layers.py 44.7 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List, Tuple, Optional
8
9
from loguru import logger
from functools import lru_cache
10

Nicolas Patry's avatar
Nicolas Patry committed
11
# Dummy comment.
12
13
HAS_BITS_AND_BYTES = True
try:
14
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
15
    from bitsandbytes.nn import Int8Params, Params4bit
16
except ImportError:
17
18
    HAS_BITS_AND_BYTES = False

19
20
from accelerate import init_empty_weights

21
from text_generation_server.utils.gptq.quant_linear import QuantLinear
22
23
24
25
26
27
28
29
from text_generation_server.utils.import_utils import (
    IS_CUDA_SYSTEM,
    IS_ROCM_SYSTEM,
    IS_XPU_SYSTEM,
)

if IS_XPU_SYSTEM:
    import intel_extension_for_pytorch as ipex
30
31

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
32
try:
33
34
35
36
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

37
try:
38
39
40
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
41

42
HAS_EXLLAMA = False
fxmarty's avatar
fxmarty committed
43
CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
44
45
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"

46
if os.getenv("DISABLE_EXLLAMA") == "True":
47
    HAS_EXLLAMA = False
48
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
49
    try:
Nicolas Patry's avatar
Nicolas Patry committed
50
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
51
52
53
54
55
            from text_generation_server.utils.gptq.exllamav2 import (
                QuantLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
56

Nicolas Patry's avatar
Nicolas Patry committed
57
58
            HAS_EXLLAMA = "2"
        else:
OlivierDehaene's avatar
OlivierDehaene committed
59
60
61
62
63
            from text_generation_server.utils.gptq.exllama import (
                Ex4bitLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
64

Nicolas Patry's avatar
Nicolas Patry committed
65
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
66
67
68

    except ImportError:
        pass
69

70
71
72
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
73

74
75
76
77
    HAS_EETQ = True
except ImportError:
    pass

78

79
80
81
82
83
84
85
86
87
88
89
90
91
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


92
93
94
95
96
97
98
99
100
101
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
102

103
104
105
106
107
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
108
109
110
111
112
113
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
114
115
116
117
118
119
120

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
121
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
122
    cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
123
):
124
125
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
126
127
128
129
130
131
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
132
133
134
135
136

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

137

138
139
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
140
torch.nn.LayerNorm.load = load_layer_norm
141
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
142

143
144

class FastLinear(nn.Module):
145
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
146
147
148
        self,
        weight,
        bias,
149
    ) -> None:
150
151
152
153
154
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
155
            self.bias = None
156
157
158
159
160
161

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
162
        else:
163
164
            bias = None
        return cls(weight, bias)
165
166

    def forward(self, input: torch.Tensor) -> torch.Tensor:
167
        return F.linear(input, self.weight, self.bias)
168
169


170
171
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
172
173
174
        self,
        weight,
        bias,
175
176
177
    ) -> None:
        super().__init__()
        device = weight.device
178
179
        if weight.dtype != torch.float16:
            weight = weight.to(dtype=torch.float16)
180
181
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
182

183
184
185
186
187
188
189
190
191
192
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


Nicolas Patry's avatar
Nicolas Patry committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
    device = weight.device
    # weight, scale = quant_weights(weight, torch.int8, False)
    finfo = torch.finfo(qdtype)
    # Calculate the scale as dtype max divided by absmax
    scale = finfo.max / weight.abs().max().clamp(min=1e-12)
    # scale and clamp the tensor to bring it to
    # the representative range of float8 data type
    # (as default cast is unsaturated)
    qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
    # Return both float8 data and the inverse scale (as float),
    # as both required as inputs to torch._scaled_mm
    qweight = qweight.to(qdtype)
    scale = scale.float().reciprocal()
    return qweight, scale


class Fp8Linear(nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.dtype = weight.dtype
        self.qweight, self.scale = fp8_quantize(weight)

        self.bias = bias if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        qinput, scale = fp8_quantize(input)
        output, _ = torch._scaled_mm(
            qinput,
            self.qweight.t(),
            out_dtype=self.dtype,
            scale_a=scale,
            scale_b=self.scale,
            bias=self.bias,
        )
        return output


