
class TensorParallelHead(SuperLayer):
469
    def __init__(self, linear, process_group, should_gather: bool):
470
        super().__init__(linear)
471
        self.process_group = process_group
472
        self.should_gather = should_gather
473
474
475

    @staticmethod
    def load(config, prefix: str, weights):
476
477
478
479
480
481
482
483
484
485
486
487
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
488

489
490
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
491
492
493
            quantize = None
        else:
            quantize = config.quantize
494
        return TensorParallelHead(
495
            get_linear(weight, bias=None, quantize=quantize),
496
            process_group=weights.process_group,
497
            should_gather=should_gather,
498
499
500
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
501
502
503
        if not self.should_gather:
            return super().forward(input)

504
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
505
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
506
507
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
508
509
510
511
512
513
514
515
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
516
517
518
519

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
520
                world_out, gather_input, group=self.process_group
521
522
            )

OlivierDehaene's avatar
OlivierDehaene committed
523
524
525
            if input.shape[0] == 1:
                return world_out
            return world_out.T
526

OlivierDehaene's avatar
OlivierDehaene committed
527
528
529
530
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
531
532
533
534
535
536
537
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
xiaobin's avatar
xiaobin committed
538
539
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
540
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
541
542
543
544
545
546
547
548
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
549
    def load(cls, config, prefix: str, weights, bias: bool):
550
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
551

552
553
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
554
555
556
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
557

558
559
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
560
            bias = torch.cat(b, dim=dim)
561
562
        else:
            bias = None
563
564
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
565

566
567
568
569

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
570
571
        self.process_group = process_group

572
573
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
574
575
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

576
577
578
579
580
581
582
583
584
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
585

586
    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
587
        out = super().forward(input)
588
        if self.process_group.size() > 1 and reduce:
589
            torch.distributed.all_reduce(out, group=self.process_group)
590
        return out
591
592


593
594
595
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
596
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
597
598
599
600
601
602
603
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

604
        block_size = (num_embeddings + world_size - 1) // world_size
605
606
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
OlivierDehaene's avatar
OlivierDehaene committed
607
608
609
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
610
611
        self.process_group = weights.process_group
        self.reduce = reduce
612
613

        """Additional 0 entry used for masking"""
614
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
615
616
617
618
619
620
621
622
623

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
624
        out = torch.nn.functional.embedding(input, self.weight)
625
        if self.reduce and self.process_group.size() > 1:
626
            torch.distributed.all_reduce(out, group=self.process_group)
627
628
629
630
        return out


try:
fxmarty's avatar
fxmarty committed
631
632
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
633
634
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
635
636
    else:
        dropout_layer_norm = None
637
638
639

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
fxmarty's avatar
fxmarty committed
640
            if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
OlivierDehaene's avatar
OlivierDehaene committed
704
705
706
707
708
                (
                    normed_hidden_states,
                    res,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
OlivierDehaene's avatar
OlivierDehaene committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
745
746
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
OlivierDehaene's avatar
OlivierDehaene committed
747

748
749
750
751
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
752
753
754
755
756
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
757

Nicolas Patry's avatar
Nicolas Patry committed
758
759
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
760
            base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
761
762
763
764
765
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
766
767
768
769
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
770
771
772
            return rope_scaling
        return getattr(config, "rope_scaling", None)

773
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
774
        def __init__(self, inv_freq, scaling_factor):
775
            super().__init__()
776
            self.inv_freq = inv_freq
777
778
779
780
781
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
782
783
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
784

OlivierDehaene's avatar
OlivierDehaene committed
785
786
787
788
789
790
791
        def forward(
            self,
            query: torch.Tensor,
            key: torch.Tensor,
            cos: torch.Tensor,
            sin: torch.Tensor,
        ):
fxmarty's avatar
fxmarty committed
792
793
794
795
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
796
                q2 = query[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
797
798
799
800

