layers.py 14.3 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
10

HAS_BITS_AND_BYTES = True
try:
11
12
13
14
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params

except ImportError:
15
16
    HAS_BITS_AND_BYTES = False

17
18
from accelerate import init_empty_weights

19
from text_generation_server.utils.gptq.quant_linear import QuantLinear
20

21
22
HAS_EXLLAMA = True
if os.getenv("DISABLE_EXLLAMA") == "True":
23
    HAS_EXLLAMA = False
24
25
26
27
try:
    from text_generation_server.utils.gptq.exllama import Ex4bitLinear
except ImportError:
    HAS_EXLLAMA = False
28

29
from typing import Optional
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


44
45
46
47
48
49
50
51
52
53
54
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln


55
torch.nn.LayerNorm.load = load_layer_norm
56
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
57

58
59

class FastLinear(nn.Module):
60
61
    def __init__(
        self,
62
63
        weight,
        bias,
64
    ) -> None:
65
66
67
68
69
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
70
            self.bias = None
71
72
73
74
75
76

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
77
        else:
78
79
            bias = None
        return cls(weight, bias)
80
81

    def forward(self, input: torch.Tensor) -> torch.Tensor:
82
        return F.linear(input, self.weight, self.bias)
83
84


85
class Linear8bitLt(nn.Module):
86
87
    def __init__(
        self,
88
89
90
91
92
93
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
94
    ):
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
113
        )
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
141
142


143
144
145
146
147
148
149
150
151
152
153
154
155
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
    elif quantize == "bitsandbytes":
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
    elif quantize == "gptq":
156
        try:
157
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
158
159
160
161
162
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

163
164
165
166
167
168
169
170
171
172
173
174
        if use_exllama:
            linear = Ex4bitLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
190
    def __init__(self, linear, process_group, should_gather: bool):
191
        super().__init__(linear)
192
        self.process_group = process_group
193
        self.should_gather = should_gather
194
195
196

    @staticmethod
    def load(config, prefix: str, weights):
197
198
199
200
201
202
203
204
205
206
207
208
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
209
210
211
212
213
214

        # GPTQ doesn't quantize heads (nor embeddings)
        if config.quantize == "gptq":
            quantize = None
        else:
            quantize = config.quantize
215
        return TensorParallelHead(
216
            get_linear(weight, bias=None, quantize=quantize),
217
            process_group=weights.process_group,
218
            should_gather=should_gather,
219
220
221
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
222
223
224
        if not self.should_gather:
            return super().forward(input)

225
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
226
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
227
228
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
229
230
231
232
233
234
235
236
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
237
238
239
240

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
241
                world_out, gather_input, group=self.process_group
242
243
            )

OlivierDehaene's avatar
OlivierDehaene committed
244
245
246
            if input.shape[0] == 1:
                return world_out
            return world_out.T
247

OlivierDehaene's avatar
OlivierDehaene committed
248
249
250
251
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
252
253
254
255
256
257
258
259
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
260
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
261

262
263
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
264
265
266
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
267

268
269
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
270
            bias = torch.cat(b, dim=dim)
271
272
        else:
            bias = None
273
274
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
275

276
277
278
279

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
280
281
        self.process_group = process_group

282
283
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
284
285
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

286
287
288
289
290
291
292
293
294
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
295

296
297
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
298
299
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
300
        return out
301
302


303
304
305
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
306
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
307
308
309
310
311
312
313
314
315
316
317
318
319
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
320
321

        """Additional 0 entry used for masking"""
322
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
323
324
325
326
327
328
329
330
331

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
332
        out = torch.nn.functional.embedding(input, self.weight)
333
        if self.reduce and self.process_group.size() > 1:
334
            torch.distributed.all_reduce(out, group=self.process_group)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        return out


try:
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

except ImportError:
    pass


try:
    from flash_attn.layers.rotary import RotaryEmbedding
    import rotary_emb

384
385
386
387
    class PositionRotaryEmbedding(nn.Module):
        def __init__(self, inv_freq):
            super().__init__()

388
            self.inv_freq = inv_freq
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None

        @classmethod
        def static(cls, dim, base, device):
            inv_freq = 1.0 / (
                base
                ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
            )
            return cls(inv_freq)

        @classmethod
        def load(cls, prefix, weights):
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
            return cls(inv_freq)

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
        ):
            """
            Return cos and sin for the asked position ids
            """

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
            return cos.unsqueeze(1), sin.unsqueeze(1)

441
        def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
442
            rotary_dim = cos.shape[-1]
443
444
445
446
447
            x1 = x[..., :rotary_dim]
            x2 = x[..., rotary_dim : 2 * rotary_dim]

            rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
            return x
448
449
450

except ImportError:
    pass