235
class Linear8bitLt(nn.Module):
236
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
237
238
239
240
241
242
243
        self,
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
244
    ):
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
263
        )
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
291
292


Nicolas Patry's avatar
Nicolas Patry committed
293
294
295
296
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
297
298
299
300
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


329
330
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
331
332
333
334
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

335

336
337
338
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
339
340
341
342
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
343
344
345
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
Nicolas Patry's avatar
Nicolas Patry committed
346
347
    elif quantize == "fp8":
        linear = Fp8Linear(weight, bias)
348
    elif quantize == "bitsandbytes":
349
        warn_deprecate_bnb()
350
351
352
353
354
355
356
357
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
358
359
360
361
362
363
364
365
366
367
368
369
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
370
    elif quantize == "gptq":
371
        try:
372
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
373
374
375
376
377
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

378
        if use_exllama:
OlivierDehaene's avatar
OlivierDehaene committed
379
380
381
            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
382
383
384
385
386
387
388
389
390
391
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
392
393
394
395
396
397
398
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
Ilyas Moutawwakil's avatar
Ilyas Moutawwakil committed
399
400
401
402
403
404
        if IS_ROCM_SYSTEM:
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        if not HAS_AWQ:
OlivierDehaene's avatar
OlivierDehaene committed
405
406
407
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
OlivierDehaene's avatar
OlivierDehaene committed
408
409
410
411
412
413
414
415
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


430
431
432
433
434
435
436
437
438
439
440
441
442
class ResBlock(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.linear = FastLinear.load(
            config, prefix=f"{prefix}.linear", weights=weights, bias=True
        )
        self.act = torch.nn.SiLU()

    def forward(self, x):
        return x + self.act(self.linear(x))


class MedusaModel(torch.nn.Module):
OlivierDehaene's avatar
OlivierDehaene committed
443
    def __init__(self, config, medusa_config, weights):
444
445
446
        super().__init__()
        self.heads = torch.nn.ModuleList(
            [
OlivierDehaene's avatar
OlivierDehaene committed
447
448
                MedusaHead(config, medusa_config, prefix=f"{i}", weights=weights)
                for i in range(medusa_config["medusa_num_heads"])
449
450
451
452
453
454
455
456
457
            ]
        )

    def forward(self, x):
        speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
        return speculative_logits


class MedusaHead(torch.nn.Module):
OlivierDehaene's avatar
OlivierDehaene committed
458
    def __init__(self, config, medusa_config, prefix, weights):
459
460
461
462
        super().__init__()
        self.blocks = torch.nn.ModuleList(
            [
                ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
OlivierDehaene's avatar
OlivierDehaene committed
463
                for i in range(medusa_config["medusa_num_layers"])
464
465
466
467
468
469
470
471
472
473
474
475
476
477
            ]
        )
        n = len(self.blocks)
        self.out = FastLinear.load(
            config, prefix=f"{prefix}.{n}", weights=weights, bias=False
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.out(x)
        return x


OlivierDehaene's avatar
OlivierDehaene committed
478
class MedusaHeadV1(nn.Module):
479
480
481
482
483
484
485
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.lm_head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
OlivierDehaene's avatar
OlivierDehaene committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        from pathlib import Path
        from safetensors import safe_open
        import json

        use_medusa = config.use_medusa

        medusa_config = str(Path(use_medusa) / "config.json")
        filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

        with open(medusa_config, "r") as f:
            medusa_config = json.load(f)
        routing = weights.routing
        with safe_open(filename, framework="pytorch") as f:
            for k in f.keys():
                if k in routing and routing[k] != filename:
                    raise RuntimeError(
                        f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                    )
                routing[k] = filename

        medusa = MedusaModel(config, medusa_config, weights)
507
        lm_head = TensorParallelHead.load(config, prefix, weights)
OlivierDehaene's avatar
OlivierDehaene committed
508
509
510
511
512
513
        return MedusaHeadV1(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
OlivierDehaene's avatar
OlivierDehaene committed
514
515
516
517
        # If we have too many tokens, we skip speculative logits
        if input.shape[0] > 128:
            return logits, None