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
801
                k2 = key[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
802
803
804
805
806
807
808
809
810

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
OlivierDehaene's avatar
OlivierDehaene committed
811
                pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
fxmarty's avatar
fxmarty committed
812
            else:
OlivierDehaene's avatar
OlivierDehaene committed
813
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
814
815
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
fxmarty's avatar
fxmarty committed
816

817
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
818
819
820
821
822
823
824
825
826
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
827
828
829
830
831
832
833
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
834
835
836
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
837
838
839
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
840
841
842
843
844
845
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
846
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
847
                    )
Nicolas Patry's avatar
Nicolas Patry committed
848
                else:
OlivierDehaene's avatar
OlivierDehaene committed
849
850
851
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
852
            return cls(inv_freq, scaling_factor)
853
854

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
855
        def load(cls, config, prefix, weights):
856
857
858
859
860
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
861
862
863
864
865
866
867
868

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
869
870
871
872
873
874
875
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
876
877
878
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
879
880
881
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
882
883
884
885
886
887
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
888
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
889
                    )
Nicolas Patry's avatar
Nicolas Patry committed
890
                else:
OlivierDehaene's avatar
OlivierDehaene committed
891
892
893
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
894
            return cls(inv_freq, scaling_factor)
895

896
897
898
899
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
900
901
902
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
903
904
905
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
906
907
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
908
909
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
910

911
912
913
914
915
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
916
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
917
918
919
920
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
921
922
923
924
925
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
926
927
928
929
930

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
fxmarty's avatar
fxmarty committed
931
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
932
933
            return cos.unsqueeze(1), sin.unsqueeze(1)

Nicolas Patry's avatar
Nicolas Patry committed
934
935
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
936
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
937
938
939
940
941
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
942
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
943
944
945
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
946
947
948
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
949
950
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
951
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
952
953
                        (self.scaling_factor * seqlen / self.max_position_embeddings)
                        - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
954
955
956
957
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
958
959
960
961
962
963
964
965
966
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
967
968
    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
969

OlivierDehaene's avatar
OlivierDehaene committed
970
971
972
973
974
975
    def find_correction_dim(
        num_rotations, dim, base=10000, max_position_embeddings=2048
    ):
        return (
            dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
        ) / (2 * math.log(base))
Nicolas Patry's avatar
Nicolas Patry committed
976
977

    # Find dim range bounds based on rotations
OlivierDehaene's avatar
OlivierDehaene committed
978
979
980
981
982
983
984
985
986
    def find_correction_range(
        low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
    ):
        low = math.floor(
            find_correction_dim(low_rot, dim, base, max_position_embeddings)
        )
        high = math.ceil(
            find_correction_dim(high_rot, dim, base, max_position_embeddings)
        )
OlivierDehaene's avatar
OlivierDehaene committed
987
988
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        def __init__(
            self,
            dim,
            max_position_embeddings,
            base,
            device,
            scaling_factor,
            *,
            extrapolation_factor,
            attn_factor,
            beta_fast,
            beta_slow,
        ):
Nicolas Patry's avatar
Nicolas Patry committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
1025
1026
1027
            self.mscale = float(
                get_mscale(self.scaling_factor) * self.attn_factor
            )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1028
1029
1030
1031
1032

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1033
1034
1035
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1036
1037
1038
1039
1040
1041
1042
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
                    low, high = find_correction_range(
                        self.beta_fast,
                        self.beta_slow,
                        self.dim,
                        self.base,
                        self.max_position_embeddings,
                    )
                    inv_freq_mask = (
                        1
                        - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
                    ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
                    inv_freq = (
                        inv_freq_interpolation * (1 - inv_freq_mask)
                        + inv_freq_extrapolation * inv_freq_mask
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1058
1059

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
1060
1061
1062
                    self.mscale = float(
                        get_mscale(self.scaling_factor) * self.attn_factor
                    )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

1073
1074
except ImportError:
    pass