layers.py 34.3 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
from loguru import logger
from functools import lru_cache
10
11
12

HAS_BITS_AND_BYTES = True
try:
13
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
14
    from bitsandbytes.nn import Int8Params, Params4bit
15
except ImportError:
16
17
    HAS_BITS_AND_BYTES = False

18
19
from accelerate import init_empty_weights

20
from text_generation_server.utils.gptq.quant_linear import QuantLinear
OlivierDehaene's avatar
OlivierDehaene committed
21
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
22
23

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
24
try:
25
26
27
28
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

29
try:
30
31
32
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
33

34
35
HAS_EXLLAMA = False
CAN_EXLLAMA = major >= 8
Nicolas Patry's avatar
Nicolas Patry committed
36
37
38
39
40
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"
if V2 and int(os.getenv("WORLD_SIZE", "1")) > 1:
    logger.warning("Disabling exllama v2 and using v1 instead because there are issues when sharding")
    V2 = False

41
if os.getenv("DISABLE_EXLLAMA") == "True":
42
    HAS_EXLLAMA = False
43
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
44
    try:
Nicolas Patry's avatar
Nicolas Patry committed
45
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
46
47
48
            from text_generation_server.utils.gptq.exllamav2 import (QuantLinear as ExllamaQuantLinear,
                                                                     create_exllama_buffers,
                                                                     set_device,
Nicolas Patry's avatar
Nicolas Patry committed
49
                                                                     )
OlivierDehaene's avatar
OlivierDehaene committed
50

Nicolas Patry's avatar
Nicolas Patry committed
51
52
53
            HAS_EXLLAMA = "2"
        else:
            from text_generation_server.utils.gptq.exllama import (Ex4bitLinear as ExllamaQuantLinear,
OlivierDehaene's avatar
OlivierDehaene committed
54
55
56
57
                                                                   create_exllama_buffers,
                                                                   set_device,
                                                                   )

Nicolas Patry's avatar
Nicolas Patry committed
58
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
59
60
61

    except ImportError:
        pass
62

63
from typing import Optional
64

65
66
67
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
68

69
70
71
72
    HAS_EETQ = True
except ImportError:
    pass

73

74
75
76
77
78
79
80
81
82
83
84
85
86
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


87
88
89
90
91
92
93
94
95
96
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
97

98
99
100
101
102
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
103
104
105
106
107
108
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
109
110
111
112
113
114
115

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
116
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
117
        cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
118
):
119
120
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
121
122
123
124
125
126
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
127
128
129
130
131

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

132

133
134
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
135
torch.nn.LayerNorm.load = load_layer_norm
136
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
137

138
139

class FastLinear(nn.Module):
140
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
141
142
143
            self,
            weight,
            bias,
144
    ) -> None:
145
146
147
148
149
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
150
            self.bias = None
151
152
153
154
155
156

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
157
        else:
158
159
            bias = None
        return cls(weight, bias)
160
161

    def forward(self, input: torch.Tensor) -> torch.Tensor:
162
        return F.linear(input, self.weight, self.bias)
163
164


165
166
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
167
168
169
            self,
            weight,
            bias,
170
171
172
173
174
    ) -> None:
        super().__init__()
        device = weight.device
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
175

176
177
178
179
180
181
182
183
184
185
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


186
class Linear8bitLt(nn.Module):
187
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
188
189
190
191
192
193
194
            self,
            weight,
            bias,
            has_fp16_weights=True,
            memory_efficient_backward=False,
            threshold=0.0,
            index=None,
195
    ):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
214
        )
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
242
243


Nicolas Patry's avatar
Nicolas Patry committed
244
245
246
247
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
248
249
250
251
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


280
281
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
282
283
284
285
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

286

287
288
289
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
290
291
292
293
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
294
295
296
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
297
    elif quantize == "bitsandbytes":
298
        warn_deprecate_bnb()
299
300
301
302
303
304
305
306
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
307
308
309
310
311
312
313
314
315
316
317
318
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
319
    elif quantize == "gptq":
320
        try:
321
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
322
323
324
325
326
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