OlivierDehaene's avatar
OlivierDehaene committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        speculative_logits = self.medusa(input)
        return logits, speculative_logits


class MedusaHeadV2(nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        from pathlib import Path
        from safetensors import safe_open
        import json

        use_medusa = config.use_medusa

        medusa_config = str(Path(use_medusa) / "config.json")
        filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

        with open(medusa_config, "r") as f:
            medusa_config = json.load(f)
        routing = weights.routing
        with safe_open(filename, framework="pytorch") as f:
            for k in f.keys():
                if k in routing and routing[k] != filename:
                    raise RuntimeError(
                        f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                    )
                routing[k] = filename

        self.n_medusa_heads = medusa_config["medusa_num_heads"]

        assert medusa_config["medusa_num_layers"] == 1
        self.linear = TensorParallelColumnLinear.load_multi(
            config,
            prefixes=[f"{i}.0.linear" for i in range(self.n_medusa_heads)],
            dim=0,
            weights=weights,
            bias=True,
        )
        self.process_group = weights.process_group
        self.world_size = self.process_group.size()
        self.rank = self.process_group.rank()

        self.act = torch.nn.SiLU()

        self.lm_head = TensorParallelHead.load(config, prefix, weights)

    def forward(self, x):
OlivierDehaene's avatar
OlivierDehaene committed
564
565
566
567
568
        # If we have too many tokens, we skip speculative logits
        if x.shape[0] > 128:
            logits = self.lm_head(x)
            return logits, None

OlivierDehaene's avatar
OlivierDehaene committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        size = x.shape[-1]
        block_size = (size + self.world_size - 1) // self.world_size
        start = self.rank * block_size
        stop = (self.rank + 1) * block_size

        x_block = x[:, start:stop]

        # Compute all medusa heads at the same time, then reshape and move the n_medusa_heads dim to dim 1
        medusa_res = self.act(self.linear(x)).reshape(
            *x_block.shape[:-1], self.n_medusa_heads, x_block.shape[-1]
        )

        # Apply all residual medusa heads
        output = x[:, start:stop].unsqueeze(-2) + medusa_res

        # Gather medusa heads
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)

        # Stack x and medusa residual x
        stacked_x = torch.cat([x.unsqueeze(-2), world_output], dim=-2)

        # Compute lm head on x + medusa residual x
        logits = self.lm_head(stacked_x)

        # Finally, split logits from speculative logits
        logits, speculative_logits = torch.split(
            logits, [1, self.n_medusa_heads], dim=-2
        )
        # Squeeze added dimension
        logits = logits.squeeze(-2)

        return logits, speculative_logits


class SpeculativeHead(nn.Module):
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
615
616
        use_medusa = config.use_medusa
        if use_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
617
618
619
620
621
            lm_head = None
            try:
                medusa = MedusaHeadV1.load(config, prefix, weights)
            except:
                medusa = MedusaHeadV2(config, prefix, weights)
622
        else:
OlivierDehaene's avatar
OlivierDehaene committed
623
            lm_head = TensorParallelHead.load(config, prefix, weights)
624
625
626
627
628
629
            medusa = None
        return SpeculativeHead(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
OlivierDehaene's avatar
OlivierDehaene committed
630
631
632
633
634
635
        if self.medusa is not None:
            return self.medusa(input)

        assert self.head is not None
        logits = self.head(input)
        return logits, None
636
637


638
class TensorParallelHead(SuperLayer):
639
    def __init__(self, linear, process_group, should_gather: bool):
640
        super().__init__(linear)
641
        self.process_group = process_group
642
        self.should_gather = should_gather
643
644
645

    @staticmethod
    def load(config, prefix: str, weights):
646
647
648
649
650
651
652
653
654
655
656
657
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
658

659
660
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
661
662
663
            quantize = None
        else:
            quantize = config.quantize
664
        return TensorParallelHead(
665
            get_linear(weight, bias=None, quantize=quantize),
666
            process_group=weights.process_group,
667
            should_gather=should_gather,
668
669
670
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
671
672
673
        if not self.should_gather:
            return super().forward(input)

674
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
675
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
676
677
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
678
679
680
681
682
683
684
685
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
686
687
688
689

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
690
                world_out, gather_input, group=self.process_group
691
692
            )