327
        if use_exllama:
Nicolas Patry's avatar
Nicolas Patry committed
328
            linear = ExllamaQuantLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
329
330
331
332
333
334
335
336
337
338
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
339
340
341
342
343
344
345
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
OlivierDehaene's avatar
OlivierDehaene committed
346
347
348
349
350
351
352
353
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
369
    def __init__(self, linear, process_group, should_gather: bool):
370
        super().__init__(linear)
371
        self.process_group = process_group
372
        self.should_gather = should_gather
373
374
375

    @staticmethod
    def load(config, prefix: str, weights):
376
377
378
379
380
381
382
383
384
385
386
387
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
388

389
390
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
391
392
393
            quantize = None
        else:
            quantize = config.quantize
394
        return TensorParallelHead(
395
            get_linear(weight, bias=None, quantize=quantize),
396
            process_group=weights.process_group,
397
            should_gather=should_gather,
398
399
400
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
401
402
403
        if not self.should_gather:
            return super().forward(input)

404
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
405
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
406
407
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
408
409
410
411
412
413
414
415
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
416
417
418
419

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
420
                world_out, gather_input, group=self.process_group
421
422
            )

OlivierDehaene's avatar
OlivierDehaene committed
423
424
425
            if input.shape[0] == 1:
                return world_out
            return world_out.T
426

OlivierDehaene's avatar
OlivierDehaene committed
427
428
429
430
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
431
432
433
434
435
436
437
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
xiaobin's avatar
xiaobin committed
438
439
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
440
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
441
442
443
444
445
446
447
448
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
449
    def load(cls, config, prefix: str, weights, bias: bool):
450
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
451

452
453
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
454
455
456
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
457

458
459
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
460
            bias = torch.cat(b, dim=dim)
461
462
        else:
            bias = None
463
464
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
465

466
467
468
469

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
470
471
        self.process_group = process_group

472
473
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
474
475
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

476
477
478
479
480
481
482
483
484
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
485

486
487
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
488
489
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
490
        return out
491
492


493
494
495
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
496
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
497
498
499
500
501
502
503
504
505
506
507
508
509
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
510
511

        """Additional 0 entry used for masking"""
512
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
513
514
515
516
517
518
519
520
521

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
522
        out = torch.nn.functional.embedding(input, self.weight)
523
        if self.reduce and self.process_group.size() > 1:
524
            torch.distributed.all_reduce(out, group=self.process_group)
525
526
527
528
        return out


try:
fxmarty's avatar
fxmarty committed
529
530
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
531
532
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
533
534
    else:
        dropout_layer_norm = None
535

OlivierDehaene's avatar
OlivierDehaene committed
536

537
538
    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
fxmarty's avatar
fxmarty committed
539
            if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642


    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
                normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")

643
644
645
646
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
647
648
649
650
651
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
652

OlivierDehaene's avatar
OlivierDehaene committed
653

Nicolas Patry's avatar
Nicolas Patry committed
654
655
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
656
                base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
657
658
659
        )
        return inv_freq

OlivierDehaene's avatar
OlivierDehaene committed
660

Nicolas Patry's avatar
Nicolas Patry committed
661
662
    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
663
664
665
666
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
667
668
669
            return rope_scaling
        return getattr(config, "rope_scaling", None)

OlivierDehaene's avatar
OlivierDehaene committed
670

671
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
672
        def __init__(self, inv_freq, scaling_factor):
673
            super().__init__()
674
            self.inv_freq = inv_freq
675
676
677
678
679
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
680
681
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
682

fxmarty's avatar
fxmarty committed
683
684
685
686
687
        def forward(self, query: torch.Tensor, key: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
688
                q2 = query[..., rotary_dim: 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
689
690
691
692

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
693
                k2 = key[..., rotary_dim: 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
                pos_encoding_ops.rotary_embedding(
                    query,
                    key,
                    head_size,
                    cos,
                    sin,
                    True
                )
            else:
OlivierDehaene's avatar
OlivierDehaene committed
712
713
                raise ValueError(
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
fxmarty's avatar
fxmarty committed
714