OlivierDehaene's avatar
OlivierDehaene committed
693
694
695
            if input.shape[0] == 1:
                return world_out
            return world_out.T
696

OlivierDehaene's avatar
OlivierDehaene committed
697
698
699
700
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
701
702
703
704
705
706
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
Nicolas Patry's avatar
Nicolas Patry committed
707
708
709
710
711
712
713
714
715
716
717
718
719
    @classmethod
    def load_gate_up(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
        weight = weights.get_weights_col_packed_gate_up(
            prefix, quantize=config.quantize
        )
        if bias:
            raise NotImplementedError("packed_gate_up only implemented without bias")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

720
    @classmethod
xiaobin's avatar
xiaobin committed
721
722
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
723
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
724
725
726
727
728
729
730
731
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
732
    def load(cls, config, prefix: str, weights, bias: bool):
733
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
734

735
736
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
737
738
739
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
740

741
742
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
743
            bias = torch.cat(b, dim=dim)
744
745
        else:
            bias = None
746
747
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
748

749
750
751
752

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
753
754
        self.process_group = process_group

755
756
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
757
758
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

759
760
761
762
763
764
765
766
767
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
768

769
    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
770
        out = super().forward(input)
771
        if self.process_group.size() > 1 and reduce:
772
            torch.distributed.all_reduce(out, group=self.process_group)
773
        return out
774
775


776
777
778
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
779
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
780
781
782
783
784
785
786
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

787
        block_size = (num_embeddings + world_size - 1) // world_size
788
789
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
OlivierDehaene's avatar
OlivierDehaene committed
790
791
792
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
793
794
        self.process_group = weights.process_group
        self.reduce = reduce
795
796

        """Additional 0 entry used for masking"""
797
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
798
799
800
801
802
803
804
805
806

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
807
        out = torch.nn.functional.embedding(input, self.weight)
808
        if self.reduce and self.process_group.size() > 1:
809
            torch.distributed.all_reduce(out, group=self.process_group)
810
811
812
813
        return out


try:
fxmarty's avatar
fxmarty committed
814
815
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
816
817
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
818
819
    else:
        dropout_layer_norm = None
820
821
822

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
823
824
825
826
827
828
829
830
831
            if IS_XPU_SYSTEM:
                res_out = hidden_states
                out = ipex.llm.functional.add_layer_norm(
                    residual, hidden_states, self.weight, self.bias, self.eps, True
                )
                if residual is not None:
                    res_out = residual
                return out, res_out
            elif hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876

    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
877
878
879
880
881
882
883
884
885
886
887
888
889
890
            if IS_XPU_SYSTEM:
                residual_out = hidden_states
                out = ipex.llm.functional.add_rms_norm(
                    residual,
                    hidden_states,
                    self.weight,
                    None,
                    self.variance_epsilon,
                    True,
                )
                if residual is not None:
                    residual_out = residual
                return out, residual_out
            elif hidden_states.shape[-1] > 8192:
OlivierDehaene's avatar
OlivierDehaene committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
OlivierDehaene's avatar
OlivierDehaene committed
908
909
910
911
912
                (
                    normed_hidden_states,
                    res,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
OlivierDehaene's avatar
OlivierDehaene committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
949
950
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
OlivierDehaene's avatar
OlivierDehaene committed
951

952
953
954
955
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
956
957
958
959
960
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
961

Nicolas Patry's avatar
Nicolas Patry committed
962
963
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
964
            base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
965
966
967
968
969
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
970
971
972
973
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
974
975
976
            return rope_scaling
        return getattr(config, "rope_scaling", None)

977
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
978
        def __init__(self, inv_freq, scaling_factor):
979
            super().__init__()
980
            self.inv_freq = inv_freq
981
982
983
984
985
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
986
987
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
988

OlivierDehaene's avatar
OlivierDehaene committed
989
990
991
992
993
994
995
        def forward(
            self,
            query: torch.Tensor,
            key: torch.Tensor,
            cos: torch.Tensor,
            sin: torch.Tensor,
        ):
fxmarty's avatar
fxmarty committed
996
997
998
999
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
1000
                q2 = query[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
1001
1002
1003
1004

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
1005
                k2 = key[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
1006
1007
1008
1009
1010
1011
1012
1013
1014

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
OlivierDehaene's avatar
OlivierDehaene committed
1015
                pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
1016
1017
1018
1019
            elif IS_XPU_SYSTEM:
                ipex.llm.functional.rotary_embedding(
                    query, key, sin, cos, query.size(-1), True
                )
fxmarty's avatar
fxmarty committed
1020
            else:
OlivierDehaene's avatar
OlivierDehaene committed
1021
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
1022
1023
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
fxmarty's avatar
fxmarty committed
1024

1025
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
1035
1036
1037
1038
1039
1040
1041
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1042
1043
1044
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
1045
1046
1047
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
1048
1049
1050
1051
1052
1053
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
1054
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
1055
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1056
                else:
OlivierDehaene's avatar
OlivierDehaene committed
1057
1058
1059
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1060
            return cls(inv_freq, scaling_factor)
1061
1062

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
1063
        def load(cls, config, prefix, weights):
1064
1065
1066
1067
1068
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
1069
1070
1071
1072
1073
1074
1075
1076

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
1077
1078
1079
1080
1081
1082
1083
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1084
1085
1086
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
1087
1088
1089
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
1090
1091
1092
1093
1094
1095
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
1096
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
1097
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1098
                else:
OlivierDehaene's avatar
OlivierDehaene committed
1099
1100
1101
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1102
            return cls(inv_freq, scaling_factor)
1103

1104
1105
1106
1107
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1108
1109
1110
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
1111
1112
1113
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
1114
1115
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
1116
1117
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
1118

1119
1120
1121
1122
1123
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
1124
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
1125
1126
1127
1128
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
1129
1130
1131
1132
1133
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
1134
1135
1136
1137
1138

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
1139

fxmarty's avatar
fxmarty committed
1140
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
1141
1142
            return cos.unsqueeze(1), sin.unsqueeze(1)

Nicolas Patry's avatar
Nicolas Patry committed
1143
1144
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
1145
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
1146
1147
1148
1149
1150
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
1151
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
1152
1153
1154
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1155
1156
1157
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1158
1159
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
1160
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
1161
1162
                        (self.scaling_factor * seqlen / self.max_position_embeddings)
                        - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
1163
1164
1165
1166
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
1176
1177
    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
1178

OlivierDehaene's avatar
OlivierDehaene committed
1179
1180
1181
1182
1183
1184
    def find_correction_dim(
        num_rotations, dim, base=10000, max_position_embeddings=2048
    ):
        return (
            dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
        ) / (2 * math.log(base))
Nicolas Patry's avatar
Nicolas Patry committed
1185
1186

    # Find dim range bounds based on rotations
OlivierDehaene's avatar
OlivierDehaene committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def find_correction_range(
        low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
    ):
        low = math.floor(
            find_correction_dim(low_rot, dim, base, max_position_embeddings)
        )
        high = math.ceil(
            find_correction_dim(high_rot, dim, base, max_position_embeddings)
        )
OlivierDehaene's avatar
OlivierDehaene committed
1196
1197
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
        def __init__(
            self,
            dim,
            max_position_embeddings,
            base,
            device,
            scaling_factor,
            *,
            extrapolation_factor,
            attn_factor,
            beta_fast,
            beta_slow,
        ):
Nicolas Patry's avatar
Nicolas Patry committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
1234
1235
1236
            self.mscale = float(
                get_mscale(self.scaling_factor) * self.attn_factor
            )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1237
1238
1239
1240
1241

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
1242
1243
1244
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
1245
1246
1247
1248
1249
1250
1251
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
                    low, high = find_correction_range(
                        self.beta_fast,
                        self.beta_slow,
                        self.dim,
                        self.base,
                        self.max_position_embeddings,
                    )
                    inv_freq_mask = (
                        1
                        - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
                    ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
                    inv_freq = (
                        inv_freq_interpolation * (1 - inv_freq_mask)
                        + inv_freq_extrapolation * inv_freq_mask
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1267
1268

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
1269
1270
1271
                    self.mscale = float(
                        get_mscale(self.scaling_factor) * self.attn_factor
                    )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

1282
1283
except ImportError:
    pass