715
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
716
717
718
719
720
721
722
723
724
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
725
726
727
728
729
730
731
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
732
733
734
735
736
737
738
739
740
741
742
743
744
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=rope_scaling["original_max_position_embeddings"],
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
                        beta_slow=1

                    )
Nicolas Patry's avatar
Nicolas Patry committed
745
                else:
OlivierDehaene's avatar
OlivierDehaene committed
746
747
748
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
749
            return cls(inv_freq, scaling_factor)
750
751

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
752
        def load(cls, config, prefix, weights):
753
754
755
756
757
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
758
759
760
761
762
763
764
765

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
766
767
768
769
770
771
772
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
773
774
775
776
777
778
779
780
781
782
783
784
785
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=rope_scaling["original_max_position_embeddings"],
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
                        beta_slow=1

                    )
Nicolas Patry's avatar
Nicolas Patry committed
786
                else:
OlivierDehaene's avatar
OlivierDehaene committed
787
788
789
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
790
            return cls(inv_freq, scaling_factor)
791

792
793
794
795
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
796
797
798
                    seqlen > self._seq_len_cached
                    or self._cos_cached.device != device
                    or self._cos_cached.dtype != dtype
799
800
801
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
802
803
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
804
805
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
806

807
808
809
810
811
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
812
                self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
813
814
815
816
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
817
818
819
820
821
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
822
823
824
825
826

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
fxmarty's avatar
fxmarty committed
827
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
828
829
            return cos.unsqueeze(1), sin.unsqueeze(1)

OlivierDehaene's avatar
OlivierDehaene committed
830

Nicolas Patry's avatar
Nicolas Patry committed
831
832
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
833
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
834
835
836
837
838
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
839
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
840
841
842
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
843
844
845
                    seqlen > self._seq_len_cached
                    or self._cos_cached.device != device
                    or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
846
847
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
848
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
849
850
                            (self.scaling_factor * seqlen / self.max_position_embeddings)
                            - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
851
852
853
854
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
855
856
857
858
859
860
861
862
863
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
864
865
866

    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
867
868


Nicolas Patry's avatar
Nicolas Patry committed
869
    def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
OlivierDehaene's avatar
OlivierDehaene committed
870
871
        return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))

Nicolas Patry's avatar
Nicolas Patry committed
872
873
874
875
876
877
878

    # Find dim range bounds based on rotations
    def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
        low = math.floor(find_correction_dim(
            low_rot, dim, base, max_position_embeddings))
        high = math.ceil(find_correction_dim(
            high_rot, dim, base, max_position_embeddings))
OlivierDehaene's avatar
OlivierDehaene committed
879
880
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
881
882
883
884
885
886
887
888
889

    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

OlivierDehaene's avatar
OlivierDehaene committed
890

Nicolas Patry's avatar
Nicolas Patry committed
891
892
893
894
895
    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

OlivierDehaene's avatar
OlivierDehaene committed
896

Nicolas Patry's avatar
Nicolas Patry committed
897
    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
898
899
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor, *, extrapolation_factor,
                     attn_factor, beta_fast, beta_slow):
Nicolas Patry's avatar
Nicolas Patry committed
900
901
902
903
904
905
906
907
908
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
909
910
            self.mscale = float(get_mscale(
                self.scaling_factor) * self.attn_factor)  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
911
912
913
914
915

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
916
917
918
                    seqlen > self._seq_len_cached
                    or self._cos_cached.device != device
                    or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
919
920
921
922
923
924
925
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
926
927
928
929
                    low, high = find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
                                                      self.max_position_embeddings)
                    inv_freq_mask = (1 - linear_ramp_mask(low, high, self.dim // 2).float().to(
                        device)) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
Nicolas Patry's avatar
Nicolas Patry committed
930
931
932
                    inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
933
934
                    self.mscale = float(get_mscale(
                        self.scaling_factor) * self.attn_factor)  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
935
936
937
938
939
940
941
942
943
944

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

945
946
except ImportError:
    pass